Parameter Tuning in SVM-Based Power Macro-Modeling

Antonio Gusmao

L. Miguel Silveira

José Monteiro

TU Lisbon, IST / INESC-ID

Rua Alves Redol, 9
1000-029 Lisboa, Portugal
{antoniog, lms, jcm}@algos.inesc-id.pt

Abstract

We investigate the use of support vector machines (SVMs)
to determine simpler and better fit power macromodels of func-
tional units for high-level power estimation. The basic approach
is first to obtain the power consumption of the module for a large
number of points in the input signal space. Least-Squares SVMs
are then used to compute the best model to fit this set of points.
We have performed extensive experiments in order to deter-
mine the best parameters for the kernels. Based on this anal-
ysis, we propose an iterative method of improving the model
by selectively adding new support vectors and increasing the
sharpness of the model. The macromodels obtained confirm the
excellent modelling capabilities of the proposed kernel-based
method, providing both excellent accuracy on maximum error
(close to 17%) and average (2% error), which represents an im-
provement over the state-of-the-art. Furthermore, we present
an analysis of the dynamic range of power consumption for the
benchmarks circuits, which serves to confirm that the model is
able to accommodate circuits exhibiting a more skewed power
distribution.

Keywords

Power Estimation, Support Vector Machines, Macro-Model

1 Introduction

Electronic systems have become pervasive in our daily lives,
work environments and even our social habits. Such systems
are composed of a complex mix of digital and mixed-signal cir-
cuit blocks. Their design and verification prior to fabrication are
challenging tasks due to inherent size and complexity. A com-
mon approach towards easing the design process and enabling
verification is to replace large and complex design blocks by
smaller macromodels that accurately represent relevant charac-
teristics of the system. The resulting macromodelled system can
then be verified and design exploration can be accomplished,
leading to more efficient designs, with lower costs and added
features.

Power consumption has become one of the most important
parameters in the design of VLSI circuits and accurate power
estimation a requisite of any design exploration framework and
verification environment. Many high-level power estimation

tools have been proposed before to enable the evaluation of
different architectures in early stages of design [3]. The gen-
eral approach is to use power macromodels for each functional
unit. These macromodels are obtained in a pre-characterization
phase, stored in a library for later use and represent the power
dissipation of the unit as a function of the input statistics.

Kernel methods provide a powerful and unified framework
for pattern discovery, motivating algorithms that can act on gen-
eral types of data and look for general types of relations (e.g.
rankings, classifications, regressions, clusters) [9]. The applica-
tion areas range from neural networks and pattern recognition
to machine learning and data mining. In this paper, we inves-
tigate the use of learning algorithms, in particular support vec-
tor machines (SVMs), to determine simpler and better fit power
macromodels. The basic approach is first to obtain the power
consumption of the module for a large number of points in the
input signal space. Least-Squares SVMs (LS-SVM) are then
used to compute the best model to fit these set of points. The
statistics for each of the module’s output signals can be com-
puted in a similar manner, thus providing a means of propa-
gating the switching probabilities through the circuit. We have
performed extensive experiments in order to analyze the possi-
ble kernels which are the basis of the SVM formulation and to
determine the best kernel parameters. An iterative method to
improve the accuracy of the model by selectively adding new
data points to the training set is proposed.

We present results that confirm the excellent modelling capa-
bilities of the kernel-based methods and perform an analysis of
the dynamic range of the circuits chosen as benchmarks. Exper-
iments point out a wide variety of scenarios among benchmark
circuits in terms of the distribution of the power consumption
over different input patterns. Naturally, circuits with smaller
dynamic range are easier to model, as observed in terms of the
errors obtained. In fact, this analysis indicates that very simple
macromodels may be used for some circuits. On the other hand,
although more difficult to model, circuits with more skewed
power consumption distributions are still accurately modeled
the LS-SVM-based macromodels.

The paper is organized as follows. In Section 2, we re-
view previous work on power analysis techniques at the RT
level and provide some background on kernel methods. Sec-

tion 3 discusses the tuning of the kernel parameters and Sec-
tion 4 presents an iterative optimization method based on those
observations. We present our results in Section 5 and draw con-
clusions in Section 6.

2 Related Work

2.1 Power Macro-Modeling

There has been a fair amount of work on generating mod-
els for power dissipation at higher levels of abstraction. Top-
down approaches have been proposed in [5] and [4]. They are
both based on the concept of entropy and their focus is to de-
rive implementation-independent measures of the signal activ-
ity in the circuit. A number of assumptions are made in both [5]
and [4] on how to propagate the entropy of the inputs through
the circuits. These methods can be very efficient, though given
all the required approximations and the fact that they ignore is-
sues such as glitching implies that these techniques are not very
accurate.

Our method follows a bottom-up approach [3], where the
model is obtained from an actual circuit implementation. This
offers the best level of accuracy. These methods build their
models from data points, which consist on a power value for
the circuit under some input conditions. From this set of data
points, different strategies exist for generating a model that not
only fits these data points, but offers the best possible general-
ization ability.

Lookup tables have been successfully proposed [2]. N-
dimensional tables have been used, where each dimension rep-
resents an input parameter. Several strategies exist for reduc-
ing the number of dimensions and for interpolating among ta-
ble points. Alternatively, regression can be used to compute the
coefficients of an expression [1, 6]. A combination of both of
these methods has also been proposed [2].

We believe the model we propose, based on LS-SVMs, is
more robust than previously proposed approaches: it is generic,
fully-automated, and uses an underlying methodology with
properties that have been proven both theoretically and in prac-
tice in many different fields. Our results demonstrate just that.

2.2 LS-SVMs

Consider a general problem where we are given N in-
put/output data points, {xg, zk}ff:l € RP x R. These data
points follow an unknown function z(x) = m(x) + e(x), where
m(x) is the target function we wish to estimate and e(x) is a
sampling error. Support Vector Machines (SVMs) are a method
of obtaining y(x), an estimate of m(x), from the given data set,
referred to as training set. SVMs achieve regression by non-
linearly mapping the input space into a higher dimensional fea-
ture space where a linear approximant hyperplane can be found.
This is implicitly made by the use of a kernel function.

A version of a SVM for regression was proposed by Vap-
nik el al [9]. This method is called support vector regression
(SVR). The model produced by SVR only depends on a subset
of the training data, because the cost function for building the
model ignores any training data that are close (within a thresh-
old ¢) to the model prediction. The relevant data points form
a set of support vectors and they immediately lead to a sparse

Table 1. Common kernels.
Linear: W(x;,X;) = X, x;
Polynomial: ¥()
—TE
Exponential (RBF): U(x;,x;) = exp(_llx’&igju)
Hyperbolic Tangent (;) = tanh(¢x; x; + 0)

representation. On the other hand, computing the model is a
Quadratic Programming (QP) problem. To simplify this QP
problem, Least Squares Support Vector Machines were intro-
duced [8]. In both methods the model is:

y(x) = wip(x) +b 4))

The (x) mapping is usually a non-linear function that trans-
forms the data into a higher dimensional feature space, and is
weighted by w. Constant b is the bias term.

LS-SVM correspond to solving the following constrained
optimization problem:

2 = W o(x) + b+ ep
2

The w’w term stands for minimizing the length of the
weight vector, while the C constant is the trade-off parameter
between the smoothness of the representation and the minimiza-
tion of training data errors. The number of training samples,
known as support vectors, is given by V.

Using Lagrange multipliers, in order to transform the prob-
lem into an unconstrained optimization problem, gives:

fw Tw+C= Zek Zak
2o

Which is guaranteed to have a global minimum when:

1 1
L 2
rrgnJ—gw w+C§]§_1ek s.t.

o(xg)+b+er—zi] (3)

8L _ (. 8L _ (. L _ . OL _
ow O’ ob O’ dep O’ Oay, O
resulting in the following linear system of equations:
0 17 b 0
[1 n+011} [a] = M @)
where is the kernel matrix, Qp; = U(ag, 2;) = p(zr).0(2),

k,l = 1,...,N, and V¥ is the kernel function. The resulting
LS-SVM is given by

N
X) = Zakkll(x,xk) +b 5)

The simplicity of (5) is not without a cost. While SVMs have
a built in way of selecting the most significant data points from
their training set, LS-SVMs do not. Sparseness is lost due to the
usage of all the data points as support vectors (a large V). This
adds a new complexity to the problem. It becomes necessary to
carefully choose the training points used to effectively cover the
input space.

There are many kernels from which to choose from, some of
which are shown in Table 1. In this work, we will focus exclu-
sively on the RBF kernel since it has good empirical results and
has a nice smooth behavior.

3 Macromodel Tuning

In this section, we describe the method for computing a
power macromodel based on LS-SVM. We start by presenting
how we generate the data points used as the training set and the
error metrics we use. Then, experiments are performed to tune
the kernel parameters.

3.1 Input Space Analysis

To generate the desired black-box macromodel it is neces-
sary to obtain a set of data points to be plugged into the LS-
SVM, {x,zx}. To analyze the performance of the LS-SVM
method for power estimation, we need data points where 2, rep-
resents the power dissipation of a circuit under inputs x;. For
this purpose, we can either use experimental values obtained
from actual circuit measurements, or values computed by a sim-
ulator. Naturally, the accuracy of the model will be directly re-
lated to the quality of the data points.

Note that there is some flexibility in terms of what xj, rep-
resents. In this work, we are using the switching probability of
each of the p inputs to the functional unit, hence a vector of size
p with values between 0 and 1. Alternatively, we could aggre-
gate all inputs and have their distribution probability (for exam-
ple, in the case a set of bits represent some numerical value).
Additionally, if specific information is available regarding joint
probability distributions, it can be used to bias the choice of data
points.

We should also observe that z; can represent static, dynamic
power, or total power. The results we present in the next section
were obtained from a logic simulator which only accounts for
dynamic power. Yet, the results should easily extrapolate for
static, and hence, total power.

We use the following error functions to provide some insight
into LS-SVM model’s performance:

Relative error: E'p = {4% 7?:,5)%)'} }évzl

N
Average relative error: 1 = + > Ep,
k=1

Maximum relative error: Ey = maxy ER,

Fraction below 10% : E5 = H%Ljfflo%}‘

Ultimately we aim to achieve E3 above 90% and E; smaller
than 5%. Though error values are not bounded, F5 is a good
representation of the worst-case scenario.

As data points used during training represent the total knowl-
edge LS-SVMs have for model construction, their selection
method is of crucial importance. For each circuit, the objective
is to generate N vectors x of size p with values within [0, 1]. To
effectively cover the input space three distributions were tested:

1. UNIFORM, 100% of the data points follow an uniform dis-
tribution between 0 and 1.

2. NoRrM, 100% follow a normal distribution with 0.5 mean
and a chosen variance y (every value not contained in the
[0,1] interval is resampled).

Table 2. Comparison of input distributions.

’ Distribution H E, \ E, \ E; ‘
UNIFORM 4.57 | 50.3 | 90.7
UNMIX (y =0.1) || 421 | 49.5 | 91.0
UNMIX (y =0.3) || 4.38 | 47.7 | 91.0
NORM (v =0.1) 482 | 55.1 | 88.6
NORM (v = 0.3) 443 | 49.1 | 90.6

E1%
]
|

50 ‘
10" 10° 10° 10* c 10°

Figure 1. Error variation with parameter C.

3. UNMIX, a mix of 1 and 2, 50% follow an uniform distri-
bution and 50% follow a normal distribution.

The Normal distribution was considered since, in practice,
circuit input probabilities should be around 0.5 so it makes
sense to have a good input space representation of that region.

In Table 2 the errors defined earlier are shown, averaged over
a large set of benchmark circuits. We conclude that the differ-
ence in error performance between the tested methods is not
significant. Since the proposed algorithm (see Section 4) auto-
matically selects training points from the data, sets of 10,000
points were constructed using equal quantities of each of the 5
methods presented, for each of the benchmark circuits.

3.2 Parameter Analysis

The regression process is not totally automated, since there
is a number of parameters that need to be selected, namely C
(see (4)), o (see Table 1) and the number of support vectors.
We also have an option as to which kernel to use, however the
exponential RBF kernel (Table 1) has been reported to perform
particularly well under LS-SVM [7]. The analysis and results
presented in the remainder of this paper were all obtained with
this kernel.

As referred in Section 2.2, C' is a constant that permits a
tradeoff between the training error and the smoothness of the
model. The training error in sample & is given by e, = Z,
indicating that larger values of C force the estimator to reduce
the training errors. We have computed the errors obtained us-
ing different values of C, maintaining all remaining parameters
constant (0 = 2 and with 2,000 SVs). The graphs in Figure 1

E2 %
5
o

0 I I I
10 102 10° 100 € q0°
100
=
" 80—//\
L
601 ‘2 ‘3 ‘4 5
10 10 10 10 C 10

Figure 2. Error variation with parameter C for noisy
data (10%).

show the test error variation with C' averaged over all the bench-
mark circuits (given in Table 3). For all the circuits the behavior
was similar so it is safe to derive conclusions from the average
results. We can observe that the error decreases as C' increases,
but for values above C' = 10 the error remains almost constant.
Hence, both training and test errors benefit from larger C.

A new experiment was devised to show that the optimum
C depends on the noise present in the data points. Consider the
earlier data set {xy, 2, } with added noise: z, = (1+€)z), where
e follows a uniform distribution between [—e; e].

Figure 2 shows the test errors for noisy data with maximum
noise ¢ = 10%. It becomes clear that the value of C' depends
on the quality of the data set. We have set C' = 10* since it is
approximately optimal for the noiseless case and it is still good
when there are small errors present.

In the exponential RBF kernel (Table 1), o represents a width
factor. If it is large, then the influence of each support vector
(SV) spreads, smoothing the solution. If o is small, each SV
has a small influence over the space around it, which reduces
the information the model has over all the input space. At the
extremes, if 0 — oo we obtain a constant function, andif o — 0
our model is only able to estimate input x equal to its SVs, hav-
ing null generalization ability. Training error is then inversely
proportional to o values. Figure 3 presents the error obtained
for different values of & on test data (C' = 10%, obtained above,
and the same 2,000 number of SVs were used). Tests show that
the optimum value should be ¢ = 1.2 (the training error is neg-
ligibly small for this o).

To determine the number of SVs, we performed similar ex-
periments with increasing size of the training data set (Figure 4).
As it was expected, errors decrease when the size of the train-
ing set increases. Since having more SVs translate linearly to
the size of the model and its computation time, it is necessary
to achieve a tradeoff between model complexity, the number of
SVs, and model accuracy. One should be aware that the num-
ber of SVs will depend on the shape of power surface (steep
functions need more SVs) and the o value used (smaller sigmas

48 \ -
xR _//,,/
- 46t :
L
4.4 : :
0] 5 10 sigma 15
52 T .
S
o 51F 1
L
50 : : -
0] 5 10 sigma 15
90 \ :
®
Seesl /T |
L
89 ' ‘ :
0] 5 10 sigma 15
Figure 3. Errors for different values of o.
8 :
<6 \\
L
4 1 1 1 1
500 1000 1500 2000 2500 N 3000
80
=
& 60 K
L
40 1 1 1 i 1
500 1000 1500 2000 2500 N 3000
100 w ; : : .
2 80 ///—d
L
60 1 1 1 1 1
500 1000 1500 2000 2500 N 3000

Figure 4. Error dependence on the number of support
vectors.

imply more SVs). This motivates the use of an iterative algo-
rithm to add SVs to the training set when there is a need to do
SO.

3.3 Model Storage and Evaluation

From (5), we know that evaluating the LS-SVM model to
compute the power requires the sum of N elements, and each
element contains a norm which is a sum of p elements. Hence,
the model requires O(Np) operations to compute y(x). This is
not a problem for the considered values of N.

In terms of memory, we need to store: N SVs, each of size p;
N « values; and the constant b. Hence, the model has O(N (p+
1) + 1) = O(Np) memory complexity.

If we use the float data type to store these values (usually 4
bytes long), a model of a circuit with 200 inputs (p = 200) and
2,000 SVs (N = 2000) will need (2000 x (2004+1)+1) x4 =
1.53M B of storage space. It is affordable, but still expensive.

4 Model Optimization

The analysis in the previous section indicates that the best
number of support vectors to use and the value of the o pa-
rameter are interdependent. We propose an iterative method to
automatically determine these parameters so that we maximize
the generalization of the LS-SVM-based power macromodel.

The standard method for computing kernel parameters is
simply to solve the linear system given in (4), using a set of
data points {xy, zk}ivzl, the training set. The model obtained
can then be evaluated against a different and disjoint set of data
points, the test set. From the errors obtained in each of these
sets, we can conclude:

1. large errors on the test set might be due to two reasons:
the region of the input space where samples have large test
errors is badly covered by the training set; the kernel func-
tion is excessively local, which means that the influence of
each SV is limited to a very small region around it.

2. large errors on the training set indicate that the kernel func-
tion is smoother than it should be, not having enough flex-
ibility to approximate steep surfaces.

The iterative method developed tries to address these two
issues in the following manner:

1. toincrease the generalization of the model, a given number
of data points with largest error is moved from the valida-
tion set into the training set.

2. as discussed in the previous section, the o parameter de-
fines how local or global the impact of each support vec-
tor is. Hence, by reducing this value we reduce the error
on each training point. This may potentially lead to worst
generalization, which is compensated by the data points
that are moved from the test to the training set. Neverthe-
less, o should not be greatly reduced between iterations.

The method starts by splitting the set of available data points
into three sets:
o the final test set, with data points which will only be used to
evaluate the final model (hence, after the iterative process
has finished)

e an initial training set of size M
e a validation set, which could be much larger than M

A first model is computed solving Equation 4 on the initial
training set and the errors on the training and validation set are
obtained. If these errors exceed a user-specified value, namely
average or maximum error above a certain threshold, the model
is recomputed with the following modifications:

e if the validation error exceeded specifications, we add to
the training set the k data points in the validation set with
largest error

e while the error on the training set exceeds specifications,
parameter o is reduced by s

When all specifications are met the process terminates. Natu-
rally, if these specifications are too stringent, convergence may
be difficult. Since the number of data points used in the training

0 0
550 600 650 700 2000 3000 4000 5000
power power

vda x4

0
600 700 800 900 1000 800
power

1000 1200 1400
power

Figure 5. Dynamic Power distribution for uniformly
distributed input

set is directly related to the size of the model, a maximum size
is defined that, when reached, terminates the iteration process.

Parameters k and s define the granularity of the process.
Larger values will reduce the number of iterations, but may lead
to a oversized model. The size of the initial training set should
be relatively small to give room for the addition of the more
problematic data points in the test set, which will contribute to
a better generalization.

S Results
The specifications for the optimization process were the fol-
lowing:
1. the initial number of data points was M = 500, and is
increased by £ = 20 in each iteration;

2. the starting value was ¢ = 10, and is reduced when the
training error E1 is bigger than 1% by s = 0.75;

3. iteration stops when 3, 000 SVs are reached or when E'1 <
2% and E2 < 30% and E3 > 98%

In Table 3 error values are shown for the 4D lookup ta-
ble method (from [2]), the optimized LS-SVM and the reg-
ular LS-SVM with N = 3,000, where N is the number of
support vectors. The optimized version achieved similar av-
erage results as the regular LS-SVM even though most models
are smaller (< N). For the circuits which could not meet the
desired expectations(N = 3000) there were considerable F2
and E'3 improvements. Compared with the lookup tables, the
proposed method obtains, on average, similar 2 while reduc-
ing E'1. These values are more circuit dependent. The pro-
posed methodology could be applied only to a subset of cir-
cuits to achieve excellent models, such as the ones for C'499
and C'1355.

The total CPU time was in the order of minutes for the con-
struction of the models, therefore irrelevant for a characteriza-
tion step.

To give some insight into the problem we are facing, the
dynamic power distribution is plotted in Figure 5 for four
different circuits under uniformly distributed input. We observe

Table 3. Comparison with the results of the lookup-table method of [2].

Cireuit Circuit Information Testing- Optimized Testing- Non Optimized || 4D Lookup Tables
o Ins [Outs | Nodes N [EL [E2] E3 Ei [E2 | Es E | E
add_rpl_16 32 16 214 500 | 1.66 | 169 | 99.7 || 1.20 13.0 100.0 - -
apex6 135 99 411 || 3000 | 4.16 | 25.7 93.5 || 4.91 28.5 92.0 - -
i5 133 66 161 500 | 1.62 | 13.2 | 999 || 148 8.97 100.0 - -
i9 88 63 353 || 3000 | 7.39 | 99.8 80.1 || 8.33 | 140.6 76.8 - -
pair 173 | 137 877 880 | 2.24 | 12.1 | 100.0 || 2.37 16.3 99.8 - -
rot 135 | 107 390 || 1300 | 2.50 | 14.1 99.6 || 2.58 18.0 99.3 - -
vda 17 39 304 680 | 2.14 | 20.5 99.3 || 1.70 | 439 98.6 - -
x3 135 99 332 || 2240 | 334 | 19.2 | 97.7 || 3.66 | 25.7 96.7 - -
x4 94 71 211 || 2940 | 3.86 | 36.8 95.0 || 5.16 | 423 89.8 - -
Average: | 3.21 | 28.7 96.1 || 3.49 37.5 94.8 - -
C432 36 7 160 || 1320 | 2.67 | 23.1 98.1 || 2.62 393 97.4 || 4.409 17.35
C499 41 32 202 500 | 1.28 9.3 | 100.0 || 0.53 35 100.0 3.95 16.34
C880 60 26 383 || 1300 | 2.43 | 17.8 99.2 || 2.74 | 219 98.4 3.62 13.97
C1355 41 32 546 500 | 1.11 7.7 | 100.0 || 0.51 4.1 100.0 4.03 15.04
C1908 33 25 880 500 | 1.92 | 14.8 99.7 || 1.10 11.1 100.0 3.73 15.69
C2670 233 140 1193 || 2340 | 332 | 244 | 98.1 || 3.31 235 98.0 2.18 10.16
C3540 50 22 1669 860 | 2.36 | 162 | 99.5 || 2.07 21.0 99.2 3.22 15.55
C5315 178 123 2307 900 | 2.21 | 134 | 99.7 || 2.17 12.9 99.6 2.08 12.20
C6288 32 32 2406 500 | 1.00 | 12.5 | 100.0 || 0.49 9.8 100.0 || 2.218 17.37
C7552 207 | 108 3512 || 3000 | 3.94 | 20.0 | 955 || 4.07 27.8 94.3 2.65 14.32
Average: | 222 | 159 | 989 | 1.96 17.5 98.7 3.27 14.9

that circuit i5 only requires a very simple model since the power
dissipated ranges over a small interval. For circuits vda and
x4 we have slightly larger power ranges and an approximately
constant variance. The power dissipated in circuit 19 spans over
a large interval and does not resemble a Gaussian distribution.
The error values obtained in Table 3 show that i5 is indeed
simple to model, vda and x4 are more challenging but still
accurately modeled and 19 is very hard to model. It is obvious
that the smaller the power range is, the better the models are.
On the other hand, constant variance seems to make modelling
easier.

6 Conclusions

Least Squares Support Vector Machines were successfully
applied to power macromodeling of digital circuits, achieving
an average error of about 2%. A comprehensive study of the
training parameters was presented and optimal values were cal-
culated for the power estimation problem. From this study an
iterative optimization algorithm was derived which allows for
automatic selection of the size of the model required to meet de-
sired error specifications. Model performance was validated on
a large set of benchmark circuits. Future work involves tweak-
ing the optimization parameters and integrating feature selec-
tion methods into the iterative algorithm.

References

[1] A. Bogliolo, L. Benini, and G. D. Micheli. Regression-Based
RTL Power Modeling. ACM Transactions on Design Automation
of Electronic Systems, 5(3):337-372, 2000.

[2] S. Gupta and F. Najm. Power Modeling for High-level Power
Estimation. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 8:18-29, 2000.

[3] E. Macii, M. Pedram, and F. Somenzi. High-level Power
Modeling, Estimation, and Optimization. IEEE Transaction
on Computer-Aided Design of Integrated Circuits and Systems,
pages 1061-1079, 1998.

[4] D. Marculescu, R. Marculescu, and M. Pedram. Information
Theoretic Measures of Energy Consumption at Register Transfer
Level. In Proceedings of the International Symposium on Low
Power Electronics and Design, pages 81-86, Apr. 1995.

[5] F. Najm. Towards a High-Level Power Estimation Capability.
In Proceedings of the International Symposium on Low Power
Electronics and Design, pages 87-92, Apr. 1995.

[6] A.Raghunathan, S. Dey, and N. Jha. High-level Macro-modeling
and Estimation Techniques for Switching Activity and Power
Consumption. Very Large Scale Integration (VLSI) Systems,
IEEFE Transactions on, 11(4):538-557, Aug. 2003.

[71 W. Shang, S. Zhao, and Y. Shen. Application of LSSVM with
AGA Optimizing Parameters to Nonlinear Modeling of SRM.
Industrial Electronics and Applications, 3rd IEEE Conference
on, pages 775-780, June 2008.

[8] J. Suykens, T. V. Gestel, J. D. Brabanter, B. D. Moor, and J. Van-
dewalle. Least Squares Support Vector Machines. World Scien-
tific Pub., 2002.

[9] V. Vapnik. Statistical Learning Theory. John Wiley & Sons,
1998.

