
LSSVM-Based Power Macro-Modelling

ABSTRACT
We investigate the use of support vector machines (SVMs)
to determine simpler and better fit power macromodels of
functional units for high-level power estimation. The ba-
sic approach is first to obtain the power consumption of
the module for a large number of points in the input sig-
nal space. Least-Squares SVMs are then used to compute
the best model to fit these set of points. We have performed
extensive experiments in order to determine the best param-
eters for the kernels. Moreover, we propose a fundamental
modification to the basic kernel that greatly improves the
accuracy of the model. It is well-known that not all in-
puts have the same impact on the power consumption of a
module. We propose a new norm that takes into account
the weight of each input for the power consumption in the
computation of the kernels. We present results that confirm
the excellent modelling capabilities of the proposed kernel-
based methods. The macromodels obtained provide not only
excellent accuracy on average (< 2% error), but more im-
portantly, thanks to our proposed modified kernels, we were
able to reduce the maximum error to values close to 20%.
The LSSVM models compare favorably with state-of-the-art
4D table lookup models, having, on average, a third of the
relative error.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques

General Terms
Algorithms, Performance, Design

Keywords
Power Estimation; Macro-Model; Support Vector Machines

1. INTRODUCTION
Electronic systems have become pervasive in our daily lives,
work environments and even our social habits. Their design
and verification prior to fabrication are challenging tasks

due to inherent size and complexity. Rising costs of design
and market pressure for fast delivery of error-free systems
drive the need for reliable verification. A common approach
towards easing the design process and enabling verification
is to replace large and complex design blocks by smaller
more abstract macromodels that accurately represent rele-
vant characteristics of the system. The resulting macromod-
elled system can then be verified and design exploration can
be accomplished, leading to better, more efficient designs,
with lower costs and added features.

Power consumption has become one of the most important
parameters in the design of VLSI circuits and accurate power
estimation a requisite of any design exploration framework
and verification environment. Many high-level power esti-
mation tools have been proposed before to enable the evalu-
ation of different architectures in an early stage of design [4].
The general approach is to use power macromodels for each
functional unit. These macromodels are obtained in a pre-
characterization phase, stored in a library for later use and
represent the power dissipation of the unit as a function of
the input statistics. Much research has been devoted to this
topic [5] and many commercial tools are available for this
task. The main drawback of existing approaches is that the
models generated present fairly high maximum error.

Kernel methods provide a powerful and unified framework
for pattern discovery, motivating algorithms that can act on
general types of data and look for general types of relations
(e.g. rankings, classifications, regressions, clusters) [10]. The
application areas range from neural networks and pattern
recognition to machine learning and data mining. In this
paper, we investigate the use of learning algorithms, in par-
ticular support vector machines (SVMs), to determine sim-
pler and better fit power macromodels. The basic approach
is first to obtain the power consumption of the module for
a large number of points in the input signal space. Least-
Squares SVMs are then used to compute the best model to
fit these set of points. The statistics for each of the mod-
ule’s output signals can be computed in a similar manner,
thus providing a means of propagating the switching prob-
abilities through the circuit. We have performed extensive
experiments in order to analyze the possible kernels which
are the basis of the SVM formulation and to determine the
best parameters for these kernels.

Moreover, we propose a fundamental modification to the ba-
sic kernel that greatly improves the accuracy of the model.

In general, kernels treat every dimension uniformly. In our
case, each input to the functional module defines a dimen-
sion for the kernel (although not necessarily so after opti-
mizations, as discussed in Section 4.5). It it well-known
that not all inputs have the same impact on the power con-
sumption of a module. We propose a modification to the
basic RBF kernel that takes into account a measure of the
contribution of each input for the power consumption in the
computation of the kernels.

We present results that confirm the excellent modelling ca-
pabilities of the kernel-based methods. The macromodels
obtained provide not only good accuracy on average (all be-
low 2% average error and close to 1.5% on average), but,
more importantly, thanks to our proposed modified kernels,
we were able to reduce the maximum error to values close
to 20%. The LSSVM models compare very favorably with
state-of-the-art 4D table lookup models, having, on average,
a third of the relative error.

The paper is organized as follows. In Section 2, we review
previous work on power analysis techniques at the RT level
and provide some background on kernel methods. Section 3
discusses the kernel parameters and presents the new norm
we are proposing. The implementation of the power macro-
modelling process is described in Section 4. We present our
results in Section 5 and draw conclusions and future work
in Section 6.

2. RELATED WORK
2.1 Power Macro-Modeling
There has been a fair amount of work on generating models
for power dissipation at higher levels of abstraction. Our
method follows a bottom-up approach [4], where the model
is obtained from an actual circuit implementation and which
offers the best level of accuracy. These methods build their
models from data points, which consist on a power value for
the circuit under some input conditions. From this set of
data points, different strategies exist for generating a model
that not only fits these data points, but offers the best pos-
sible generalization ability.

Lookup tables have been successfully proposed [2].
N-dimensional tables are used, where each dimension repre-
sents an input parameter. Several strategies exist for reduc-
ing the number of dimensions and for interpolating among
table points. Alternatively, regression can be used to com-
pute the coefficients of an expression [1, 5]. A combination
of both of these methods has also been proposed [2].

We believe the model we propose, based on LS-SVMs, is
more robust than previously proposed approaches: it is
generic, fully-automated, and uses an underlying method-
ology with properties that have been proven both theoret-
ically and in practice in many different fields. Our results
demonstrate just that.

2.2 LS-SVMs
Consider a general problem where we are given N input/output
data points, {xk, zk}N

k=1 ∈ Rp×R. These data points follow
an unknown function z(x) = m(x)+e(x), where m(x) is the
target function we wish to estimate and e(x) is a sampling

Table 1: Common kernels.
Linear: Ψ(xi,xj) = xT

i xj

Polynomial: Ψ(xi,xj) = (xT
i xj + θ)n

Exponential (RBF): Ψ(xi,xj) = exp(
−||xi−xj ||2

σ2)

Hyperbolic Tangent Ψ(xi,xj) = tanh(φxT
i xj + θ)

error. Support Vector Machines (SVMs) are a method of
obtaining y(x), the estimate of m(x), from the given data
set, referred to as training set. SVMs achieve regression by
nonlinearly mapping the input space into a higher dimen-
sional feature space where a linear approximant hyperplane
can be found. This is implicitly made by the use of a kernel
function.

A version of a SVM for regression was proposed by Vapnik
el al [10]. This method is called support vector regression
(SVR). The model produced by SVR only depends on a
subset of the training data, because the cost function for
building the model ignores any training data that are close
(within a threshold ε) to the model prediction. The rel-
evant data points form a set of support vectors and they
immediately lead to a sparse representation. On the other
hand, computing the model is a Quadratic Programming
(QP) problem. To simplify this QP problem, Least Squares
Support Vector Machines (LS-SVM) were introduced [9], re-
ducing the problem to solving the following linear system:»

0 1T

1 Ω + C−1I

– »
b
α

–
=

»
0
z

–
(1)

where Ω is the kernel matrix, Ωkl = Ψ(xk, xl), k = 1, . . . , N ,
l = 1, . . . , N , and Ψ is the kernel function. C is a weighing
factor that represents the importance of training errors, al-
lowing a tradeoff between the training error and the smooth-
ness of the solution. The resulting LS-SVM is given by

y(x) =

NX
k=1

αkΨ(x,xk) + b (2)

While SVMs have a built in way of selecting the most signif-
icant data points from their training set, LS-SVMs do not.
Sparseness is lost due to the usage of all the data points as
support vectors (a large N). This adds a new complexity to
the problem. It becomes necessary to carefully choose the
training points used to effectively cover the input space.

There are many kernels from which to choose from, some
of which are shown in Table 1. In this work, we will focus
exclusively on the RBF kernel since it has good empirical
results and has a nice smooth behavior. However, as we
shall see, much of what we propose extends trivially to the
other kernels indicated.

3. KERNEL TUNING
The regression process is not totally automated. For a given
class of problems, one must select a kernel function, choose
the appropriate kernel parameters, and also choose the value
of constant C. In this section, we describe first how we tuned
these parameters for the case of power macromodelling, and

Figure 1: Power surfaces for: a) σ = 1, components;
b) σ = 1, sum; c) σ = 0.02, components; d) σ = 0.02,
sum.

then we present the proposed new norm to give different
weighs to the inputs of functional units.

3.1 Kernel Behavior
There is some work on how to choose the ’optimal’ param-
eters, C and σ, for the RBF kernel [6]. We begin with a
simple interpretation of the RBF kernel abilities and limita-
tions, motivating our proposed modification to the kernel.

In the exponential RBF kernel (Table 1), σ represents a
width factor. If it is large, then the influence of each support
vector (SV) spreads, smoothing the solution. If σ is small,
each SV has a small influence over the space around it, which
reduces the information the model has over all the input
space. At the extremes, if σ → ∞ we obtain a constant
function, and if σ → 0 our model is only able to estimate
input x equal to its SVs, having null generalization ability.

Figure 1 shows how each support vector contributes to the
final solution in an artificial two-dimensional problem, for
two different values of σ, σ = 1 and σ = 0.02, respectively
the top (a, b) and bottom (c, d) graphs. The graphs on
the right (a, c) present a separate curve for each support
vector and the graphs on the left (a, d) present the result-
ing model (summation of all components). Three important
conclusions are drawn:

1. for large σs the resulting surfaces are very smooth,
and that might make it impossible to follow a brisk
function.

2. small σs allow more complex and steep surfaces, but
unless all input space is well covered, bad generaliza-
tion will occur.

3. as there is only one σ for every SV, the only degree
of freedom LS-SVMs have is the selection of the α
weights of each SV, which serve as a scaling factor to
the respective component (the bias term, b, is another
degree of freedom, but it is only an added constant).

Issues 1 and 2 could be solved by choosing an ’optimal’ σ
value, but it would still imply that all dimensions of the
input space have the same behavior (all smooth or all steep).
Issue 3 seems to be a major restriction of the models using
a RBF kernel. The model output, y(x), is computed based
on the distance between the input vector x and all of the
model SVs. The norm generally used is given by

||xi − xj || =

vuuut pP
l=1

(xil − xjl)
2

p
(3)

which provides no distinction between each of the p x di-
mensions.

3.2 Weighted Norm
Consider as an example a particular situation where:

1. x ∈ Rp are samples of the p inputs of a functional unit
in a logic circuit.

2. one of them, xr, has a huge effect on the power dissi-
pated (for instance, a RESET signal).

3. we have a trained LS-SVM model with N support vec-
tors, N > p.

4. two test vectors are given, x1 and x2, which are exactly
the same except in their xr component.

Since the only information the model uses to differentiate
the output values y(x1) and y(x2) is their distance to all of
the N support vectors, it is natural to assume that for p � 1
their distances to the N SVs would be almost the same which
results in y(x1) ≈ y(x2). We know that their real outputs
are very different and so the LS-SVM model can never give
a good prediction of these values. A possible solution to this
problem would be to get a very large number of SVs that
would cover that critical input space where xr varies. This
is very costly and would prove to be extremely difficult since
that means that there would be many SV close to each other,
implying small σs and, thus, poor generalization ability.

To solve this problem, we propose modification to the RBF
kernel which spawns from a simple adaptation of the dis-
tance measure used. By adding weights, β, to each dimen-
sion of the input space, we add significantly more flexibility
to the LS-SVM training procedure. The norm becomes

||xi − xj || =

vuuuuut
pP

l=1

βl(xil − xjl)
2

pP
l=1

βl

(4)

Parameters β must be computed before training the model.
In the case of power macromodelling, a formal method to
obtain β would be to resort to the Shannon expansion for
each circuit input [7]. In Section 4.3, we present a more
expedite method.

Note that a similar weighing of the different dimensions can
be applied to other kernels (Table 1), where the internal
product needs to be modified to use a coefficient for each
dimension.

4. IMPLEMENTATION
In this section, we describe the methodology for comput-
ing the power macromodel. We start by presenting how we
obtain the data points used as the training set, then we
describe the experiments we performed to tune the kernel
parameters, and finally we discuss the size of the model and
methods to reduce it.

4.1 Input Space Analysis
To generate the desired black-box macromodel it is neces-
sary to obtain a set of data points to be plugged into the LS-
SVM, {xk, zk}. To analyze the performance of the LS-SVM
method for power estimation, we need data points where zk

represents the power dissipation of a circuit under inputs
xk. For this purpose, we can either use experimental values
obtained from actual circuit measurements, or values com-
puted by a simulator. Naturally, the accuracy of the model
will be directly related to the quality of the data points.

Note that there is some flexibility in terms of what xk repre-
sents. In this work, we are using the switching probability of
each of the p inputs to the functional unit, hence a vector of
size p with values between 0 and 1. Alternatively, we could
aggregate all inputs and have their distribution probability
(for example, in the case a set of bits represent some numer-
ical value). Additionally, if specific information is available
regarding joint probability distributions, it can be used to
bias the choice of data points.

We should also observe that zk can represent both static or
dynamic power, or total power. The results we present in
the next section were obtained from a logic simulator which
only accounts for dynamic power. Yet, the results should
easily extrapolate for static, and hence, total power.

We use the following error functions to provide some insight
into LS-SVM model’s performance:

Relative error: ER = { |zk−y(xk)|}
zk

}N
k=1

Average relative error: E1 = 1
N

NP
k=1

ERk

Maximum relative error: E2 = maxk ERk

Fraction below 10% : E3 = |{a∈ER:a<10%}|
N

Ultimately we aim to achieve an E3 of 100% and an E1

smaller than 5%. Although the error values are not bounded,
E2 is a good representation of the worst-case scenario.

As data points used during training represent the total knowl-
edge LS-SVMs have for model construction, their selection
method is of crucial importance. For each circuit, the objec-
tive is to generate N vectors x of size p with values within
[0, 1]. To effectively cover the input space three distributions
were tested:

1. Uniform, 100% follow an uniform distribution be-
tween 0 and 1.

2. Norm, 100% follow a normal distribution with 0.5
mean and a chosen variance γ (every value not con-
tained in the [0,1] interval is resampled).

Table 2: Comparison of input distributions.
Distribution E1 E2 E3

Uniform 1.68 23.1 99.7
UNMix (γ = 0.1) 1.53 24.8 99.5
UNMix (γ = 0.3) 1.5 24.2 99.6
Norm (γ = 0.1) 2.24 34.2 97.7
Norm (γ = 0.3) 1.57 26.5 99.4

10
−1

10
0

10
1

0

50

100

σ

%

Test Errors

10
−1

10
0

10
1

0

50

100

σ

%

Train Errors

E1

E2

E3

Figure 2: Errors for different values of σ.

3. UNMix, a mix of 1 and 2, 50% follow an uniform dis-
tribution and 50% follow a normal distribution.

For the purpose of testing the generalization ability of our
model, test sets of 8,000 points were constructed using equal
quantities of each of the 3 methods presented, for each of the
benchmark circuits. In Table 2 the errors defined earlier are
shown, averaged over all the circuits.

We conclude that there isn’t a great difference in error per-
formance between the tested methods, but the UNMix dis-
tribution seems to lead to slightly smaller errors. Adding to
that, in practice, circuit input probabilities should be around
0.5 so we opted to use UNMix with a variance γ = 0.3 to
get a better representation in that area.

4.2 LS-SVM Parameters
The parameters that we have to tune are C, σ and the num-
ber of support vectors. As referred in Section 2.2, C is a
constant that permits a tradeoff between the training error
and the smoothness of the model. Our tests with different
values of C and for all circuits indicate that the error de-
creases as C increases, but for values above C = 104 the
error remains almost constant. Hence, and in order to po-
tentially avoid numerical errors, we have set C = 104.

Figure 2 presents the error obtained for different values of σ,
on test and training data, on top and bottom respectively.
As it was expected, our experiments show that small values
of σ allow very small training errors, but bad generalization
ability. On the other hand, large values of σ made the train-
ing errors several orders of magnitude higher. Empirically
our tests show that the optimum value should be σ = 1.1.

To determine the number of SVs, we performed similar ex-
periments with increasing size of the training data set. We
observed that errors decreased significantly up to a number

Table 3: LS-SVM test results.

Circuit
Circuit Information Training Testing- Usual Norm Testing- Weighted Norm

Ins Outs Nodes E1 E2 E3 E1 E2 E3 E1 E2 E3

add_cla_16 32 16 214 0.0 0.0 100.0 1.5 15.3 99.9 1.4 14.8 99.9
add_rpl_16 32 16 214 0.0 0.0 100.0 1.3 14.4 99.9 1.3 13.0 99.9

apex6 135 99 411 0.0 0.1 100.0 5.0 30.8 90.9 1.7 12.8 99.9
frg2 143 139 522 0.0 0.1 100.0 5.6 48.6 86.3 1.4 15.8 99.9
i5 133 66 161 0.0 0.0 100.0 1.8 11.2 100.0 1.7 10.2 100.0
i6 138 67 318 0.0 0.1 100.0 7.4 72.0 78.4 1.4 26.0 99.4
i7 199 67 406 0.0 0.2 100.0 7.5 75.2 77.2 1.4 23.4 99.4
i8 133 81 1183 0.0 0.2 100.0 9.7 117.3 63.3 1.9 41.4 99.2

mult8 16 16 176 0.0 0.0 100.0 1.0 20.8 99.8 0.9 18.8 99.9
pair 173 137 877 0.0 0.0 100.0 2.7 15.9 99.6 1.6 10.2 100.0
prolog 36 73 424 0.0 0.0 100.0 3.7 25.8 96.7 1.3 12.5 100.0
rot 135 107 390 0.0 0.0 100.0 2.8 18.6 99.1 1.5 12.7 100.0
vda 17 39 304 0.0 0.0 100.0 1.9 50.7 98.2 1.1 39.2 99.3
x1 51 35 174 0.0 0.0 100.0 3.0 36.0 98.3 1.5 21.9 99.8
x3 135 99 332 0.0 0.0 100.0 3.9 26.3 96.6 1.1 10.6 100.0
x4 94 71 211 0.0 0.0 100.0 5.5 43.2 88.6 1.9 16.3 99.7

average: 4.0 38.9 92.1 1.4 18.7 99.8

of SVs around 2,000. Since larger values of SVs translate
linearly to the size of the model and its computation time,
we settled the number of SVs to 2,000.

4.3 Computing the Input Weights
In order to gauge the relative importance of each input to
the functional unit in terms of the impact in power con-
sumption, we performed a set of experiments where we set
all other inputs to a fixed value and measure the power as we
change the value of the input under evaluation. Naturally
the results obtained depend on the values assigned to the
other inputs. Hence, we repeat this procedure for a set of
20 different combination of values for the remaining inputs.

From these experiments, we compute the power range for
each input, as the difference between the maximum and min-
imum power values. We use this value directly as the weight
for this input in the computation of the modified norm.

4.4 Model Size
From Equation 2, we know that evaluating the LS-SVM
model to compute the power requires the sum of N elements,
and each element contains a norm (Equation 4) which is a
sum of p elements. Hence, the model requires O(Np) opera-
tions to compute y(x). In our case, we have set N = 2, 000,
thus the computation time of the model is linear in the num-
ber of circuit inputs. In any case, it should be extremely fast
in practice and should not be an issue.

It terms of memory, we need to store: N SVs, each of size
p; N α values; and the constant b. Hence, the non modified
kernel has O(N(p + 1) + 1) = O(Np) memory complexity.
Our modified kernel adds p input weight coefficients (β),
which has a negligible impact on memory usage. If we use
the float data type to store these values (usually 4 bytes
long), a model of a circuit with 200 inputs (p = 200) and
2, 000 SVs (N = 2000) will need (2000 × (200 + 1) + 200 +
1)× 4 = 1.53MB of storage space. It is affordable, but still
expensive. Next, we discuss methods to reduce this size.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

20

40

60

80

100

Reduction Rate

A
dd

ed
 E

rr
or

 %

apex6
i7
x4
mult8

Figure 3: Error increase as p is reduced.

4.5 Model Pruning
There are two parameters that define the model size, N and
p. There are methods that search“redundant”SVs, i.e., SVs
whose removal has minimal impact on the error [3].

In this paper, we further investigate the reduction of p. The
strategy is to remove input dimensions with the lowest β val-
ues, as these are the ones which have less impact in defining
the power characteristics of the circuit. Figure 3 shows the
increase in error with the reduction of a fraction of p.

Test results show that we can effectively reduce the model
size by selectively ignoring input dimensions. However, this
approach is highly dependent on the circuit to which it is
applied to since it depends solely on β values. If βs range
over a small interval then removing the lowest ones is still
removing important elements of the norm calculation. This
is excellently demonstrated by the behavior observed on the
chosen circuits. As mult8 is the only circuit which did not
benefit from the weighted norm (see Table 3), that means its
β values should all have about the same values, and so are
all equally important, resulting in the biggest performance
hit in Figure 3. To solve this problem, the weight should be
normalized and only those below a given threshold should
be removed.

Table 4: Comparison with the results of the table-lookup method of [3].

Circuit
Circuit Information Testing-Usual Norm Testing- Weighted 4D Lookup Tables

Ins Outs Nodes E1 E2 E3 E1 E2 E3 E1 E2

C499 41 32 202 3.47 21.3 98.0 0.42 4.0 100 3.95 16.3
C880 60 26 383 6.94 69.2 75.8 1.56 16.0 99.8 3.62 14.0
C1355 41 32 546 3.11 17.2 98.9 0.49 5.3 100 4.03 15.0
C1908 33 25 880 4.90 41.7 91.6 1.01 10.8 99.9 3.73 15.7
C2670 233 140 1193 5.32 36.2 87.4 1.26 9.2 100 2.18 10.2
C3540 50 22 1669 5.86 50.4 85.4 1.08 14.0 99.9 3.22 15.6
C5315 178 123 2307 4.03 21.5 96.5 0.96 5.9 100 2.08 12.2
C6288 32 32 2406 3.86 44.7 95.7 0.45 9.1 100 2.22 17.4

average: 0.90 9.3 100 3.13 14.5

5. RESULTS
In Table 3, the performance of the LS-SVM models com-
puted from training sets of N = 2, 000 samples generated
by the UNMix method (Section 4.1), with γ = 0.3, is evalu-
ated, using test sets of 8, 000 samples. Weighted norm tests
were done using C = 104, σ = 1.1 versus our best achieved
results using non-weighted norm (C = 104, σ = 3).

We can observe that the results obtained with the original
kernel were already very good, with, on average, average
error (E1) close to 4%, maximum error (E2) below 50% and
more than 92% of all results with error below 10% (E3).

However, notice that the proposed modified norm still has
a significant impact in reducing these errors. On average,
E1 is reduced to a third while maximum relative errors (E2)
were reduced to half. Nearly 100% of the estimations have
relative errors below the 10% mark (E3).

In Table 4 we compare the accuracy of the LSSVM-based
macromodels with the macromodels based on table-lookups,
as proposed in [2]. For the circuits with results provided
in [2], we can observe that our models achieve below 1%
average-error over all circuits while the average-error of the
table-lookup is above 3%. Similarly, the average maximum
error of our method is below 10%, compared with 14.5%
of the table-lookup. Another interesting observation is that
this set of circuits seems to be easier to model than the
circuits of Table 3, as the errors obtained are lower. An
explanation for this effect is that the larger size of the circuits
of Table 4 may lead to a less skewed distribution of the power
dissipation with respect to input probability distribution.

6. CONCLUSIONS
Our experiments show that LS-SVM are a viable method
for the generation of power macromodels. Modifying the
basic RBF kernel so that it takes into account the impact of
different circuit inputs on dissipated power proved to result
in a huge improvement in model accuracy. It also opened
doors to a new approach to model size reduction based on
input dimension weights and the use of the weighted norm
on other kernels. Further work involves applying kernels
composed of more than one element [8] and finding a way
of using different variances σ values for each support vector
of the RBF kernel.

7. REFERENCES
[1] A. Bogliolo, L. Benini, and G. De Micheli.

Regression-Based RTL Power Modeling. ACM
Transactions on Design Automation of Electronic
Systems, 5(3):337–372, 2000.

[2] S. Gupta and F. Najm. Power Modeling for High-level
Power Estimation. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 8:18–29, 2000.

[3] Luc Hoegaerts. Eigenspace Methods and Subset
Selection In Kernel Based Learning. PhD thesis,
Katholieke Universiteit Leuven, June 2005.

[4] E. Macii, M. Pedram, and F. Somenzi. High-level
Power Modeling, Estimation, and Optimization. IEEE
Transaction on Computer-Aided Design of Integrated
Circuits and Systems, pages 1061–1079, 1998.

[5] A. Raghunathan, S. Dey, and N.K. Jha. High-level
Macro-modeling and Estimation Techniques for
Switching Activity and Power Consumption. Very
Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 11(4):538–557, Aug. 2003.

[6] W. Shang, S. Zhao, and Y. Shen. Application of
LSSVM with AGA Optimizing Parameters to
Nonlinear Modeling of SRM. Industrial Electronics
and Applications, 3rd IEEE Conference on, pages
775–780, June 2008.

[7] C. Shannon. The Synthesis of Two-Terminal
Switching Circuits. Bell System Technical Journal,
28:59–98, Jan. 1949.

[8] G. Smits and E. Jordaan. Improved SVM Regression
using Mixtures of Kernels. Neural Networks, 2002.
IJCNN ’02. Proceedings of the 2002 International
Joint Conference on, 3:2785–2790, 2002.

[9] J. Suykens, T. Van Gestel, J. De Brabanter, B. De
Moor, and J. Vandewalle. Least Squares Support
Vector Machines. World Scientific Pub., 2002.

[10] V. Vapnik. Statistical Learning Theory. John Wiley &
Sons, 1998.

