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Abstract. The algorithm selection problem consists of choosing, from a 
predefined set, the best algorithm to run in a given instance of a an optimization 
problem. Typically, the objective is either to reduce the time to obtain a 
solution and/or to maximize the quality of this solution. The algorithm selection 
problem is a rich area that uses many ideas from other fields. In this paper, we 
make a review of the most significant contributions in this area and try to 
extrapolate future tendencies. We make an attempt at classifying this sample of 
works, to give a better perspective of the methods proposed so far. With this 
objective, we try to unify the terms more commonly used and propose a new 
nomenclature in some areas. We believe that the proposed taxonomy gives a 
better perspective of the field and that it will help contextualize future research.                 
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1. Introduction 

The algorithm selection problem consists of choosing, from a predefined set, the best 
algorithm to run on a given instance of an optimization problem [1]. If a methodology 
were available that could determine beforehand the best optimization algorithm to 
apply for each problem instance, faster and better solutions in scientific and 
engineering problems would be obtained. 
 Many different approaches have been proposed to address this problem. Some 
techniques try to determine what are the best parameters values of the algorithm using 
prior knowledge obtained in previous tests. Other techniques make dynamic decisions 
as to what are the chances to achieve a good solution if continues running, or if it is 
better to restart the algorithm, or even to chose a new algorithm. 
 The Meta-algorithm that deals with the algorithm selection problem, tries to 
encounter the algorithm that best solve a particular instance of the problem. It creates, 
adapts or chooses the algorithm that can potentially be the best (using the information 
available) for a particular instance, and using a particular performance indicator. 
Typical objectives pursued when analyzing the algorithm selection problem are: 

• What are the best parameters values for a class of algorithms to a particular 
class of problems? 

• What is the best algorithm in a poll of previous selected algorithms? 



• How much time will be dedicated to a particular algorithm? When is the best 
moment to restart? 

• What are the best features to use?  
• Can the features of the search space detected during run time help the 

search? 
• Is it necessary to use rich knowledge to obtain good decisions? 
• Changing the focus (codifications of the solution, domain to explore, etc.) of 

each algorithm can also be seen as a change of the algorithm? 
 
There are two main metrics to evaluate an algorithm in this context. Typically, we can 
divide in the type of problems that the algorithm tries to resolve. In decision problems 
(like SAT problems) the focus is in speed, and the algorithm selection problem tries to 
encounter the fastest algorithm to achieve the solution, or when is the best moment to 
restart a particular algorithm. In optimization problems, the typical focus is in the 
quality of the solution. Nevertheless, some algorithm selection problem in 
optimization problems context also uses some speed information to help in deciding 
the best algorithm in a particular moment. In the following table shows some of the 
work done in the field divided in these two types of problems. 

 

Table 1.  Type of Applications 

Optimization Problems Decision Problems 
[2],[3],[4],[5],[6],[7], 
[8],[9],[10],[11],[12],[13]  

[14],[15],[16],[17],[18], 
[19],[20],[21],[22],[23], 

We can see that both types of applications have a similar   number of works, 
considering that we were not biased to any type of problem in our sample of the work 
done in the field. 
The outline of this paper is as follows. In Section 2, we give a formal definition of the 
selecting algorithm problem. Next, in Section 3, we present high-level approaches to 
the problem, from brute force to machine learning approaches. In Section 4, we 
organize the papers we reviewed and define the taxonomy used. Within Section 5, we 
classify the sample of field papers selected for this review using the taxonomy 
proposed, allowing us to organize the papers in some interesting clusters. Finally, in 
section 6, we discuss future tendencies of this rich field of research. 

2. Definition of the algorithm selection problem 

We can see the algorithm selection problem as having a pool of algorithms 
A={a1,a2,...,an}, and an instance problem p to resolve. The selection algorithm, F, has 
to choose the best algorithm to use [1]. This selection algorithm has to use some 
features to help the decision. These features can be from small number of simple 
features like the velocity of improvement to a huge number of complex features – 
increasing the computation. These features can be static features that do not change 



over run-time, or can be dynamic features – force F to decide many times in run-time. 
Typically the feature more used are the instance problem features, the algorithm 
features, the search space features and some progress features (like speed of progress) 

ai=F(f1,f2,…,fn), fi some features.                                                 (1) 

As the computational power as improved – and studies about this problem increased, 
we can see our problem has a selection algorithm function F that generates group S of 
algorithms. We are interested in new synergies obtained when we have many 
algorithms running – portfolio [24] is one example of this strategy. 

S = {ak,aj,...,at} = F(f1,f2,…,fn).          (2) 

The set S can be a combination of different algorithm that runs in parallel, but also 
can have the same algorithm repeated in a number of times proportion to the strength 
of that algorithm. The set S also could represent a sequential order of algorithms. 
Obtained in offline manner (by previous tests) or in an online manner reacting to the 
changing features as the present chosen algorithm evolves in the search space. 

The function F has to choose S that maximizes some criteria C (running time, final 
solution quality) based on the actual available features. The perfect function F is 
difficult to obtain in real problems with interest. We have to use some machine 
learning strategies (neural networks, ridge regression, Bayesian networks, 
reinforcement learning, etc.) that use some statistic information or use some user 
heurist rules to obtain an approximation of the perfect function F. 
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C(S) – The result (time, evaluation of the solution, etc.) of using the set S of 
algorithms with the available resources and strategies using the criteria C function. 
When we share information, the problem becomes more complex, but can bring new 
synergies that can lead to better solutions (for example using global and local search). 
In problems that depend heavily in the first seed of the algorithm or in random 
strategies (example: Genetic Algorithms, Simulated Annealing, etc.) then the problem 
complexity increases dramatically. 

3. General Strategies 

Some works have tried to encounter the hardness of an instance problem. It is 
important to have an idea of the hardness of a problem – how these hardness 
progresses – to be possible to compare different strategies or to identify where the 
interesting areas of research are. Many aspects affect the hardness of a particular class 
of problems, could be de dimension of some features or relation between one or more 
features. Typically, it is necessary to know the most importance features of a problem. 
If we find the most important features, we could have fewer features in our selection 



algorithm problem – maintaining the more important ones, to reduce the complexity 
of the problem. 
The most naïve effort to know the relation between the hardness of a problem 
confronted with a set of algorithm is using brute force. We have the class problem 
that we want to resolve (typically we can parameterize all the instances of the class) 
and make a number huge of experiences with the algorithms available, changing 
parameters of the algorithms and the instances of the class of problems. We chose the 
best algorithm. This option consumes many resources and is difficult to extrapolate 
what is the best algorithm to new unobserved instances of the problem. Some 
researchers looking to this result try to create some heuristic rules based in the 
observed results. 
A strategy that has the same problem of difficult to extrapolate to new instance, but is 
very less expensive with the resources and use statistical techniques to help in finding 
the best algorithm to a instance problem is the racing technique [5],[7],[13]. These 
techniques do not use the parameters of the algorithm or the features of the problems 
instances to decide what the best algorithm is. Just look to the results obtained to 
discard the bad algorithms with some statistical rules – low knowledge approach. Has 
a number of advantages because can deal with non-numeric features (for example 
nominal and order variables) that are very difficult to be used with the most learning 
algorithms. We can use some machine leaning techniques that can explore the 
parameter space and use racing techniques in the place of the brute force method to 
moderate size of candidates to train as in [13]. 
Another strategy is using some process that can learn how evolves the hardness with 
the algorithms and extrapolate what is the best algorithm for a particular 
instance/algorithm that was not used in the training phase. In this strategy we can use 
machine learning [25],[26],[27],[28],[29] to try to catch this relation between 
instances of a problem and the algorithms. Some of the concrete learning strategies 
used in the selection algorithm problem are in the Table 2. 
The Table 2 show only part of the work done, other works exist; we try to show a 
good sample of the work in this particular field. It is obvious that heuristic approach is 
less use in opposing with approaches that are more automatic – machine learning. 

Table 2.  Typical Concrete Learning Strategies 

Learning References 
Heuristic [19], [22],[8] 

Bayesian Networks [9], [10] 

Statistical Learning  [21],[22],[2],[3],[4],[23],[5], 
[6], [7],[12],[15],[13],[18]  

Decision Tree [16],[17]  
Neural Networks [11] 

Dynamic Programming [4] 



4. Field Taxonomy 

In this section, we will try to organize the area. We use some suggestions to a 
common classification used in previous works but sparse in different papers. Some 
terms that we purposed are new in the field but are important in the opinion of the 
authors to future search. The main goal is to help the future works in the field to 
characterize better the research and help the search of related works. 

Table 3.  Nomenclature to use in the Algorithm Selection Problem 

Type Name Comments 
 
 
Knowledge 

High-
Knowledge 

Based on the characteristics of the 
problem/algorithm, i.e., in their parameters. 

 
Low-knowledge 

Based in indirect information, like speed of the 
algorithm or evaluation, or in few features1 of the 
problem and algorithm 

 
 
 
 
Learning 

Offline The process of learning which of the algorithms to 
run is made in previous tests. 

Online The process of learning which of the algorithms to 
run is made in run-time. 

Life Learning The process of learning which of the algorithms to 
run is made using offline and online knowledge. 

 
Reactivity 

Reactive Reacts in run time, can change the algorithm that is 
running 

No reactive System decides what algorithm to run and cannot 
change in run time 

 
 
Cooperation 

Cooperative Different algorithm that cooperate, and share 
efforts to obtain the final result 

Competitive Different algorithm run as isolated algorithms, do 
not share efforts 

 
 
Architecture 
 

Parallel Many algorithms running at the same time 
Sequential The algorithms are ordered to run in sequential 

order 
Isolated Just one algorithm running in each run 

The Table 3 resumes our recommend taxonomy to use in the field, which we will 
detail more in the following sections. This table tries to resume and expand the 
common taxonomy of previous works. 

1.1 Type of Knowledge 

We have two different approaches. One approach tries to gather the maximum 
information and try to predict the best algorithm based in that information – high 
knowledge approach. The other approach tries to see what are the best algorithms 

                                                           
1 This is a fuzzy frontier because we can use few parameters with huge complexity (has to be 

computed) or in contrast many simple parameters that do not need any complex calculations. 



based in simple features like the change of evaluation function. The first option has 
the advantage of have more information the second the advantage to be more simple 
to used to a more vast range of problems diminishes the need of human expertise or 
the changes need to be make to adapt to new class of problems. 
The high knowledge approach tries to see typically the relationship between the 
structure of the problem and algorithm behavior. Forms one important basis to decide 
what is the best algorithm to use. This approach tries to see how different features of 
the problem and/or features of the algorithm related to choose the best algorithm.  
As an example of high knowledge strategy we can see in Roberts et al. [16] work that 
was apply to planner’s algorithms. They use a lot o features, initial they had 57 
features, but they could see that reducing this number (using fastest features) they 
could obtain similar results; nevertheless continue to have many features. 
The low-knowledge use a different type of approach, tries to use less information than 
the high knowledge approach; normally the information is the evaluation or progress 
of the evaluation of the principal feature of the problem. In optimization problems, the 
major features typically relate with the evaluation function. In decision problems, can 
be the time required to answer yes or no to the decision problem. 
In Carchirae et al.[10] they used the low-knowledge approach in the Job-shop 
scheduling problem. One of the techniques used was to run a set of algorithms during 
a prediction phase then a Bayesian classifier chose one to run the remainder of time T. 
They only used the performance of the algorithms to predict what will be the best 
with that particular instance. 
The table 4 resumes the taxonomy of the type knowledge used in the field. 

Table 4.  Type knowledge 

 
 
Knowledge 

 
High-Knowledge 

Based on the proprieties of 
the problem/algorithm, i.e., in 
their parameters. 

 
Low-knowledge 

Based in indirect information, 
like speed of the algorithm or 
evaluation, not the intrinsic 
proprieties of the problem 
and algorithm 

 

1.2 Typical Learning strategies used 

 
Offline learning strategy clearly separate the learning moment from the run-time 
moment. Typically, the learning process use huge information that relates the 
behavior of the algorithms with many features (algorithm, problem and space). This 
process can use a lot of time. The data used to learn what the best algorithms are, is 
divide typically in train data and test data. Sometimes the train divides in two groups: 
train and validation data. The strength of this approach is to try to see all the relevant 
relations between the algorithms and features. 



In Lagoudakis et al. [2], one of the solution they propose to resolve which of the two 
algorithm do run, was a construction of function that decide what was the best 
algorithm to use in the Order Statistical Selection Problem. They gather the data 
necessary to learn this function using many offline experiences (in some experiences 
they used 2400 randomly generated instances). 
Online learning process tries to learn the model in run-time. The selection algorithm 
learns and decide in run-time, typical do not use so many features as the offline 
strategy. The strength of this approach is to choose the best algorithm in present space 
conditions; the selected algorithm can have a poor median performance but a good 
performance in the present conditions. 
In Loonel Lobjois et al. [21], they used instances of a variant of the Value CSP 
problem (Σ-VCSP). Given an instance to solve and a list of algorithms, they want to 
know what the best algorithm is. They estimate the running time of each candidate 
algorithm on the particular instance by running each algorithm a time previous 
defined; then they select the algorithm that gives the smallest expected running time. 
Life learning strategy tries to use offline learning (huge information) and online 
learning (low information, but more instance information focus), both the strategies 
are good. Using the two can lead to a better performance, is a strategy that needs more 
studies. 
Offline learning is typical used in high knowledge approach, because of the number 
of feature needed to learn the models. Online learning approaches are typical related 
with low-knowledge approach, as they have to use less computational power to learn. 
The table 5 resumes the taxonomy of the learning types used in the field. 

Table 5.  Learning types 

 
 
 
Learning 

 
Offline 

The process of learning which of the 
algorithms to run is made in 
previous tests. 

 
Online 

The process of learning which of the 
algorithms to run is made in run-
time. 

 
Life 
Learning 

The process of learning which of the 
algorithms to run is made using 
offline and online learning. 

1.3 Type of Reactivity 

Reactivity is a feature that enables the algorithm to change its behavior in run time. In 
the scope of the selection algorithm problem is a quality that can help choosing the 
best algorithm in the present conditions. We have two types: systems that can change 
the run-time algorithm based in new information’s acquired in run-time and systems 
that do not change the run-time algorithm based in run-time information. 
In Lagoudakis et al. [4], they focus in sorting algorithms. They learn a function that 
relates the dimension of array and the best algorithm in offline manner. If the instance 
to be resolve is divided (perhaps using MergeSort), two new instances are created and 
the algorithm has to react to this new instances and decide what is the best algorithm 



to use in each instance. We could have many different algorithms running in sub-
instances helping resolving the main instance. 
Almost all online learning systems use reactivity to change its behavior in run-time, 
they are compelled to react as they learn, but reactivity can be used in offline systems 
to – if space features or other features used in the training phase change during run-
time. 
The Table 6 resumes the taxonomy of the reactivity used in the field. 

Table 6.  Type of reactivity 

 
Reactivity 

Reactive Reacts in run time, can change the 
algorithm that is running 

No reactive System that decides what algorithm 
to run and cannot change in run 
time 

1.4 Type of Architecture 

The architecture is very important to understand the type of algorithm evolved in the 
selection problem algorithm. Many authors do not give much importance to this 
classification, but is important to future search about related works. In the isolate 
architecture we have always only one algorithm that is chose to run, normally this 
type architecture is associated with offline learning. Given the fact that we have to 
decide just one time, it is important to have all the information that we can gather to 
make the best decision. 
In Beck et al. [8] one of their initial experiences was in an isolated architecture. They 
chose the algorithm to run using simple rules based in the initial performance of the 
algorithms (“training” phase) and then chose one algorithm to run in rest of the time. 
We have only one algorithm running in run-time (test phase). 
The sequential architecture is less used, but is very interesting also. In this type of 
architecture, we have only one algorithm running at each time, but the algorithm that 
is running can change. To be a sequential architecture is also necessary that the 
algorithm that runs influences the next chosen algorithm. Typical this influence can 
be change of the search space, new leanings or transmission of the seed to the next 
algorithm, normally the seed is the best solution obtained by the previous algorithms. 
One example of sequential architecture is in Carchrae et al. [9] work. In their work 
exists a switch algorithm that will decide what will be the new algorithm that runes. 
The seed of the new algorithm is the solution of the last algorithm. 
The parallel architecture, use many algorithms at same time – many authors simulate 
this propriety. The most popular parallel architecture in this field is the portfolio [24], 
that we will explain in detail in the next section. The Table  resumes the taxonomy of 
the architectures used in the field. 
In Roberts et al. [16] the portfolio begins with a set of planners and ranks them 
according to the success models – the planners that have more success in the training 
phase (tree learning) have more chance to be in the initial portfolio. 



Table 7.  Types of architectures 

 
 
Architecture 
 

Parallel Many algorithms running at the same time 
Sequential The algorithms are ordered to run in 

sequential order 
Isolated Just one algorithm running in each run 

1.5 Type of Cooperation 

The cooperation gives a new dimension to the problem, is not only the selection of the 
algorithm problem that is the focus but also the problem of achieve an overall better 
performance (better solution or faster answer). To have some sort of cooperation is 
also necessary to have many algorithms evolved in sequential or in parallel 
architecture. 
Typically, we can separate cooperation in two main areas: cooperative and 
competitive, of course it is possible to have both in different moments, what can 
become difficult to classify with confident. The most used type of cooperation in this 
field is the competitive way. All the algorithms compete for the computer resources, 
the more fit receive more computational resources. One classical type is the portfolio 
architecture, in this architecture we have many algorithms running independently, the 
first to end, ends the meta-algorithm. When they compete for resources, they do not 
share efforts. 
 When exist cooperation, exist sharing of efforts, this can be sharing of best solution 
(island model), sharing of space areas to search (divide-conquer), etc. One example of 
cooperation is in Carchrae et al. [9] work, uses a structure similar with Beck et al. [8], 
but with some machine learning techniques not heuristic rules. When the switch 
algorithm occurs, the last algorithms share information to the new algorithm.  
The table 8 resumes the taxonomy of the type of cooperation used in the field. 

Table 8.  Types of cooperation 

 
 
Cooperation 

Cooperative Different algorithm that cooperate, and share efforts 
to obtain the final result 

Competitive Different algorithm that run as isolated algorithms, 
don’t share efforts 

5. Classification of the field papers 

In table 9, we try to classify some papers typically referenced in the field. Many 
others could be in this study, but we had to make some choices. Give the diversity of 
interesting works we tried to show some of them. A few classifications were very 
difficult, some because of difficulty to understand the author idea, but mainly because 
the authors could make more rich combination than our suggestions. 



Table 9.  Paper references by taxonomy field 

Type Name Papers Nº 
 
Knowledge 

High-
Knowledge 

[19],[20],[6],[11],[12], 
[16],[17]  

7 

Low-
knowledge 

[21],[22],[2],[3],[4],[23], 
[5],[7],[8],[9],[10], 
[14],[15],[18],[13] 

15 

 
Learning 

Offline [19],[20],[22],[2],[3],[4], 
[23],[6],[14],[16],[17]  

11 

Online [21],[5],[7],[8],[9], 
[10],[11],[12],[15],[18], 
[13] 

11 

Life  0 
 
Reactivity 

Reactive [19],[2],[4],[23],[5], 
[8],[9],[10],[11],[12], 
[14],[15],[18],[13],[7] 

15 

No reactive [20],[21],[22],[3],[6],[16], 
[17]  

7 

 
 
Cooperation 

Cooperative [19],[21],[2],[4],[23],[9], 
[10] 

7 

Competitive [20],[22],[3], [5], [6], 
[7],[8],[11],[12],[14], 
[15],[16],[17],[18],[13]  

15 

 
 
Architecture 

Parallel [2],[4],[5],[6],[7], 
[8],[9],[10],[11],[12], 
[14],[15],[16],[17],[18], 
[13] 

16 

Sequential [19],[23],[9],[10]  4 
Isolated [20],[21],[22],[3],[8]  5 

One conclusion of this table is that the use low knowledge approach is very often used 
but is not classify by the authors as a low knowledge approach, maybe because this 
term is new in the field or because is difficult to classify. Neither the offline nor the 
online strategy is dominating the field. Seems that exist a tendency that the reactive 
approach is becoming the standard.  
The competitive strategy continues to be the more used. This type of strategy is easier 
to understand the implication of the work done, but the cooperation between 
algorithms is a more realistic choice in real problems in the opinion of the authors. 
Once more is more easy to use machine learning techniques in this strategy than using 
in cooperation. In recent years as computer (or networks) are become less and less 
expensive the parallel architecture (implicit or explicit) are become the standard. 
The use of the life learning as we purpose is an area to explore, as we did not see a 
work that fits our definition of life learning. 
In Table 10, we have done some cross-reference study. We can make some 
conclusions – if we consider our sample a good sample of the work done in the field. 
When we use low-knowledge approach, it is 88% (if we consider [21] as an offline 
system dedicated to a particular instance– it’s a possible view to the same system, 



then the number will be 100%) more provable that we are using a reactive system. 
This conclusion it is expected because the use of low-knowledge needs less computer 
resources to achieve a relation between algorithms and problem instances, the need of 
less computational resources can be used to give more flexibility to the system – 
reacting to new information’s. We can see that 82% of the online learning systems are 
of the low-knowledge type. The offline learning uses 71% of the time high knowledge 
as expected. The most common systems (36%) in our sample are the online systems, 
which use low-knowledge approach and are capable of reacting 

Table 10.  Cross-Reference by Knowledge/Learning/Reactivity 

 High-Knowledge Low-knowledge 
 Reactive No reactive Reactive No 

reactive 
Online [11], [12] 

 

 - [5],[7],[8],[9],[10], 
[15],[18], [13]

[21]

Offline [19]   [20], [6], 
[16],[17]  

[2],[4], [23],[14] [22],[3]

6. Conclusions 

We can see that the systems are becoming more complex as the computer power 
increases. Nowadays the trend is to use parallel systems in the form of portfolio 
architecture or other related forms. This is a natural path because of the cheap number 
of computer networks available - and the grid is a reality waiting to use in this type of 
problems. One recent trend that is also catching the eyes of the researchers is using 
low-knowledge approach in their meta-algorithms. The problems are becoming more 
complex (see the SAT problem) the need of better expertise by the researcher are 
pushing the low-knowledge approach a strong path to the future research. We can see 
that the isolated architecture is being abandoned, not because is not a good idea, but 
just because the research community as realize that is important to have many 
algorithm running in complex problems [24]. Another recent trend is the use of 
reactivity; the communities become conscious that a particular algorithm that has 
median lower performance – discard in a no reactivity strategy – can be the best in a 
particular stage of the meta-algorithm. The Life learning strategy as we defined need 
some research as can see with our sample of works, but seems to be a cleaver way to 
use different approaches. In offline approach, we can use huge statistical knowledge 
and in online approach we have to use less statistical knowledge – but more dedicated 
to the present instance. A good future research is to try to build a reactive system that 
can incorporate these two types of approaches – life-learning approach. 
In resume, for the author, the future research is in building a meta-algorithm that uses 
many heterogeneous algorithms (example local search and global search) in a parallel 
architecture. This meta-algorithm has to promote cooperation between algorithms in 
the form of sharing efforts (sharing solutions, sharing regions of the search space), 
can react and change the algorithms if sees an opportunity – certain places in the 
search space. The future is in using life- learning approach, maybe using the high 



knowledge for the first stages of the algorithm and low knowledge for the latter 
stages. 
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