
Low-Knowledge Algorithm Control ∗

Tom Carchrae and J. Christopher Beck
Cork Constraint Computation Center

University College Cork, Ireland
{t.carchrae, c.beck}@4c.ucc.ie

Abstract

This paper addresses the question of allocating computational
resources among a set of algorithms in order to achieve the
best performance on a scheduling problem instance. Our pri-
mary motivation in addressing this problem is to reduce the
expertise needed to apply constraint technology. Therefore,
we investigate algorithm control techniques that make deci-
sion based only on observations of the improvement in so-
lution quality achieved by each algorithm. We call our ap-
proach “low-knowledge” since it does not rely on complex
prediction models. We show that such an approach results in
a system that achieves significantly better performance than
all of the pure algorithms without requiring additional human
expertise. Furthermore the low knowledge approach achieves
performance equivalent to a perfect high-knowledge classifi-
cation approach.

Introduction
Despite both the commercial and academic success of op-
timization technology and specifically constraint program-
ming, using the technology still requires significant exper-
tise. For non-trivial applications the quality of a system still
has much to do with the quality of the person that imple-
mented it (Le Papeet al. 2002). In this paper, we investi-
gate algorithm control techniques aimed at achieving strong
scheduling performance using off-the-shelf algorithms with-
out requiring significant human expertise. This is done
through the application of machine learning techniques to
“low-knowledge” algorithm control. Rather than building
knowledge-intensive models relating algorithm performance
to problem features, we base the control decisions on the
evolution of solution quality over time. Such an approach is
crucial to our goal of the reduction of expertise.

Given a time limitT to find the best solution possible to
a problem instance, we investigate two control paradigms.
The first,predictive, paradigm runs a set of algorithms dur-
ing a prediction phase and chooses one to run for the remain-
der ofT . A Bayesian classifier is trained on a set of learn-
ing instances and used to identify the length of the predic-

∗This work has received support from Science Foundation Ire-
land (Grant 00/PI.1/C075), Irish Research Council for Science, En-
gineering, and Technology (Grant SC/2003/82), and ILOG, SA.
Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

tion phase as well as the selected algorithm. In the second,
switching, paradigm the control decisions allocate computa-
tional resources to each algorithm over a series of iterations
such that the total run-time isT . Reinforcement learning is
used during the solving to allocate the run-time.

The contributions of this paper are the introduction of
a low-knowledge approach to algorithm control and the
demonstration that such an approach can achieve perfor-
mance significantly better than the best pure algorithm and
as good as a perfect high-knowledge approach.

Low-Knowledge Algorithm Control
Our goal is to build a system that finds the best solution to an
instance of a scheduling problem in the following scenario.
A problem instance is presented to a scheduling system and
that system has a fixed CPU time ofT seconds to return a
solution. We assume that the system designer has been given
a learning set of problem instances at implementation time
and that these instances are representative of the problems
that will be encountered later. We assume that there exists
a set of algorithms,A, that can be applied to the problems
in question. Algorithm control is the way that the pure algo-
rithms,a ∈ A, are used to solve the problem instance.

Algorithm control and its more specific form, the algo-
rithm selection problem (Rice 1976), have been addressed
by building detailed, high-knowledge models of the per-
formance of algorithms on specific problems types. Such
models are generally limited to the problem classes and
algorithms for which they were developed. For example,
Leyton-Brown et al. (Leyton-Brown, Nudelman, & Shoham
2002) developed strong selection techniques for combina-
torial auction algorithms that take into account 35 problem
features and their interactions based on three problem repre-
sentations. Lagoudakis & Littman (Lagoudakis & Littman
2000) use a detailed mathematical model of algorithm be-
havior, Markov decision processes, and reinforcement learn-
ing for algorithm control for sorting and order statistic se-
lection tasks. Other work applying machine learning tech-
niques to algorithm generation (Minton 1996) and algorithm
parameterization (Horvitzet al. 2001; Kautzet al. 2002;
Ruan, Horvitz, & Kautz 2002) is also knowledge inten-
sive, developing models specialized for particular problems
and/or search algorithms and algorithm components.

Our motivation for addressing algorithm control is to

lessen the expertise necessary to use optimization tech-
nology. While existing algorithm control techniques have
shown impressive results, their knowledge-intensive nature
means that domain and algorithm expertise is necessary to
develop the models. The requirement for expertise has not,
therefore, been reduced; it has been shifted from algorithm
building to predictive model building. It could still be ar-
gued that the expertise will have been reduced if the pre-
dictive model can be applied to different types of problems.
Unfortunately, the performance of a predictive model tends
to be inversely proportional to its generality: while models
accounting for over 99% of the variance in search cost ex-
ist, they are not only algorithm and problem specific, but
problem instance specific (Watson 2003). The model build-
ing approachis general, but the requirement for expertise
remains: an in-depth study of the domain and of different
problem representations is necessary in order to identify a
set of relevant features that are predictive of algorithm per-
formance. To avoid shifting the expertise to model building,
we examine approaches that require little expertise.

The distinction between low- and high-knowledge (or
knowledge-intensive) approaches focuses on the number,
specificity, and computational complexity of the measure-
ments that need to be made of a problem instance. A low-
knowledge approach has very few, inexpensive metrics, ap-
plicable to a wide range of algorithms and problem types. A
high-knowledge approach has more metrics, that are more
expensive to compute, and more specific to particular prob-
lems and algorithms. This distinction is independent of
the approach taken to build a predictive model. In partic-
ular, sophisticated model building techniques (e.g., based
on machine learning) are consistent with low-knowledge ap-
proaches provided the observations on which they are built
do not require significant expertise to identify.

We make some basic assumptions about the pure algo-
rithms for which our techniques are appropriate. First, after
a brief start-up time (at most, a few seconds) an algorithm is
always able to the return the best, complete solution it has
found so far. Second, we require that an algorithm is able
to take an external solution and search for solutions that are
better. In the latter case, if an algorithm has not found a bet-
ter solution, when asked for its best solution, the algorithm
returns the external solution.

A Bayesian Classifier for Prediction
Let tp represent the prediction time andtr the subsequent
time allocated to run the chosen pure technique. It is re-
quired thatT = tp + tr. During the prediction phase, each
pure algorithm,a ∈ A, is run for a fixed number of CPU
seconds,t, on the problem instance. The quality of solu-
tions found for each run is used to select the algorithm that
will achieve the best performance given the time remaining.
We require thattp = |A| × t. We assume that when a pure
algorithm has been selected, it does not have to re-start: it
can continue the search from where it left off in the predic-
tion phase. The total run-time for the selected technique is
Ts = tr + tp/|A|.

A simple categorical Bayesian model is constructed to se-
lect the algorithm given a predefinedtp. For every 10 sec-

onds of prediction time and for each pure algorithm, a bi-
nary variable is created with possible values of “best” or
“behind”. The value is assigned depending on whether the
algorithm has found the best solution of all the algorithms,
a ∈ A, at that time. Two or more algorithms may have both
found the best solution at a particular time. For each algo-
rithm, we also have a binary variable representing the final
performance of the algorithm (i.e, at timeTs). It also has the
value “best” or “behind” depending on the algorithm’s com-
parison with all the other algorithms. For the learning phase,
these variables are input. For the test phase, the value of the
final performance variables for each algorithm are predicted
by the constructed Bayesian classifier.

For example, letT = 1200, tp = 30, and|A| = 3. We
have six input variables: one for each algorithm at time 10
seconds and one for each algorithm atTs = 1180 seconds.
We learn a Bayesian classifier that predicts the best algo-
rithm at time 1180. The classifier is used on the learning
set to define a hybrid algorithm that runs each pure algo-
rithm for 10 seconds, uses the Bayesian classifier to predict
which of the three will be best at 1180 seconds, and then
runs the selected algorithm for the remaining 1170 seconds,
continuing the search from where it left off. We repeat this
procedure, learning a new Bayesian classifier for different
values oftp ∈ {60, 90, . . . 1200}. This results in an assess-
ment of hybrid algorithm performance for each prediction
time. The prediction time with the best performance ist∗.
The Bayesian classifier fortp = t∗, is then used on the test
set.

In all cases, ties among the pure algorithms are broken by
selecting the algorithm with the best mean solution quality
on the learning set at timeT . The Bayesian classifiers are
learned using WinMine 2.0 (Chickering 2002) with default
parameters. We refer to this techniques asBayes.

Reinforcement Learning for Switching
The switching paradigm allocates run-time to the pure algo-
rithms during the search. In contrast to predictive selection,
the allocation decision is made multiple times.N iterations
are performed such that each iteration,i, has a time limit of
ti CPU seconds and

∑
1≤i≤N ti = T . During each iteration,

the run-time of each pure algorithm,a ∈ A, is determined
using a weight,wi(a), which is learned as the search pro-
gresses. The weights for an iteration are normalized to sum
to 1 and therefore,wi(a) corresponds to the fraction of time
ti allocated to algorithma. For example, if algorithma has
weight wi(a) = 0.2 and ti = 60 seconds, thena is run
for 12 seconds during iterationi. Weights are initialized to
1/|A|.

Weights are updated after each iteration by considering
the current weight and the performance of each algorithm
during the last iteration. Performance is measured in cost
improvement per second, which allows us to compare al-
gorithms despite the differing run times. We normalize the
cost improvement per second to sum to 1 producing a per-
formance value,pi(a). The weights are then adjusted us-
ing a standard reinforcement learning formula:wi+1(a) =
α × wi(a) + (1 − α) × pi(a). The α value controls the

influence of the previous weight and the performance value.
Unlike the predictive paradigm, switching shares infor-

mation among algorithms. Each invocation of an algorithm
begins with the best solution found so far. However, dif-
ferent pure algorithms are able to exploit this information
differently. Below, we define the exploitation for each pure
algorithm.

Two switching variations are used here. Inrl-static, the
length of each iteration does not vary:ti = 60, for all i.
For rl-double the time for the first two iterations is fixed,
t1, t2 = 60, and subsequentlyti+1 = 2 × ti. We switch be-
tween algorithms|A| − 1 times during an iteration, running
each algorithm exactly once. For each iteration, the order
in which the algorithms are run is randomly generated with
uniform probability. This was done because it is likely to
be easier to improve a solution earlier in an iteration since
later the easy improvements will already have been made
by the earlier algorithms. Similarly, no weight updating is
done until after the second iteration, as it is very easy to find
large improvements in solution quality in the first iteration.
In both rl-static and rl-double,α = 0.5. Experimenting with
different values ofα and ti is an interesting direction we
intend to pursue in our future work.

Empirical Studies
Three sets of20×20 job shop scheduling problems are used.
A total of 100 problem instances in each set were gener-
ated and 60 problems per set were arbitrarily identified as
the learning set for the Bayesian classifier. The rest were
placed in the test set. The difference among the three prob-
lem sets is the way in which the activity durations are gen-
erated. In theRand set durations are drawn randomly with
uniform probability from the interval [1, 99]. TheMC set
has activity durations drawn randomly from a normal distri-
bution. The mean and standard deviation are the same for
the activities on the same machine but different on different
machines. The durations are, therefore, machine-correlated
(MC). In theJC set the durations are also drawn randomly
from a normal distribution. The means and standard devia-
tions are the same for activities in the same job but indepen-
dent across jobs. Analogously to the MC set, these problems
are job-correlated (JC). These different problem structures
have been studied for flow-shop scheduling (Watsonet al.
2002). They were chosen based on the intuition that the dif-
ferent structures may differentially favor one pure algorithm
and therefore the algorithms would exhibit different relative
performance on the different sets.

Three pure algorithms are taken from the scheduling liter-
ature. These were chosen from a set of eight algorithms be-
cause they have generally comparable behavior on the learn-
ing set. The other techniques performed much worse (some-
times by an order of magnitude) on every problem. The three
algorithms are:

• tabu-tsab: a sophisticated tabu search due to Nowicki &
Smutnicki (Nowicki & Smutnicki 1996).

• texture: a constructive search technique using texture-
based heuristics (Beck & Fox 2000), strong constraint
propagation (Nuijten 1994; Laborie 2003), and bounded

chronological backtracking. The bound on the backtrack-
ing follows the optimal, zero-knowledge pattern of 1, 1,
2, 1, 1, 2, 4,. . . (Luby, Sinclair, & Zuckerman 1993).
The texture-based heuristic identifies a resource and time
point with maximum competition among the activities
and chooses a pair of unordered activities, branching on
the two possible orders. The heuristic is randomized by
specifying that the resource and time point is chosen with
uniform probability from the top 10% most critical re-
sources and time points.

• settimes: a constructive search technique using the Set-
Times heuristic (Scheduler 2001), the same propagation
as texture, and slice-based search (Beck & Perron 2000),
a type of discrepancy-based search. The heuristic chrono-
logically builds a schedule by examining all activities
with minimal start time, breaking ties with minimal end
time, and then breaking further ties arbitrarily. The dis-
crepancy bound follows the pattern: 2, 4, 6, 8,. . ..

The best solution found so far is shared among the algo-
rithms in the switching paradigm. The constructive algo-
rithms only make use of the bound on the solution quality,
searching for a solution that is strictly better than the best
solution found so far. Each iteration of tabu-tsab, however,
must begin with an initial solution. The best solution found
so far is used.

Our control techniques assume that the pure algorithms
are able to find a sequence of increasingly good solutions.
As we are minimizing a cost function an initial solution
(with a very high cost) is always easily available. Each al-
gorithm successively finds better solutions as it progresses
either through local search or branch-and-bound, terminat-
ing when it has either proved optimality or exceeded a time
limit. At any given time, each algorithm can return the best
complete solution that it has found so far. If, in a given
time interval, no better solution has been found, the solu-
tion found in the previous time interval is returned. In the
Bayes approach, for example, the binary variables are al-
ways constructed based on the best complete solution that
the algorithm has found up to a time point.

Results
Table 1 displays the results on the three problem sets aver-
aged over ten independent runs, R, with an overall time limit
T = 1200. The evaluation criterion is the mean relative er-
ror (MRE), a measure of the mean extent to which an algo-
rithm finds solutions worse than the best known solutions.
MRE is defined as follows:

MRE(a,K, R) =

∑
r∈R

∑
k∈K

c(a,k)−c∗(k)
c∗(k)

|K|

|R|
(1)

whereK is a set of problem instances,R is a set of indepen-
dent runs with different random seeds,c(a, k) is the lowest
cost found by algorithma onk, andc∗(k) is the lowest cost
known fork. Also displayed is the mean fraction of prob-
lems in each run for which each algorithm finds the best
known solution.

Rand MC JC All
Frac. Best MRE Frac. Best MRE Frac. Best MRE Frac. Best MRE

tabu-tsab 0.265 0.0211 0.385 0.0199 0.225 0.0157 0.292 0.0189
texture 0.228 0.0206 0.09 0.0292 0.703 0.0089 0.340 0.0196
settimes 0.0 0.0519 0.0 0.0460 0.325 0.0168 0.108 0.0382
Bayes 0.228 0.0186 0.230 0.0192 0.627 0.0074 0.361 0.151
rl-double 0.453 0.0141‡ 0.453 0.0142 0.825 0.0042* 0.577 0.0108‡
rl-static 0.093 0.0243† 0.088 0.0265 0.754 0.0049 0.311 0.0185

Table 1: The performance of each technique on the test set. ‘*’ indicates significantly lower mean relative error (MRE) than all pure
techniques, ‘‡’ indicates significantly lower MRE than all other algorithms, and ’†’ indicates significantlyworseperformance than the best
pure technique. “Frac. Best” is the mean fraction of problems in each set for which the algorithm found the best known solution.

Bayes is the only approach that uses the learning set. Re-
call that the learning set is used to build a Bayesian classifier
for each possible prediction time and identify the one with
the smallest MRE. The besttp was found to be 270 seconds,
meaning that each pure algorithm is run for 90 seconds and
then the Bayesian classifier is used to select the pure algo-
rithm to be run for the subsequent 930 seconds. The Bayes
technique achieves an MRE that is not significantly1 differ-
ent from the best pure algorithm while finding the best solu-
tion in about the same number of problems as the best pure
algorithm.

The two reinforcement learning algorithms also achieve
strong performance. The better one, rl-double, performs sig-
nificantly better than all other algorithms based on MRE and
able to find the best known solution for over half the in-
stances. One advantage of the switching paradigm is that
it can use different pure algorithms in different parts of the
search, and therefore, can achieve better performance on a
problem instance than the best pure technique. In contrast,
predictive selection techniques cannot perform better than
the best pure technique. In fact, rl-double finds a better so-
lution than any pure technique in 45 of the problems.

The rl-static technique performs significantly worse than
rl-double. The doubling of the time in the iterations appears
to be an important part of the performance of rl-double.
Nonetheless, rl-static is able to achieve performance that is
not significantly worse than the best pure technique. Fur-
thermore, it finds a better solution than any pure technique
in 16 of the problems.

The fact that we have created a technique that achieves
significantly better performance than the best pure technique
is not the main conclusion to be drawn from this experi-
ment. Rather, the importance of these results stems from the
fact that the technique does not depend on expertise either in
terms of development of new, pure scheduling algorithms or
in terms of development of a detailed domain and algorithm
model. A low-knowledge approach is able to achieve better
performance whilereducingthe required expertise.

Further Investigations
Our initial experiment demonstrates that, at least for the
problem sets, algorithms, and time limit used, it is possi-

1All statistical results are measured using a randomized paired-
t test (Cohen 1995) and a significance level ofp ≤ 0.005.

ble to use low-knowledge approaches to algorithm control
to achieve MRE performance that is significantly better than
the best pure algorithm. A number of questions can now be
asked with respect to these results. How sensitive are the
results to different choices of parameters such as the overall
time limit? Can we evaluate the extent to which the machine
learning techniques are responsible for the performance of
the control techniques?

Other Time Limits To address the issue of different time
limits, we perform a series of experiments using the same
design as above withT ∈ {120, 240, . . . , 1200}. Table 2
presents the results. The “Best Pure” column is the MRE
of the best pure technique on the test set for each time
limit. For T ∈ {120, . . . , 960}, texture achieves the low-
est MRE of all pure techniques. ForT ≥ 1080, tabu-tsab
is best. The MRE of Bayes is not significantly worse than
the best pure algorithm except forT = 120. The rl-static
approach achieves significantly lower MRE than all pure
techniques for three time limits:T ∈ {240, 360, 480}. Fi-
nally, rl-double achieves MRE significantly lower than all
pure techniques forT ≥ 360 and comparable performance
for T ≤ 240. ForT ≥ 600, rl-double achieves significantly
better performance than all other algorithms in Table 2.

We conclude that the results forT = 1200 are applica-
ble to other choices for an overall time limit. The rl-double
algorithm dominates regardless of time limit and the Bayes
approach no worse than the best pure technique except for
very low time limits.

Other Low Knowledge Techniques To evaluate the im-
pact of the learning techniques in isolation, we create con-
trol variations that do not perform learning. We replace the
Bayesian classifier with a simple rule: at prediction time,
choose the algorithm that has found the lowest cost solu-
tion. The learning set is used to evaluate the performance of
this mincostrule at each prediction time for eachT value.
The prediction time,t∗ that results in the lowest MRE on
the learning set for a givenT is then used on the test set for
that T . Similarly, to assess the reinforcement learning, we
run rl-static and rl-double withα = 1. Each pure algorithm
receives an equal portion of the iteration time, regardless of
previous performance. We call these “no-learning” varia-
tions,nl-staticandnl-double. Finally, to investigate the im-
pact of communication among the algorithms, theno-com
technique is nl-double without sharing of the best known

Time Algorithm
Limit Best Pure Bayes mincost rl-double rl-static nl-double nl-static no-com
120 0.0387 0.0406† 0.0409† 0.0356 0.0340 0.0364 0.0347 0.0560†
240 0.0311 0.0298 0.0315 0.0270 0.0246* 0.0278 0.0270 0.0440†
360 0.0277 0.0258 0.0266 0.0216* 0.0211* 0.0232 0.0238 0.0387†
480 0.0256 0.0232 0.0238 0.0191* 0.0197* 0.0203* 0.0225 0.0353†
600 0.0241 0.0208 0.0216 0.0168‡ 0.0190 0.0188* 0.0220 0.0330†
720 0.0225 0.0196 0.0203 0.0147‡ 0.0187 0.0174* 0.0218 0.0311†
840 0.0215 0.0181 0.0193 0.0134‡ 0.0186 0.0158* 0.0217 0.0298†
960 0.0207 0.0169 0.0181 0.0125‡ 0.0186 0.0146* 0.0217† 0.0288†
1080 0.0198 0.0158 0.0171 0.0116‡ 0.0186 0.0139* 0.0217† 0.0277†
1200 0.0189 0.0151 0.0163 0.0108‡ 0.0185 0.0132* 0.0217† 0.0268†

Table 2:The mean relative error (MRE) of each algorithm for different time limits. ‘*’ indicates an MRE significantly lower than all pure
techniques at the same time limit, ‘‡’ signifies an MRE significantly lower than all other tested algorithms at the same time limit while ’†’
indicates significantly worse than the best pure technique.

solution among the algorithms: each algorithm is allowed to
continue from where it left off in the previous iteration.

The results of these approaches are also presented in Ta-
ble 2. The mincost technique does not perform significantly
worse than the best pure technique, demonstrating that even
a simple rule can be applied in a low-knowledge context to
achieve competitive performance. Bayes is significantly bet-
ter than mincost only forT = 960 andT = 1200. So while
the machine learning techniques do provide a benefit, it does
not appear to be robust to different time limits.

Reinforcement learning has a stronger impact. Though
not displayed in the table, rl-static is significantly better than
nl-static for allT and rl-double is significantly better than
nl-double at all time limits exceptT = 120. Interestingly,
nl-double not only achieves significantly better performance
than the pure techniques on seven of the ten time limits but
also achieves a significantly lower MRE than all algorithms
except rl-double forT = 840 andT = 960. Finally, no-
com performs worse that the best pure algorithm at all time
limits: communication between algorithms is clearly an im-
portant factor for performance.
Perfect High-Knowledge Classifiers We can perform an
a posteriori analysis of our data to compare our low-
knowledge approach with the best performance that can be
expected from high-knowledge classifier which seek to se-
lect a pure algorithm for a given problem instance. Thebest-
subsetclassifier chooses the pure algorithm that is best, on
average, for the subset to which the test instance belongs.
This is the best result we can achieve with a high-knowledge
classifier that infallibly and with zero CPU time can catego-
rize instances into the three problem sets. Thebest-instance
makes a stronger assumption: that, with zero CPU time, the
high-knowledge classifier can always choose the best pure
algorithm for a given instance. This is the optimal perfor-
mance that is achievable byany technique based on choos-
ing the best pure algorithm for a given instance.

The rl-double technique achieves a lower MRE than best-
subset forT ≥ 360. Furthermore, rl-double performs as
well as best-instance for all time limitsT ≥ 360. In other
words, without complex model building our best low knowl-

Time Algorithm
Limit rl-double best-subset best-instance
120 0.0356 0.0366 0.0313‡
240 0.0270 0.0291 0.0242‡
360 0.0216* 0.0259 0.0205
480 0.0191* 0.0234 0.0184
600 0.0168* 0.0219 0.0170
720 0.0147* 0.0203 0.0156
840 0.0134* 0.0190 0.0144
960 0.0125* 0.0180 0.0133
1080 0.0116* 0.0171 0.0122
1200 0.0108* 0.0164 0.0115

Table 3:The mean relative error (MRE) for different overall time
limits. ‘*’ indicates a significantly lower MRE in the comparison
of rl-double and best-subset while ‘‡’ signifies the same thing for
the comparison of rl-double and best-instance.

edge approach achieves performance that is as good as the
best possible high-knowledge classification approach.

Future Work
We have examined a number of algorithm control ap-
proaches on a single problem type. While there is no reason
to expect JSPs to be so unlike other optimization problems
that similar results would not be observed, it is necessary to
evaluate low-knowledge approaches on other optimization
problems. In addition, it may be more relevant to apply al-
gorithm control to problems with particular characteristics.
A real system is typically faced with a series of related prob-
lems: a scheduling problem gradually changes as new orders
arrive and existing orders are completed. As the problem
changes, algorithm control techniques may have the flexibil-
ity to appropriately change the manner in which underlying
pure algorithms are applied.

We have examined a very simple version of reinforcement
learning and the best control technique, rl-double, made no
use of the off-line learning set. Two obvious uses for the
off-line problems is as a basis for setting theα value and as
a basis for iteration-specific weights. If it is true that differ-

ent pure algorithms are more appropriate for different phases
of the search, we could use the learning set to weight each
algorithm in each iteration. The issue of the ordering of the
pure algorithms within an iteration is also an interesting area
for future work. It is clear from the result of nl-double that
the simple act of switching among a set of algorithms brings
problem solving power. Understanding the reasons behind
this may help to further leverage such simple techniques.

Finally, we intend to investigate the scaling of these tech-
niques as the number of pure algorithms increases. It seems
likely that the prediction-based techniques would suffer:
prediction time will need to be longer and/or the time given
to each pure technique will be reduced. These implications
will both lead to poorer performance as less time is left for
the chosen algorithm and the algorithm selection will be less
accurate. In contrast, the reinforcement learning, especially
if off-line learning is used to set iteration-specific weights,
may be able isolate the subset of pure algorithms that are
most useful.

Conclusion
We have shown that low-knowledge metrics of pure algo-
rithm behavior can be used to form a system that consistently
and significantly out-performs the best pure algorithm. Ma-
chine learning techniques play an important role in this
performance, however, even a simpleminded approach that
evenly distributes increasing run-time among the pure algo-
rithms performs very well.

Our motivation for investigating low-knowledge algo-
rithm control was to reduce the expertise necessary to ex-
ploit optimization technology. Therefore, the strong per-
formance of our techniques should be evaluated not simply
from the perspective of an increment in solution quality, but
from the perspective that this increment has been achieved
without additional expertise. We neither invented a new pure
algorithm nor developed a detailed model of algorithm per-
formance and problem instance features. Therefore, we be-
lieve low-knowledge approaches are an important area of
study in their own right.

References
Beck, J. C., and Fox, M. S. 2000. Dynamic problem struc-
ture analysis as a basis for constraint-directed scheduling
heuristics.Artificial Intelligence117(1):31–81.

Beck, J. C., and Perron, L. 2000. Discrepancy-bounded
depth first search. InProceedings of the Second Interna-
tional Workshop on Integration of AI and OR Technologies
for Combinatorial Optimization Problems (CPAIOR’00).

Chickering, D. M. 2002. The WinMine toolkit. Technical
Report MSR-TR-2002-103, Microsoft, Redmond, WA.

Cohen, P. R. 1995.Empirical Methods for Artificial Intel-
ligence. The MIT Press, Cambridge, Mass.

Horvitz, E.; Ruan, Y.; Gomes, C.; Kautz, H.; Selman, B.;
and Chickering, M. 2001. A bayesian approach to tack-
ing hard computational problems. InProceedings of the
Seventeenth Conference on uncertainty and Artificial Intel-
ligence (UAI-2001), 235–244.

Kautz, H.; Horvitz, E.; Ruan, Y.; Gomes, C.; and Selman,
B. 2002. Dynamic restart policies. InProceedings of the
Eighteenth National Conference on Artifiical Intelligence
(AAAI-02), 674–681.
Laborie, P. 2003. Algorithms for propagating resource
constraints in AI planning and scheduling: Existing ap-
proaches and new results.Artificial Intelligence143:151–
188.
Lagoudakis, M. G., and Littman, M. L. 2000. Algorithm
selection using reinforcement learning. InProceedings of
the 17th International Conference on Machine Learning,
511–518. Morgan Kaufmann, San Francisco, CA.
Le Pape, C.; Perron, L.; Ŕegin, J.; and Shaw, P. 2002.
Robust and parallel solving of a network design prob-
lem. In Proceedings of the Eighth International Confer-
ence on Principles and Practice of Constraint Program-
ming (CP02), 633–648.
Leyton-Brown, K.; Nudelman, E.; and Shoham, Y. 2002.
Learning the empirical hardness of optimization problems:
The case of combinatorial auctions. InProceedings of the
Eighth International Conference on Principles and Prac-
tice of Constraint Programming (CP02), 556–572.
Luby, M.; Sinclair, A.; and Zuckerman, D. 1993. Optimal
speedup of Las Vegas algorithms.Information Processing
Letters47:173–180.
Minton, S. 1996. Automatically configuring constraint
satisfaction programs: A case study.CONSTRAINTS
1(1,2):7–43.
Nowicki, E., and Smutnicki, C. 1996. A fast taboo search
algorithm for the job shop problem.Management Science
42(6):797–813.
Nuijten, W. P. M. 1994.Time and resource constrained
scheduling: a constraint satisfaction approach. Ph.D. Dis-
sertation, Department of Mathematics and Computing Sci-
ence, Eindhoven University of Technology.
Rice, J. 1976. The algorithm selection problem.Advances
in Computers15:65–118.
Ruan, Y.; Horvitz, E.; and Kautz, H. 2002. Restart poli-
cies with dependence among runs: A dynamic program-
ming approach. InProceedings of the Eighth International
Conference on Principles and Practice of Constraint Pro-
gramming (CP-2002), 573–586. Springer-Verlag.
Scheduler. 2001.ILOG Scheduler 5.2 User’s Manual and
Reference Manual. ILOG, S.A.
Watson, J.-P.; Barbulescu, L.; Whitley, L.; and Howe,
A. 2002. Contrasting structured and random permuta-
tion flow-shop scheduling problems: search-space topol-
ogy and algorithm performance.INFORMS Journal on
Computing14(1).
Watson, J.-P. 2003.Empirical Modeling and Analysis
of Local Search Algorithms for the Job-Shop Scheduling
Problem. Ph.D. Dissertation, Dept. of Computer Science,
Colorado State University.

