
Selecting the Right Heuristic Algorithm:Runtime Performance PredictorsJohn A. Allen1 and Steven Minton21 Caelum Research Corporation, Mail-Stop 269-2, NASA Ames Research Center,Mo�ett Field, CA 94035-1000, allen@ptolemy.arc.nasa.gov2 USC Information Sciences Institute, 4676 Admiralty Way, Marina del Rey, CA90292-6695, minton@isi.eduAbstract. It is obvious that, given a problem instance, some heuris-tic algorithms can perform vastly better than others; however, in mostcases the existing literature provides little guidance for choosing the bestheuristic algorithm. This paper describes how runtime performance pre-dictors can be used to identify a good algorithm for a particular probleminstance. The approach is demonstrated on two families of heuristic al-gorithms.1 IntroductionUsing a good heuristic algorithm can make a tremendous di�erence in the e�-ciency of solving a constraint-satisfaction problem (CSP). Without a good algo-rithm, solving even a moderate-sized CSP (or any combinatorial problem) maybe extremely time consuming. This is why there are so many papers written eachyear about new heuristic CSP methods. A great variety of heuristic algorithmshave been described in the literature, each purported to perform well on someexample problems. Unfortunately, it is rarely clear which method will performbest for a given problem, and the literature provides almost no guidance on thistopic.In this paper, we illustrate the di�erence selecting the \right" heuristic algo-rithm can make by citing several cases in the current literature. We then arguethat selecting a suitable algorithm can be surprisingly di�cult, and certainlynon-obvious. To begin to address this problem, we present evidence that, forcertain families of heuristic algorithms, we can predict which algorithm will dobest after running them each for a very short period of time. We do this by iden-tifying secondary performance characteristics that tell us whether the heuristic ishaving a positive e�ect. We demonstrate this idea for two very di�erent familiesof heuristic algorithms: backtracking constraint-propagation and iterative repairtabu search.2 Finding the Right Heuristic Algorithm is ImportantRecently, researchers have been interested in identifying \hard" constraint sat-isfaction problems (e.g., [1, 10]). Informally, an problem is hard if no algorithm



can solve \most" of its instances \quickly", for suitable de�nitions of \most"and \quickly". Similarly, a CSP problem is trivial if most CSP algorithms cansolve most of its instances quickly. In our view, many problems we are likelyto encounter fall into a middle class. Most of the instances of these challengingproblems can be solved quickly, but only if the right CSP method is applied.Some recent studies provide examples of challenging problems | problemsthat were considered hard until the right method was found:{ Smith [18] describes a DARPA scheduling problem for which he synthesizedan algorithm that was orders of magnitude faster than previous methods. Bymaking heavy use of constraint propagation techniques, Smith's algorithmcompletely eliminated search in some cases.{ Minton et al. [9] have demonstrated that an iterative repair method solvesinstances of the N-queens problem easily, even if n = 106, and Kale [5] founda backtrack version that works well as well. While N-queens is not intrinsi-cally interesting, it is notable because it has long served as a benchmark forAI search methods.{ Researchers [11, 4, 16] have recently identi�ed heuristic techniques thatquickly solve a job shop problem originally proposed by Sadeh [15]. Forinstance, Johnston found that a combination of a dispatch heuristic anditerative repair search solved most of the instances almost immediately.In each case, benchmark problems that were meant to be di�cult were even-tually \cracked" by heuristic methods; the problems were solved so rapidly thatthey became unsuitable as benchmarks! In other words, with the appropriateheuristics, the problems were not, in fact, very hard at all despite their initialappearance.While there has been recent work analyzing the nature of hard problemsand proposing that such problems are \relatively rare", we know of no stud-ies examining the distinction between challenging and trivial problems. Yet thisdistinction is extremely important to the practitioner, since challenging prob-lems are, in fact, the ones that seem di�cult to solve, but are easy if the rightalgorithm is used.3 Finding the Right Algorithm can be Di�cultIf we could identify a few CSP algorithms that were better than all the rest, thenwe wouldn't need to worry about which algorithm to select for a given problem,we could simply run them all in parallel. Unfortunately, as we pointed out, itseems there is a very large variety of CSP algorithms to choose from, perhapsthousands. For instance, in the IJCAI-93 conference there were at least eighteennew algorithms described. While one can more or less group the algorithms intodi�erent approaches (such as backtracking, branch-and-bound, iterative repair,genetic search and divide-and-conquer), there are many di�erent heuristics that



can be utilized by these approaches 3 and many di�erent ways to combine thedi�erent techniques. Some authors have tried to characterize the types of prob-lems for which their algorithms are most appropriate. However, there is oftenno general way to do this except with respect to very gross characteristics, suchas whether the problem is known to be solvable or not. The trouble with usinggross characteristics is that in many cases we have found that seemingly smalldi�erences in an algorithm, or the representation of a problem, can make a bigdi�erence in performance.As an example, we describe our recent experience comparing min-conicts[9] and GSAT [17], two iterative-repair algorithms. Min-conicts begins withan initial assignment. On each iteration, min-conicts randomly chooses a vari-able that is in conict and assigns it the value that minimizes the number ofremaining conicts. GSAT is a descendant of min-conicts designed for booleansatis�ability problems. GSAT di�ers from min-conicts in that it selects thevariable that eliminates the most conicts when ipped rather than choosingrandomly among conicted variables.4Selman et al. [17] claims that GSAT performs well on graph-coloring prob-lems and describes a 17-color problem where GSAT signi�cantly outperformsother algorithms. This result surprised us, since Minton et al. [9] reports thatmin-conicts performs relatively poorly on graph-coloring problems! We recentlytook a look at this discrepancy and were surprised to see that the di�erencesin the algorithms, which are seemingly minor, result in signi�cant di�erences inperformance.In a graph-coloring problem, each node must be assigned a color, and ad-jacent nodes must not have the same color. On most of the graphs that wetried, we found that GSAT did in fact outperform min-conicts. Initially wehypothesized that this was due to the representation di�erence. (Min-conictsuses the standard CSP representation scheme, where each node is a variablewhose value is a color. GSAT uses a propositional representation scheme of theform \NodeX is ColorY", allowing nodes to have multiple, or no, colors.) How-ever, this hypothesis was insu�cient to explain our results, since min-conictsdoes not do signi�cantly better using the propositional representation. In fact,in some cases the representation di�erence actually bene�ts min-conicts. Aftertaking a closer look at GSAT's performance on the 17-color problem, using codeand data supplied by Selman, we found that:3 For instance, some heuristic variations of \intelligent backtracking" mentioned inAAAI-94 [?] articles include: dynamic backtracking, backjumping, conict directed-backtracking, ATMS-based search schemes, learning with backjumping, value-basedshallow learning, graph-based shallow learning, jump-back learning, backmark-ing, backmarking and sticking values, Min-conict backtracking, weak-commitmentsearch.4 In their original paper introducing GSAT, the authors note that a distinguishingdi�erence between the two algorithms is that GSAT makes sideways moves andmin-conicts does not. This claim is incorrect as both algorithms make sidewaysmoves.



1. GSAT only does well if one leaves out the constraint that each node mustbe colored a single color. (If GSAT �nds a satisfying assignment where anode is colored two colors, then selecting either color will give a solution.)2. GSAT requires a tabu list. (Selman used a tabu list of length 20. A tabulist of length k keeps track of the last k moves, so they are not repeated bythe repair process[2, 3]. This can help the algorithm cope with local minimaand plateaus.)3. GSAT's variable-ordering strategy helps signi�cantly.Armed with this knowledge, we were able to create a variation of min-conictsthat does almost as well as GSAT on the graph-coloring instances we tried.The algorithm uses GSAT's variable-ordering strategy and a tabu list, but notGSAT's propositional representations. It took several weeks to complete thisstudy.While this example might be extreme, we believe that the di�culty of �ndingan appropriate algorithm for a problem is often under-appreciated. The di�cultyis aggravated when an algorithm incorporates a variety of heuristic mechanisms,as is often the case, since these can interact in unexpected ways. For example,Minton [8] found that di�erent backtracking algorithms were appropriate for twodistributions of a CSP called Minimal MaximumMatching. The two backtrack-ing algorithms used di�erent variable and value ordering strategies. Because,in each algorithm, the strategies interacted synergistically, �nding the right al-gorithm for a given distribution required simultaneously trying both the rightvalue-ordering strategy and the right variable-ordering strategy.4 Predicting which Algorithm is BestIn the previous sections we argued that, when presented with a problem instance,it may not be obvious which algorithm to choose, even though one algorithmmight end up performing much better than others on that instance. One possiblesolution is to run a variety of algorithms in parallel. This can lead to a signi�-cant improvement in performance, e.g., super-linear speedup [13], but typicallyresource limitations prevent us from running more than a few algorithms in par-allel. Here we consider an approach, runtime performance prediction (RPP ),whereby we monitor an algorithm as it runs for a short period and predict itsperformance. We can use this approach to test a variety of algorithms quickly.A secondary performance characteristic is a property of the search processthat we can monitor in order to predict an algorithm's �nal performance. Whichproperties we choose to monitor depends on the heuristics incorporated in thealgorithm. If we understand the e�ect that a heuristic is supposed to have on thesearch, we can choose a property that provides evidence as to whether or not theheuristic is having its intended e�ect. We demonstrate two di�erent propertiesthat enable us to predict how well an algorithmwill do. For illustrative purposes,we chose two very di�erent types of algorithms for our demonstration: constraint-propagation methods in a backtracking framework and tabu search in an iterativerepair framework.



4.1 Estimated Total Constraint ChecksConstraint-propagation (CP) [12, 7] is frequently used in conjunction with back-tracking search. The idea is simple: whenever a variable is instantiated with anew value, we can prune the domains (the possible values) of the uninstantiatedvariables using consistency maintenance techniques as follows. Given two vari-ables, V and U , we say that arc(V; U ) is consistent if for every value v in thedomain of V there exists a value u in the domain of U that is consistent with v.The procedure \revise" is used to enforce arc consistency: applying revise(V; U )removes values from the domain of V until arc(V; U ) is consistent. Nadel [12]describes the following CP heuristics, where U is the variable just instantiated,and V1; : : : ; Vn are the uninstantiated variables:1. Forward checking (FC): After instantiating variable U, revise(Vk ; U ), fork = 1; : : : ; n.2. Partial Lookahead (PL): Do forward checking, and in addition, for each pairof uninstantiated variables, Vi, Vj , such that i > j, revise(Vi ; Vj).3. Full Lookahead (FL): Do forward checking, and in addition, for each for eachpair of uninstantiated variables, Vi, Vj , such that i 6= j, revise(Vi ; Vj).4. Really Full Lookahead (RFL): Do forward checking, and then revise arcsuntil the constraint graph is fully arc-consistent (i.e., until quiescence).Each heuristic implements a di�erent level of consistency maintenance. Noticethat they can be implemented so that in a given state the values pruned byeach successive level will include the values pruned by the preceding level. Inthis sense, each successive CP heuristic is more powerful than the preceding one.However, more powerful does not necessarily result in better overall performance.In fact, recently Sabin and Freuder [14] have shown that the relative performanceof these techniques is problem-dependent.There is a simple model that allows us to understand the basic e�ects ofCP. Simply put, CP techniques increase e�ciency by reducing the amount ofbacktracking required to �nd a solution. The reason they do not always lead toimproved performance is because they also tend to raise the number of constraintchecks performed at each node. These two e�ects compete against each other.We can monitor the degree to which CP is increasing e�ciency by estimatingthe size of the tree and the number of constraint checks per node5. This gives usan estimate of the total number of constraint checks that would be required ifthe entire tree were to be searched, which we refer to as EstTCC. The procedureis based on an iterative sampling approach described by Knuth [6] for estimatingthe size of the search tree, which we adapt for use with depth-�rst search, asdescribed below.Let CC(n) be the number of constraint checks that occur at node n, andk(n) be the branching factor at node n. Let P = fn1; : : : ; njg be the path of5 We use the number of constraint checks in our estimates since they correlate wellwith time, and they are implementation independent, but the estimates could bedone directly using time as our basic unit of cost.



0

1e+08

2e+08

3e+08

4e+08

5e+08

6e+08

7e+08

8e+08

9e+08

0 10 20 30 40 50 60 70 80 90

E
st

T
C

C

Number of Paths searched

FC
PL
FL

RFL

Fig. 1. The behavior of the secondary characteristic EstTCC during problem solving.(The data in the graph has been smoothed to make the graph more readable)instantiated variables from the root, n1, to a leaf, nj, where ni+1 is the childof ni, and a leaf is a node whose children cannot be expanded. Given P , wecalculate EstTCC(P ), the estimated number of constraint checks required tosearch the tree, as follows:EstTCC(P ) = jXi=1[CC(ni) i�1Yl=1 k(nl)]Using essentially the same argument as presented by Knuth, it is straightfor-ward to show that the expected value of EstTCC is the number of constraintchecks in the tree, provided the variable domains are randomized. (Space lim-itations do not permit its inclusion.) The di�erence is that we calculate thissum while the CP algorithms are conducting backtracking search, and averageover the last 10 EstTCC values. Knuth uses an iterative sampling approach,which gives estimates with a lower variance after exploring the same number ofnodes, and so iterative sampling is an alternative method that can be considered.(There are a variety of tradeo�s which we cannot address here.)EstTCC gives us a basis for comparing the CP algorithms, because the algo-rithm that performs the fewest constraint checks is the most e�cient. However,EstTCC is the estimated number of constraint checks for the entire tree, but ourCP search procedures will terminate as soon as the �rst solution is found. Nev-ertheless, if we run two or more algorithms side by side, we can predict whichwill do best based on a running comparison of EstTCC for each search tree.This prediction is based on the fact that the trees contain the same number ofsolutions and on the assumption that the solutions are distributed in the sameway throughout both trees.Figure 1 shows how the value of EstTCC changes as the di�erent constraintpropagation techniques solve a problem. The problem instance is a randomly



generated CSP of 40 variables with domains of 7 values, a density of .5, and atightness of .15. The independent variable is the number of paths, from the rootto a leaf, examined. The dependent variable is EstTCC. For this instance, FCdoes 108,319 constraint checks to solve the problem; PL, FL, and RFL require795,029, 954,538, and 879,521 constraint checks respectively.While the example in Figure 1 shows that EstTCC correctly predicts thatFC will perform the fewest constraint checks, the intent of using a secondarycharacteristic is to allow one to determine the best algorithm without havingto run each to completion. This requires that one know how long to let theCP systems run before comparing their EstTCC values. Since EstTCC is anestimate based on a single path through the tree, and since it is unlikely thatany one path will be representative of the tree, we average the EstTCC valuesof �rst ten paths explored by the algorithm.Table 1 summarizes this information for 11 problem instances (10 randomlygenerated problems and one hand-coded problem) for the four CP algorithms.The �rst column speci�es the problem instance being examined. The second col-umn presents the number of constraint checks required by the algorithm chosenby comparing EstTCC values. The third column is the number of constraintchecks performed by the best CP algorithm. The fourth column, degradationover best, presents the percent increase in the number of constraint checks in-curred by the chosen algorithm over the best algorithm. The �nal column showthe percent increase over choosing an algorithm at random.Table 1 show that EstTCC works well with random problems. In each casethe best algorithm was selected, resulting in an improvement over random bya factor of 2 to almost 10. The hand coded instance (HC) shows an interest-ing di�culty with using EstTCC. Each path, P , evaluated by EstTCC(P ) isassumed to be representative of the tree as a whole. If the tree has a sectionthat is shallow and sparse, then samples taken from that part of the tree willmake it look very small. Conversely, if a part of the tree is very bushy and deep,then samples taken from that section can make the tree look much larger thanit really is6. The domain HC was speci�cally designed to be conducive to themore powerful CP techniques, and in the case, a great deal of pruning was doneby RFL near the root of the tree. As a result, RFL appeared to be searching thetree with the fewest constraint checks. (In this instance, PL performed best.)Table 2 summarizes the cost of testing and running the chosen algorithm.The �rst column labels the problem. The second column shows the number ofconstraint checks needed to calculate EstTCC for each of the four algorithms,FC, PL, FL, and RFL. The third column shows the sum of the constraint checksused during testing, and the number of constraint checks needed by the chosenalgorithm to solve the instance. The fourth column shows the expected reductionin the number of constraint checks of using runtime performance prediction(RPP ) versus interleaving the execution of the four algorithms. The expectednumber of constraint checks for interleaving four algorithms is calculated as fourtimes the number of constraint checks of the best algorithm.6 Knuth notes this as well[6].



Prob. Inst. CC's of Chosen CCs of Best Degradation ImprovementAlgorithm Algorithm over Best over AverageRand1 1 601,105 601,105 0% 370%2 765,664 765,664 0% 493%3 108,319 108,319 0% 532%4 1,411,902 1,411,902 0% 432%5 592,427 592,427 0% 527%Rand2 1 126,152 126,152 0% 255%2 340,814 340,814 0% 547%3 125,569 125,569 0% 273%4 30,741 30,741 0% 964%5 55,556 55,556 0% 348%HC 1 480,464 171,465 180% -2%Table 1. A comparison of number of constraint checks performed by the CP algorithmchosen by EstTCC against the constraint checks performed by the best algorithm andthe average number of constraint checks performed by all four algorithms. Rand1 andRand2 are randomly generated binary CSPs, HC is hand-crafted.Prob. Inst. Test CCs Total CCs Improvementover InterleavedRand1 1 201,577 802,682 199%2 209,956 975,620 214%3 233,157 341,476 27%4 200,061 1,611,963 250%5 163,446 755,873 213%Rand2 1 202,360 328,512 53%2 180,804 521,618 161%3 188,152 313,721 60%4 203,061 233,802 -47%5 209,541 265,097 -16%HC 1 185,439 665,903 3%Table 2. The cost of using EstTCC for testing CP algorithms versus interleaving thealgorithms.Our results show that RPP using EstTCC can result in fewer constraintchecks than interleaving. There are a few instances where the number of con-straint checks was large enough relative to the number of constraint checks per-formed by the best algorithms as to overwhelm the bene�t. However, the penal-ties in these two examples are relatively small, and we are currently investigatingways of reducing the testing time using decision theory.



In general, one of the advantages of the EstTCC predictor is that it can beadapted for use with a variety of backtracking heuristics. For example, variable-ordering strategies and intelligent backtracking strategies are both similar toCP in that they work by reducing the size of the search tree, and thus EstTCCshould work similarly with them. Of course, not all backtracking heuristics oper-ate by reducing tree size. For instance, value ordering heuristics do not work thisway, and therefore another predictor must be used to gauge whether a value-ordering heuristic is having a positive e�ect.4.2 Minimum Conict CountFor our second family of heuristic methods, we consider the use of tabu [2, 3]lists by GSAT. As explained in the previous section, tabu lists are used torecord the last k moves, so that they will not be repeated. Tabu lists are one ofmany heuristic techniques designed to help with the problems of plateaus andlocal minima encountered by non-systematic local search methods. Other suchtechniques include stochastic moves (as in simulated annealing) and randomizeddescent (as in Min-conict's variable selection method).Of course, there is the problem of determining if a tabu list will help (orhurt) and how long the list should be. Based on an informal model of what atabu list is supposed to do { escape large plateaus and local minima, we canattempt to monitor the degree to which this is succeeding. However, since it isoften expensive to determine when a plateau or local minima is encountered,we measure this indirectly. Speci�cally, we execute a series of relatively shortsample runs recording the number of conicted, or unsatis�ed, clauses after eachip during the run. Presumably, if the tabu list is having a positive e�ect, thisshould be reected by a decrease in the number of conicted clauses.The Minimum Conict Count, MCC, is calculated by making several shortruns with the heuristic algorithm, taking the minimum conict count that oc-cured in each run and averaging them. The minimumnumber of conicts is usedbecause it gives some indication of how well the system is navigating plateausand local minima. An iterative repair algorithm with a poorly chosen tabu listlength will have di�culty escaping these obstacles, and will not have as goodan opportunity to reduce the conict count as a system with a good tabu listlength. We average the minimum conict count because of the strong stochasticnature of GSAT and other non-systematic techniques.Figure 2 shows howMCC behaves as the number of ips (the functionGSATuses to assign a variable a value) increases. In this example, GSAT is run ona graph 3 coloring problem with 200 nodes and 600 links, translating into 600variables and 2600 clauses for GSAT. The data was collected after every 100ips and is an averaged over 1000 tries. Notice that for the �rst 200 ips on thisproblem, the 6 di�erent tabu list lengths behave identically. This indicates thatduring this time there are no signi�cant obstacles that needs to be overcome inthe early part of the search. However, after the �rst 200 ips the MCC of the6 systems start to diverge. In this example, the best tabu length is 25, in whichone can expect GSAT to �nd a solution in 11,740 ips. Tabu lengths of 0, 5, 15,



0

10

20

30

40

50

60

100 200 300 400 500 600 700 800 900

M
C

C

Time (measured in flips)

Tabu = 0
Tabu = 5

Tabu = 15
Tabu = 25
Tabu = 40
Tabu = 60

Fig. 2. The behavior of the secondary characteristic MCC during problem solving.Prob. Inst. Ave. Flips of Ave. Flips of Degradation ImprovementChosen Alg. Best Alg. over Best over AverageGC 1 2,873,056 1,255,913 129% 15%2 12,409 6,529 90% 2,474%3 123,537 99,632 24% -7%4 94,730 29,678 219% -10%5 48,957 10,635 360% -22%Plan 1 2,945 2,945 0% 2,468%2 19,167 11,177 71% 510%3 27,078 19,763 37% 540%4 12,055 12,055 0% 1,392%5 225,120 14,496 1,453% -16%Sat 1 62,288 53,099 17% 245%2 299,293 34,432 769% -49%3 64,009 13,458 376% 33%4 170,636 54,610 212% 58%5 425,584 219,962 93% -3%Table 3. A comparison of the average number of ips performed by the tabu algorithmselected by MCC against the average ips performed by the best algorithm and theaverage ips performed by all eight algorithms. GC is a set of randomly generatedgraph-coloring instances. Plan is a set of four move blocks world instances, and Sat isa set of randomly generated satis�ability instances.40, and 60 require 117,967, 104,253, 23,351, 21,943 and 70,680 ips respectivelyto �nd a solution.Our method for determining when to compareMCC is to let GSAT performn ips, where n is the number of variables in the problem, and to average them



over ten trails. Our aim is to give the system enough time to reach and escapethe �rst few plateaus or local minima it �nds during the search. Notice in Figure2 that the tabu lengths of 25, 40 and 60 are closely clustered together. Ourexperiments indicate that the MCC values will eventually diverge, but it takesmany more ips before it happens. When there is a cluster of algorithms thathave approximately the same MCC, choosing the algorithm with the shortesttabu length seems to be a good choice. Thus, we use the following procedure:Collect all the algorithms whose MCC value is within 1 of the minimumMCCvalue. Of these algorithms, select the one with the shortest tabu list.Table 3 shows the results of using MCC on several instances.7 The formatis similar to that of Table 1. The �rst column presents the problem and instancetested; the second shows the average number of ips needed by the algorithmselected to solve the instance. The third column is the average number of ipsneeded by the best algorithm to solve the instance. The fourth column showsthe percent increase in the number of ips of the chosen over the best, and thelast column is the percent improvement over selecting an algorithm at random.The �rst thing to notice about the data in Table 3 is that it is not as con-sistent as that for the CP programs. While good improvements over averageselection can be seen, there are also examples where the performance of the cho-sen algorithm is worse than average. A closer look at the data shows that ourmethod of determining the best tabu length tends to underestimate. For exam-ple, the best tabu length for instance GC-1 is 15, while the tabu length chosenby RPP is 10. This is due to our choosing the smallest tabu length within 1of the minimumMCC. Our method for dealing with clusters of algorithms waschosen solely because it gave good results on preliminary data. A better methodwould be to use statistical techniques to determine the clustered values. We arecurrently exploring this possibility.While most of the time RPP with MCC is underestimating, there are are afew cases where RPP did not chose a tabu length that was close to the optimallength. An example of this is Plan-5, where the best tabu length is 10 and thechosen tabu length is 25. In these cases, theMCC values do not behave like thosein Figure 2. Instead of having a group of contiguous tabu lengths diverging anda group of clustered contiguous tabu lengths, they are jumbled together. Furtherexperimentation shows that this is due to noise in the sample. If one averagesover a larger set of sample runs the MCC values behave like those shown inFigure 2. To correct this, one should continue to collect sample runs until thevariance of the samples reduces to a desired level. We are currently exploringthis technique.Table 4 shows how using MCC as a secondary predictor compares againstinterleaving the execution of the algorithms. The �rst column shows the numberof ips needed to test each of the eight di�erent tabu lengths. The second columnis the sum of the ips needed for testing and the average number of ips needed7 The results are averages of 10 runs where each run consists of 10 tries and each tryconsists of nx100 ips. The task is to predict among eight tabu lengths, 0, 5, 10, 15,20, 25, 30, and 35.



Prob. Inst. Test ips Total ips Improvementover InterleavedGC 1 170,000 3,043,056 230%2 48,000 60,409 -13%3 24,000 147,537 440%4 12,000 106,730 122%5 12,000 60,957 40%Plan 1 6,480 9,425 150%2 12,480 31,647 182%3 17,440 44,518 255%4 17,440 29,495 227%5 17,440 242,560 -52%Sat 1 16,000 78,288 443%2 12,000 311,293 -11%3 16,000 80,009 34%4 20,000 190,636 129%5 20,000 445,584 295%Table 4. The cost of using MCC by testing tabu algorithms versus interleaving thealgorithms.by the chosen algorithm to solve the problem. The �nal column is the percentimprovement over interleaving the algorithms. This number is eight times theaverage number of ips of the best algorithm.Similar to the results in Table 2, using RPP with MCC most often providesa approach of �nding a solution using on average fewer ips than interleaving theexecution of the algorithms. The exceptions fall into two categories. InstancesPlan-5 and Sat-2 do not compare favorably against interleaving primarily dueto choosing a poor algorithm. This problem will be alleviated as we developbetter methods of calculating and comparingMCC values. Instance GC-2 is anexample of the number of ips needed for testing overwhelming the number ofips needed by the best algorithm. Again we are investigating decision theoreticmethods as a way of reducing the number of ips needed for testing.5 ConclusionsIn this paper we have argued the importance and di�culty of selecting a goodheuristic algorithm for a given problem. There has been very little work on thissubject. We have outlined an empirical approach that can be used to help predictwhich member of an algorithm family is best, so that we can quickly search foran appropriate algorithm. Obviously, this is only a beginning. Much more ispossible, including empirical work extending and validating our RPP predictorsand theoretical work to establish a sound foundation.



Acknowledgments: Wewould like to thank Bart Selman for his quick responseto e-mailed questions and for providing GSAT.References1. P. Cheeseman, B. Kanefsky, and W. Taylor. Where the really hard problems are.In Proceedings of the 12 th IJCAI, pages 331{337, Sydney, Australia, 1991. MorganKaufmann.2. F. Glover. Tabu search - part I. ORSA Journal on Computing, 1(3):190{206, 1989.3. F. Glover. Tabu search - part II. ORSA Journal on Computing, 2:4{32, 1990.4. M. Johnston and S. Minton. Analyzing a heuristic strategy for constraint-satisfaction and scheduling. In M. Zweben and M. Fox, editors, Intelligent Schedul-ing, pages 257{290. Morgan Kaufmann, 1994.5. L. Kale. An almost perfect heuristic for the n nonattacking queens problem. Inf.Process. Lett., 34:173{178, 1990.6. D. Knuth. Estimating the e�ciency of backtrack programs. Mathematics of Com-putation, 29:121{136, 1975.7. V. Kumar. Algorithms for constraint-satisfaction problems: a survey. AI Maga-zine, 13(1):32{44, 1992.8. S. Minton. Integrating heuristics for constraint satisfaction problems: A case study.In Proceedings of the Eleventh National Conference on Arti�cial Intelligence, SanJose, CA, 1993. AAAI Press.9. S. Minton, M. Johnston, A. Philips, and P. Laird. Minimizing con�cts: a heuris-tic repair method for constraint satisfaction and scheduling problems. Arti�cialIntelligence, 58:161 { 205, 1992.10. D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of SATproblems. In Proceedings of AAAI-92, pages 459{465, San Jose, CA, 1991. AAAIPress.11. N. Muscettola. HSTS: Integrating planning and scheduling. In M. Zweben andM. Fox, editors, Intelligent Scheduling, pages 169{212. Morgan Kaufmann, 1994.12. B. Nadel. Tree search and arc consistency in constraint satisfaction algorithms. InL. Kanal and V. Kumar, editors, Search in Arti�cial Intelligence, pages 287{342.Springer-Verlag, 1988.13. V. Rao and V. Kumar. Superlinear speedup in state-space search. In Conferenceon foundations of softwar technology and theoretical computer science, 1988.14. D. Sabin and E. Freuder. Constradicting conventional wisdom in constraint satis-faction. In A. Borning, editor, Proceedings of the 1994 Workshop on Principles andPractice of Constraint Programming, Orcas Island, Washington, 1994. Springer-Verlag.15. N. Sadeh. Look-ahead techniques for micro-opportunist job shop scheduling. Tech-nical Report CMU-CS-91-102, School of Computer Science, Carnegie Mellon, 1991.16. N. Sadeh. Micro-opportunistic scheduling: the micro-boss factory scheduler. InM. Zweben and M. Fox, editors, Intelligent Scheduling, pages 99{135. MorganKaufmann, 1994.17. B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satis�-ability problems. In Proceedings of AAAI-92, pages 440{446, San Jose, CA, 1992.AAAI Press.18. D. Smith. Transformational approach to scheduling. Technical ReportKES.U.92.2, Kestrel Institute, 1992.



This article was processed using the LaTEX macro package with LLNCS style


