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Abstract

Automating algorithm selection and parameter tuning is ldndoeam of the Al
community, which has been brought closer to reality in thst tlecade. Most
available techniques are eitheblivious with no knowledge transfer across dif-
ferent problems; or are based on a model of algorithm peidan®g, learned in
a separateffline training sequence, which is often prohibitively expensivée
describe recent work in which the problem is treated in gfafiline setting. A
model of algorithm performance can be learrmed used to reduce the cost of
learning it. The resultingxploration-exploitatiorirade-off can be treated in the
context of Bandit problems.
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1 Introduction

Most problems in Al can be solved by more than one algorithmastlgorithms feature a number
of parameters that have to be set. Both choices can dramhatéect the quality of the solution,
and the time spent obtaining it. Algorithm Selection [32]Meta-Learnind36] techniques, address
these questions in a machine learning setting. Based omatyaet of performance data for a large
number of problem instances, a model is learned that mapblém algorithm) pairs to expected
performance. The model is later used to select and run, fdr Baw problem, only the algorithm
that is expected to give the best results. This approachgtihpreferable to the still far more popular
“trial and error”, poses several problems. The trainingsessumed to be representative of future
instances. The computational cost of the initial trainifgge, which obviously requires solving
each training problem repeatedly, at least once for eacheoflgorithms, can be high enough to
make algorithm selection impractical.

One way of reducing the cost of learning a performance masi use the model itself to guide the
training phase [9, 10, 12, 8]. There is an obvious trade4idireg in this context, between thex-
ploration of algorithm performances on different problem instane@sgd at improving the model,
andexploitationof the best algorithm/problem combinations, based on atim®del’s predictions.
In this paper, we address this trade-off in the context ofligmroblems, summarizing recent results
from[12, 8].



2 Related work

Algorithm selection techniques can be described accortdigfferent orthogonal features:

Optimisation vs. decision problems.A first distinction needs to be made amoaecisionprob-
lems, where a binary criterion for recognizing a solutiomvsilable; andptimisationproblems,
where different levels of solution quality can be attainedasured by anbjectivefunction [18].
Conversions among the two kinds are possible.

Per set vs. per instance selectionThe selection among different algorithms can be performed
once for an entire set of problem instancpsr(setselection, following [20]); or repeated for each
instance fer instanceselection).

Static vs. dynamic selection.A further independent distinction [29] can be made amstagic
algorithm selection, in which any decision on the allocatid resources precedes algorithm execu-
tion; anddynamig or reactive algorithm selection, in which the allocation can be addjuhering
algorithm execution.

Oblivious vs. non-oblivious selection.In oblivioustechniques, algorithm selection is performed
from scratch for each problem instancenion-obliviougechniques, there is some knowledge trans-
fer across subsequent problem instances, usually in theddbamodelof algorithm performance.
Offline vs. online learning. Non-oblivious techniques can be further distinguisheaféige or
batchlearning techniques, where a separate training phasefisrperd, after which the selection
criteria are kept fixed; anghlineor life-longlearning [31] techniques, where the criteria are updated
at every instance solution.

A seminal paper in this field is [32], in which offline, per iaate algorithm selection is first ad-
vocated, both for decision and optimisation problems. Meintly, similar concepts have been
proposed, with different terminology (algorithcommendatioranking, model selectiop by the
Meta-Learningcommunity [6, 36, 14]. Usually, meta-learning researchigi@ath optimisation
problems, and is focused on maximizing solution qualitythewiit taking into account the com-
putational aspect. Works dampirical Hardness Modelf23, 28] are instead applied to decision
problems, and focus on obtaining accurate models of rurpienformance, conditioned on numer-
ous features of the problem instances, as well as on paresswétie solvers [20]. The models are
used to perform algorithm selection on a per instance bastsare learned offline: online selection
is advocated in [20]. Literature on algorithm portfolio®[115, 30] is usually focused on choice
criteria for building the set of candidate solvers, such thair areas of good performance don't
overlap; and optimal static allocation of computationabngrces among elements of the portfolio.

A number of interesting dynamic exceptions to the statiectein paradigm have been proposed re-
cently. In [21], algorithm performance modeling is basedr@behavior of the candidate algorithms
during a predefined amount of time, called diservational horizorand dynamic context-sensitive
restart policies for SAT solvers are presented; the modehisied offline. In a Reinforcement Learn-
ing [35] setting, algorithm selection can be formulated &daskov Decision Process: in [22], the
algorithm set includes sequences of recursive algorittfionsjed dynamically at run-time solving
a sequential decision problem, and a variation of Q-legrisrused to find a dynamic algorithm
selection policy; the resulting technique is per instamly@mamic and online. In [29], a set of de-
terministic algorithms is considered, and, under sometéitinins, static and dynamic schedules are
obtained, based on dynamic programming. In both cases, ¢ltgoch presented are per set, offline.

“Low-knowledge” oblivious approaches can be found in [3,idvhich various simple indicators of
current solution improvement are used for algorithm salacin order to achieve the best solution
quality within a given time contract. In [4], the selectioropess is iterated: machine time shares
are based on a recency-weighted average of performanceverpents. In [7] we adopted a similar
approach. We considered algorithms with a scalar stateh#ubto reach a target value. The time to
solution was estimated based on a shifting-window linetnagwlation of the learning curves.

More references can be foundin [7, 9, 10, 8], and Sect. 4.

3 The adversarial bandit problem

In its most basic form [33], thenulti-armed bandiproblem is faced by a gambler, playing a se-
guence of trials against &A-armed slot machine. At each trial, the gambler chooses brieeo



available arms, whose rewards are randomly generated fiftenesht stationarydistributions. The
gambler can then receive the corresponding rewgrdnd, in thefull information game, observe
the rewards that he would have gained pulling any of the @thas. The aim of the game is to mini-
mize theregret defined as the difference between the cumulative rewaltedfést arm, and the one
earned by the gambler. A bandit problem solver (BPS) can seritted as mapping from the history
of the observed rewards, € [0, 1] for each arnm, to a probability distributiorp = (p1, ..., px),
from which the choice for the successive trial will be picked

In recent works, the original restricting assumptions ha@en progressively relaxed, allowing for
non-stationaryreward distributionspartial information (only the reward for the pulled arm is ob-
served), ancdversarialbandits, that can set their rewards in order to deceive tigepl In [1], no
statistical assumptions are made about the process gieigettet rewards, which are allowed to be
an arbitrary function of the entire history of the gameig-obliviousadversarial setting). Based on
these pessimistic hypotheses, the authors describe plisti@lgambling strategies for the full and
the partial information games, proving interesting bouordshe regret.

4 Algorithm selection as a bandit problem

Consider now a sequendg = {b1,...,bys } of M problem instances, and a set &falgorithms

A = {a1,as,...,ax }, such that each,, can be solved by at least ong. It is straightforward to
describe static algorithm selection inf&-armed bandit setting, where “pick arki means “run
algorithma,, on next problem instance”. For decision problems, runtipean be treated aslass

to be minimized; or a reward could be set, for example,as= 1/t;. For optimisation problems, the
quality of the obtained solution could be the reward. In bzgkes, the reward would be generated
by a rather complex mechanism, i.e., the algorithmthemselves, running on the current problem,
so the bandit problem would fall into the adversarial segttifihe information would be partial: the
runtime for other algorithms would not be available. As BRidally minimize the regret with
respect to a single arm, this approach would allow to implerper setselection, of the overall best
algorithm. An example can be found in [12], where we preskate online method for learning
a per set estimate of an optimal restart stratd@AMBLE R, see Alg. 1). The method consists in
alternating the universal strategy of [26], and an estichajgtimal strategy, again based on [26].
The estimate is performed according to a nonparametric hoddentime distribution on the set of
instances, updated at every solution. Here the bandit @nokblver (P3 from [1]) is used at an
upper level: the two arms are the two restart strategiepqgsiog different restart thresholds for the
same randomized algorithm. The reward for each solvedrinstevas given based on the logarithm
of the total timet;, spent by the winning strategy including unsuccessful runs.

Alternative per instance, but oblivious, approaches, cabudilt considering more refined reward
attributions. If the aim of selection is only to maximize wbn quality, a same problem can be
solved multiple times, eventually keeping only the beshfibgolution. The selection problem can
then be represented advlax K-armed bandit problem, a variant of the game in which the réwa
attributed to each arm is the maximum payoff observed on aeseg of rounds. Solvers for this
game are used in [5, 34] to implement oblivious per instarsdection from a set of multi-start

optimisation techniques: each problem is treated indegethg and multiple runs of the available
solvers are allocated, to maximize performance quality.

In a variant of this game, machine time can be subdividediimtervalsdot: “pick arm k" would
mean “resume algorith@ay, on current problem instance, for a tinig then pause it”. Reward could
be attributed as beforey, := 1/t, t;, being thetotal runtime of the winning algorithm.

Information would again be partial: more precisely, in tase it would béncompleteor censorec?
as alower boundon performance, and a correspondipper boundn reward, would be available
for the other algorithms. The bandit would b@an-obliviousadversary, as the result of each arm

1A restart strategy consists in executing a sequence of ruasandomized algorithm, in order to solve
a given problem instance, stopping each juafter a timeZ'(j) if no solution is found, and restarting the
algorithm with a different random seed.

2Censored samplinig a commonly used technique in lifetime distribution estiion (see, e. g., [27]), which
allows to reduce the duration of a sequence of experimeintpl\saborting runs exceeding a time threshold.
The information carried by these runs can still be used fadefing, both in the parametric and non-parametric
settings. See also [9, 10, 11, 12, 8].



Algorithm 1 GAMmBLE R(M) Gambling Restart for algorithmy interleavingK strategies.

Settmin, tmaz, I
initialize ExP3 (M, K), p
for each problem, ..., M do
setty, =0, :=0,k=1,... K
repeat
pickk ~ p
run s with cutoff Ty, (ji. + 1)
update countefy, := jix + 1, timer¢y, := ¢, + min{ts, Tk (jr) }
if problem solvedhen
observe reward;, := %
else
observe reward;, := 0
end if
let EXP3 updatep
until problem solved
updateM based on collected runtime data
end for

pull would depend on previous pulls of the same arm. Also is tiase, oblivious per instance
selection can be implemented, if some indicator of currentqggmance can be obtained at runtime,
after pausing each;. Theincrementin this quantity, can be used to attribute reward for the last
step. This approach is followed in the per instance, ohligjalynamic selection technique presented
in [4]: the simplerecency-weighted averagé performance increment used there can be seen as a
simple solver for a time-varying bandit problem (see, ¢35], Sect. 2.6).

For a very smalbt, and a large number of arm pulls, the expected value of tineatsgxecuting
ar, would be proportional t,. And, typically, bounds on regret for a BPS are proved based o
expected values. The game described above would then beabaniito astatic portfolio [9, 29,

10, 30], running the algorithms; in parallel, allocating time ta; proportionally tos,, such that
for any portion of time spent, st is used bya,. Thep of the BPS can be used as tlgarevalue

s = (s1,-.,5K), , sk > 0, >, sx = 1, and can be updated after a problem instance is solved.
Again, the resulting selection techniquesistic, per set only profitable if one of the algorithms
dominates the others on all problem instances. A less cagéi and more interesting hypothesis,
is that there is one of a set time allocators(TA) [7, 9, 10, 8] whose performance dominates the
others. A TA can be an arbitrary function mapping the curhestbry of collected performance data
for eachay, to a shares. The simplest example is thaniformtime allocator, assigning a constant
s = (1/K,...,1/K). In previous work, we presented examples of heuristic ahl [7] and non-
oblivious [9] model-based allocators. More sound TAs aoppsed in [8], based on minimization of
expected solution time, or ofquantileof solution time, and on maximization of solution probatyili
within a give timecontract

At this higher level, one can use a BPS to select among diffe¢ime allocators, TAY, TA) ...,

working on a same algorithm sgt. In this case, “pick arme” means “use time allocator T&’ on

A to solve next problem instance”. In the long term, the BPSIdiallow to select, on ger set
basis, the TA® that is best at allocating time to algorithmsdnon aper instancevasis. If the BPS
allows for time-varying reward distributions, it can alseadlwith time allocators that atearning

to allocate time: this is precisely the situation of a moased allocator, whose mod#l is being

learned online, based on results on the sequence of probletrso far.

A more refined alternative is suggested by the bandit problitin expertadvice, as described in
[1, 2]. Two games are going on in parallel: at a lower levelagipl information game is played,
based on the probability distribution obtaineiixing the advice of differenexperts represented
as probability distributions on th& arms. The experts can be arbitrary functions of the histbry o
observed rewards, and give a different advice for each #izd higher level, dull informationgame

is played, with theV experts playing the roles of the different arms. The proighdistribution

p at this level is not used to pick a single expert, butrix their advices, in order to generate
the distribution for the lower level arms. To play this twe4l game, Aueet al. [1] propose an



algorithm called KP4 , featuring bounds on regret relative to the performandb@®bestexpert
provided that theiniformexpert(1/K, ...,1/K) is included in the set.

In our case, the time allocators play the role of the expedsh suggesting a differeston a per
instance basis; and the arms of the lower level game arE takgorithms, to be run in parallel with
the mixture share. Theartial information on the reward at the lower level (based on thémanof
theay, first to solution) is translated tfoll information at the upper level, based on #7 proposed
by each TA™. The bound of KP4 on the regret w.r.t. the best TA can be achieved includieg th
uniform TA in the set.

A straightforward extension can be made, to the casgyafmicalgorithm portfolios [7, 9, 29],
in which a sequence of machine time slaé$(0), At(1), ... is allocated during the solution of a
single problem, and each TA can update its proposeé”) (7) for each subsequedtt(j). In this
case, the normalized value BF ; s(™) () At(j) is used in place 0™ to updatep of Exp4 . The
resulting “Gambling” Time Allocator (@mBLE TA ) [8] is described in Alg. 2, again based on a
logarithmic reward.

Algorithm 2 GAMBLETA (M) Gambling Time Allocator.

Algorithm setA with K algorithms;N TA; M problem instances.
let Exp4 (K, N, M) initialize p € [0, 1]V
Sett,in, tmaz, iNitialized modelM
for each problendy, bs, ..., bys do
while b,,, not solveddo
updateAt
for each time allocator T®, ..., TA®Y) do
updates(™ = TA(™ (M), s(™ e [0,1]¥
end for
evaluate mis = >0 p,s(™
run A with shares, for a maximum timeA¢
end while
observe reward;, := % for winneray,
let ExP4 updatep
updateM based on collected runtime data
end for

5 Experiments

In [8] we present experiments with two small algorithm sé€ts £ 2), but long and challenging
problem sequences. In the first experiment, a local seaitla @aomplete SAT solver (respectively,
G2-WSAT [25] and Satz-Rand [16], a randomized version of $24]) are controlled by Gm-
BLETA during the solution of a sequence of random satisfiableuars@tisfiable problems (bench-
marksuf - =, uu-* from [17], 1899 instances in total). Local search (LS) algorithms are more
efficient on satisfiable instances, but cannot prove uriigdtilty, so are doomed to run forever on
unsatisfiable instances; while complete solvers are gteedrio terminate their execution on all
instances, as they can also prove unsatisfiability. For th@ewproblem sequence, the overhead of
GAMBLE TA over an ideal “oracle”, which can predict satisfiabilitiyam instance, and run only the
fastest algorithm, i24%. Satz-Rand alone could solve all the problems, but with arlwead of
about40% w.r.t. the oracle, due to its poor performance on satisfismsiances. Fig. 1 (a) plots the
evolution of cumulative time along the problem sequencethénsecond experiment from [8], we
compare with results of a static algorithm selection apgnda3], controlling two solvers (CASS
and CPLEX) on a set of0664 combinatorial Auction Winner Determination problems, ialzle
online. In [23], an overhead &% on the oracle is reported, obtained after a training secpithat
cost several years of CPU-time A@BLE TA achieved an overhead d%, which includes training



SAT-UNSAT | GAMBLETA | 2.88 x 10" +1.06 x 10°
ORACLE | 2.53 x 10'° +£5.17 x 107

CumMOVH 0.138 £ 0.00324
WDP GAMBLETA | 1.12x 10% +£1.81 x 10°
ORACLE | 1.08 x 108 +7.61 x 1078

CuMOVH 0.0381 + 0.00167

Table 1:Performance of GMBLE TA , evaluated averaging ové0 runs, each time with a different random
order of instance€)5% confidence intervals. SAT-UNSAT and Winner Determinatiooldfem (WDP) bench-
marks. The cumulative performand€ ; tc(j) of GAMBLE TA and of the QRACLE 3, to(j) are reported,

to(j) = mink{tx(j)}, along with the cumulative overhead ofa@BLE TA , with respect to the ®ACLE

(CuMOVH), (3=, ta(d) — 22, to(4))/ 22, to(4).

time, as it is a fully online techniqu&Table 5 reports resuft®f 50 runs, each time with a different
random order of instances.

In [12] we present experiments withABIBLE R , controlling the restart threshold of Satz-Rand on
9 sets of structured graph-coloring (GC) problems [13], latéé from [17], each composed b0
instances encoded in CNF-SAT format. This algorithm/benchmark combination is parkarly
interesting as thaeavy-tailedbehavior [16] of Satz-Rand differs for the various sets stance3
[13, 11]. In figure 1 (b) we present, for each problemet., 8, the total computation time for
GAMBLER (G), and the comparison terms: Satz-Rand without restgrtthe universal strategy
from [26] (U), and aower boundon the performance of a single optimal restart strategyuated

a posteriorifor the whole setL*(set)), and for each instancd.{ (inst)). On all sets, GMBLER
scores fairly against* (set), andU is betweer8 and5 times worst.

6 Conclusions

We presented recent promising results of a “bandit” apgréaa@lgorithm selection. In both cases,
a bandit problem solver is used at an upper level, to integheg proposals of different time alloca-
tors (GAMBLE TA ), and different restart strategies A@BLER ). In this latter case, the bound on
performance of the universal strategy [26], combined witlhlhound on regret for 3 , result in

a worst-case bound the performance efMBLER [12]. For GAMBLE TA , only the regret w.r.t. the
best time allocator is minimized: nothing can be guaranédsxlit the performance overhead on the
per instancebest algorithm.

Future research will explore the use of different BPS, istgfrom the alternatives described in [2];
and different reward schemes. A more ambitious goal is tornefilate the bandit problem with
censoredewards, arising in the context of algorithm portfolios.
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