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Abstract

Automating algorithm selection and parameter tuning is an old dream of the AI
community, which has been brought closer to reality in the last decade. Most
available techniques are eitheroblivious, with no knowledge transfer across dif-
ferent problems; or are based on a model of algorithm performance, learned in
a separateoffline training sequence, which is often prohibitively expensive. We
describe recent work in which the problem is treated in a fully onlinesetting. A
model of algorithm performance can be learnedand used to reduce the cost of
learning it. The resultingexploration-exploitationtrade-off can be treated in the
context of Bandit problems.
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1 Introduction

Most problems in AI can be solved by more than one algorithm. Most algorithms feature a number
of parameters that have to be set. Both choices can dramatically affect the quality of the solution,
and the time spent obtaining it. Algorithm Selection [32], or Meta-Learning[36] techniques, address
these questions in a machine learning setting. Based on a training set of performance data for a large
number of problem instances, a model is learned that maps (problem, algorithm) pairs to expected
performance. The model is later used to select and run, for each new problem, only the algorithm
that is expected to give the best results. This approach, though preferable to the still far more popular
“trial and error”, poses several problems. The training setis assumed to be representative of future
instances. The computational cost of the initial training phase, which obviously requires solving
each training problem repeatedly, at least once for each of the algorithms, can be high enough to
make algorithm selection impractical.

One way of reducing the cost of learning a performance model,is to use the model itself to guide the
training phase [9, 10, 12, 8]. There is an obvious trade-off arising in this context, between theex-
plorationof algorithm performances on different problem instances,aimed at improving the model,
andexploitationof the best algorithm/problem combinations, based on current model’s predictions.
In this paper, we address this trade-off in the context of bandit problems, summarizing recent results
from [12, 8].



2 Related work

Algorithm selection techniques can be described accordingto different orthogonal features:

Optimisation vs. decision problems.A first distinction needs to be made amongdecisionprob-
lems, where a binary criterion for recognizing a solution isavailable; andoptimisationproblems,
where different levels of solution quality can be attained,measured by anobjectivefunction [18].
Conversions among the two kinds are possible.
Per set vs. per instance selection.The selection among different algorithms can be performed
once for an entire set of problem instances (per setselection, following [20]); or repeated for each
instance (per instanceselection).
Static vs. dynamic selection.A further independent distinction [29] can be made amongstatic
algorithm selection, in which any decision on the allocation of resources precedes algorithm execu-
tion; anddynamic, or reactive, algorithm selection, in which the allocation can be adapted during
algorithm execution.
Oblivious vs. non-oblivious selection.In oblivioustechniques, algorithm selection is performed
from scratch for each problem instance; innon-oblivioustechniques, there is some knowledge trans-
fer across subsequent problem instances, usually in the form of amodelof algorithm performance.
Offline vs. online learning. Non-oblivious techniques can be further distinguished asoffline or
batch learning techniques, where a separate training phase is performed, after which the selection
criteria are kept fixed; andonlineor life-long learning [31] techniques, where the criteria are updated
at every instance solution.

A seminal paper in this field is [32], in which offline, per instance algorithm selection is first ad-
vocated, both for decision and optimisation problems. Morerecently, similar concepts have been
proposed, with different terminology (algorithmrecommendation, ranking, model selection), by the
Meta-Learningcommunity [6, 36, 14]. Usually, meta-learning research deals with optimisation
problems, and is focused on maximizing solution quality, without taking into account the com-
putational aspect. Works onEmpirical Hardness Models[23, 28] are instead applied to decision
problems, and focus on obtaining accurate models of runtimeperformance, conditioned on numer-
ous features of the problem instances, as well as on parameters of the solvers [20]. The models are
used to perform algorithm selection on a per instance basis,and are learned offline: online selection
is advocated in [20]. Literature on algorithm portfolios [19, 15, 30] is usually focused on choice
criteria for building the set of candidate solvers, such that their areas of good performance don’t
overlap; and optimal static allocation of computational resources among elements of the portfolio.

A number of interesting dynamic exceptions to the static selection paradigm have been proposed re-
cently. In [21], algorithm performance modeling is based onthe behavior of the candidate algorithms
during a predefined amount of time, called theobservational horizon, and dynamic context-sensitive
restart policies for SAT solvers are presented; the model islearned offline. In a Reinforcement Learn-
ing [35] setting, algorithm selection can be formulated as aMarkov Decision Process: in [22], the
algorithm set includes sequences of recursive algorithms,formed dynamically at run-time solving
a sequential decision problem, and a variation of Q-learning is used to find a dynamic algorithm
selection policy; the resulting technique is per instance,dynamic and online. In [29], a set of de-
terministic algorithms is considered, and, under some limitations, static and dynamic schedules are
obtained, based on dynamic programming. In both cases, the method presented are per set, offline.

“Low-knowledge” oblivious approaches can be found in [3, 4], in which various simple indicators of
current solution improvement are used for algorithm selection, in order to achieve the best solution
quality within a given time contract. In [4], the selection process is iterated: machine time shares
are based on a recency-weighted average of performance improvements. In [7] we adopted a similar
approach. We considered algorithms with a scalar state, that had to reach a target value. The time to
solution was estimated based on a shifting-window linear extrapolation of the learning curves.

More references can be found in [7, 9, 10, 8], and Sect. 4.

3 The adversarial bandit problem

In its most basic form [33], themulti-armed banditproblem is faced by a gambler, playing a se-
quence of trials against aK-armed slot machine. At each trial, the gambler chooses one of the



available arms, whose rewards are randomly generated from differentstationarydistributions. The
gambler can then receive the corresponding rewardrk, and, in thefull informationgame, observe
the rewards that he would have gained pulling any of the otherarms. The aim of the game is to mini-
mize theregret, defined as the difference between the cumulative reward of the best arm, and the one
earned by the gambler. A bandit problem solver (BPS) can be described as mapping from the history
of the observed rewardsrk ∈ [0, 1] for each armk, to a probability distributionp = (p1, ..., pK),
from which the choice for the successive trial will be picked.

In recent works, the original restricting assumptions havebeen progressively relaxed, allowing for
non-stationaryreward distributions,partial information (only the reward for the pulled arm is ob-
served), andadversarialbandits, that can set their rewards in order to deceive the player. In [1], no
statistical assumptions are made about the process generating the rewards, which are allowed to be
an arbitrary function of the entire history of the game (non-obliviousadversarial setting). Based on
these pessimistic hypotheses, the authors describe probabilistic gambling strategies for the full and
the partial information games, proving interesting boundson the regret.

4 Algorithm selection as a bandit problem

Consider now a sequenceB = {b1, ..., bM} of M problem instances, and a set ofK algorithms
A = {a1, a2, ..., aK}, such that eachbm can be solved by at least oneak. It is straightforward to
describe static algorithm selection in aK-armed bandit setting, where “pick armk” means “run
algorithmak on next problem instance”. For decision problems, runtimetk can be treated as aloss,
to be minimized; or a reward could be set, for example asrk := 1/tk. For optimisation problems, the
quality of the obtained solution could be the reward. In bothcases, the reward would be generated
by a rather complex mechanism, i.e., the algorithmsak themselves, running on the current problem,
so the bandit problem would fall into the adversarial setting. The information would be partial: the
runtime for other algorithms would not be available. As BPS typically minimize the regret with
respect to a single arm, this approach would allow to implement per setselection, of the overall best
algorithm. An example can be found in [12], where we presented an online method for learning
a per set estimate of an optimal restart strategy1 (GAMBLE R, see Alg. 1). The method consists in
alternating the universal strategy of [26], and an estimated optimal strategy, again based on [26].
The estimate is performed according to a nonparametric model of runtime distribution on the set of
instances, updated at every solution. Here the bandit problem solver (EXP3 from [1]) is used at an
upper level: the two arms are the two restart strategies, proposing different restart thresholds for the
same randomized algorithm. The reward for each solved instance was given based on the logarithm
of the total timetk spent by the winning strategyk, including unsuccessful runs.

Alternative per instance, but oblivious, approaches, can be built considering more refined reward
attributions. If the aim of selection is only to maximize solution quality, a same problem can be
solved multiple times, eventually keeping only the best found solution. The selection problem can
then be represented as aMax K-armed bandit problem, a variant of the game in which the reward
attributed to each arm is the maximum payoff observed on a sequence of rounds. Solvers for this
game are used in [5, 34] to implement oblivious per instance selection from a set of multi-start
optimisation techniques: each problem is treated independently, and multiple runs of the available
solvers are allocated, to maximize performance quality.

In a variant of this game, machine time can be subdivided intointervalsδt: “pick arm k” would
mean “resume algorithmak on current problem instance, for a timeδt, then pause it”. Reward could
be attributed as before,rk := 1/tk, tk being thetotal runtime of the winning algorithm.

Information would again be partial: more precisely, in thiscase it would beincomplete, orcensored,2

as alower boundon performance, and a correspondingupper boundon reward, would be available
for the other algorithms. The bandit would be anon-obliviousadversary, as the result of each arm

1A restart strategy consists in executing a sequence of runs of a randomized algorithm, in order to solve
a given problem instance, stopping each runj after a timeT (j) if no solution is found, and restarting the
algorithm with a different random seed.

2Censored samplingis a commonly used technique in lifetime distribution estimation (see, e. g., [27]), which
allows to reduce the duration of a sequence of experiments, simply aborting runs exceeding a time threshold.
The information carried by these runs can still be used for modeling, both in the parametric and non-parametric
settings. See also [9, 10, 11, 12, 8].



Algorithm 1 GAMBLE R(M) Gambling Restart for algorithms, interleavingK strategies.
settmin, tmax, K
initialize EXP3 (M, K), p
for each problem1, ..., M do

settk := 0, jk := 0, k = 1, ..., K
repeat

pick k ∼ p

runs with cutoff Tk(jk + 1)
update counterjk := jk + 1, timertk := tk + min{ts, Tk(jk)}
if problem solvedthen

observe rewardrk := log tmax−log tk

log tmax−log tmin

else
observe rewardrk := 0

end if
let EXP3 updatep

until problem solved
updateM based on collected runtime data

end for

pull would depend on previous pulls of the same arm. Also in this case, oblivious per instance
selection can be implemented, if some indicator of current performance can be obtained at runtime,
after pausing eachak. The incrementin this quantity, can be used to attribute reward for the last
step. This approach is followed in the per instance, oblivious, dynamic selection technique presented
in [4]: the simplerecency-weighted averageof performance increment used there can be seen as a
simple solver for a time-varying bandit problem (see, e.g.,[35], Sect. 2.6).

For a very smallδt, and a large number of arm pulls, the expected value of time spent executing
ak would be proportional topk. And, typically, bounds on regret for a BPS are proved based on
expected values. The game described above would then be equivalent to astatic portfolio [9, 29,
10, 30], running the algorithmsak in parallel, allocating time toak proportionally tosk, such that
for any portion of time spentt, skt is used byak. Thep of the BPS can be used as thesharevalue
s = (s1, ..., sK), , sk ≥ 0,

∑
k sk = 1, and can be updated after a problem instance is solved.

Again, the resulting selection technique isstatic, per set, only profitable if one of the algorithms
dominates the others on all problem instances. A less restrictive, and more interesting hypothesis,
is that there is one of a set oftime allocators(TA) [7, 9, 10, 8] whose performance dominates the
others. A TA can be an arbitrary function mapping the currenthistory of collected performance data
for eachak, to a shares. The simplest example is theuniform time allocator, assigning a constant
s = (1/K, ..., 1/K). In previous work, we presented examples of heuristic oblivious [7] and non-
oblivious [9] model-based allocators. More sound TAs are proposed in [8], based on minimization of
expected solution time, or of aquantileof solution time, and on maximization of solution probability
within a give timecontract.

At this higher level, one can use a BPS to select among different time allocators, TA(1), TA(2),...,
working on a same algorithm setA. In this case, “pick armn” means “use time allocator TA(n) on
A to solve next problem instance”. In the long term, the BPS would allow to select, on aper set
basis, the TA(n) that is best at allocating time to algorithms inA on aper instancebasis. If the BPS
allows for time-varying reward distributions, it can also deal with time allocators that arelearning
to allocate time: this is precisely the situation of a model-based allocator, whose modelM is being
learned online, based on results on the sequence of problemsmet so far.

A more refined alternative is suggested by the bandit problemwith expertadvice, as described in
[1, 2]. Two games are going on in parallel: at a lower level, a partial information game is played,
based on the probability distribution obtainedmixing the advice of differentexperts, represented
as probability distributions on theK arms. The experts can be arbitrary functions of the history of
observed rewards, and give a different advice for each trial. At a higher level, afull informationgame
is played, with theN experts playing the roles of the different arms. The probability distribution
p at this level is not used to pick a single expert, but tomix their advices, in order to generate
the distribution for the lower level arms. To play this two-level game, Aueret al. [1] propose an



algorithm called EXP4 , featuring bounds on regret relative to the performance ofthe bestexpert,
provided that theuniformexpert(1/K, ..., 1/K) is included in the set.

In our case, the time allocators play the role of the experts,each suggesting a differents, on a per
instance basis; and the arms of the lower level game are theK algorithms, to be run in parallel with
the mixture share. Thepartial information on the reward at the lower level (based on the runtime of
theak first to solution) is translated tofull information at the upper level, based on thes

(n) proposed
by each TA(n). The bound of EXP4 on the regret w.r.t. the best TA can be achieved including the
uniform TA in the set.

A straightforward extension can be made, to the case ofdynamicalgorithm portfolios [7, 9, 29],
in which a sequence of machine time slots∆t(0), ∆t(1), ... is allocated during the solution of a
single problem, and each TA(n) can update its proposeds(n)(j) for each subsequent∆t(j). In this
case, the normalized value of

∑
j s

(n)(j)∆t(j) is used in place ofs(n) to updatep of EXP4 . The
resulting “Gambling” Time Allocator (GAMBLE TA ) [8] is described in Alg. 2, again based on a
logarithmic reward.

Algorithm 2 GAMBLE TA (M) Gambling Time Allocator.
Algorithm setA with K algorithms;N TA; M problem instances.
let EXP4 (K, N, M) initialize p ∈ [0, 1]N

settmin, tmax, initialized modelM
for each problemb1, b2, ..., bM do

while bm not solveddo
update∆t

for each time allocator TA(1), ..., TA(N) do
updates(n) = TA(n)(M), s(n) ∈ [0, 1]K

end for
evaluate mixs =

∑N

n=1 pns
(n)

runA with shares, for a maximum time∆t
end while
observe rewardrk := log tmax−log tk

log tmax−log tmin
for winnerak

let EXP4 updatep
updateM based on collected runtime data

end for

5 Experiments

In [8] we present experiments with two small algorithm sets (K = 2), but long and challenging
problem sequences. In the first experiment, a local search and a complete SAT solver (respectively,
G2-WSAT [25] and Satz-Rand [16], a randomized version of Satz [24]) are controlled by GAM -
BLETA during the solution of a sequence of random satisfiable andunsatisfiable problems (bench-
marksuf-*, uu-* from [17], 1899 instances in total). Local search (LS) algorithms are more
efficient on satisfiable instances, but cannot prove unsatisfiability, so are doomed to run forever on
unsatisfiable instances; while complete solvers are guaranteed to terminate their execution on all
instances, as they can also prove unsatisfiability. For the whole problem sequence, the overhead of
GAMBLE TA over an ideal “oracle”, which can predict satisfiability of an instance, and run only the
fastest algorithm, is14%. Satz-Rand alone could solve all the problems, but with an overhead of
about40% w.r.t. the oracle, due to its poor performance on satisfiableinstances. Fig. 1 (a) plots the
evolution of cumulative time along the problem sequence. Inthe second experiment from [8], we
compare with results of a static algorithm selection approach [23], controlling two solvers (CASS
and CPLEX) on a set of10664 combinatorial Auction Winner Determination problems, available
online. In [23], an overhead of8% on the oracle is reported, obtained after a training sequence that
cost several years of CPU-time. GAMBLE TA achieved an overhead of4%, which includes training



SAT-UNSAT GAMBLE TA 2.88 × 1010 ± 1.06 × 108

ORACLE 2.53 × 1010 ± 5.17 × 107

CUMOVH 0.138 ± 0.00324

WDP GAMBLE TA 1.12 × 108 ± 1.81 × 105

ORACLE 1.08 × 108 ± 7.61 × 10−8

CUMOVH 0.0381 ± 0.00167

Table 1:Performance of GAMBLE TA , evaluated averaging over50 runs, each time with a different random
order of instances.95% confidence intervals. SAT-UNSAT and Winner Determination Problem (WDP) bench-
marks. The cumulative performance

P

j tG(j) of GAMBLE TA and of the ORACLE
P

j tO(j) are reported,
tO(j) = mink{tk(j)}, along with the cumulative overhead of GAMBLE TA , with respect to the ORACLE
(CUMOVH), (

P

j
tG(j) −

P

j
tO(j))/

P

j
tO(j).

time, as it is a fully online technique.3 Table 5 reports results4 of 50 runs, each time with a different
random order of instances.

In [12] we present experiments with GAMBLE R , controlling the restart threshold of Satz-Rand on
9 sets of structured graph-coloring (GC) problems [13], available from [17], each composed of100
instances encoded in CNF3 SAT format. This algorithm/benchmark combination is particularly
interesting as theheavy-tailedbehavior [16] of Satz-Rand differs for the various sets of instances5

[13, 11]. In figure 1 (b) we present, for each problem set0, ..., 8, the total computation time for
GAMBLE R (G), and the comparison terms: Satz-Rand without restart (S), the universal strategy
from [26] (U ), and alower boundon the performance of a single optimal restart strategy, evaluated
a posteriorifor the whole set (L∗(set)), and for each instance (L∗(inst)). On all sets, GAMBLE R
scores fairly againstL∗(set), andU is between3 and5 times worst.

6 Conclusions

We presented recent promising results of a “bandit” approach to algorithm selection. In both cases,
a bandit problem solver is used at an upper level, to integrate the proposals of different time alloca-
tors (GAMBLE TA ), and different restart strategies (GAMBLE R ). In this latter case, the bound on
performance of the universal strategy [26], combined with the bound on regret for EXP3 , result in
a worst-case bound the performance of GAMBLE R [12]. For GAMBLE TA , only the regret w.r.t. the
best time allocator is minimized: nothing can be guaranteedabout the performance overhead on the
per instancebest algorithm.

Future research will explore the use of different BPS, starting from the alternatives described in [2];
and different reward schemes. A more ambitious goal is to reformulate the bandit problem with
censoredrewards, arising in the context of algorithm portfolios.
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