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In this paper, we propose a method called Selec-tion by Performance Prediction (SPP) to select, foreach particular problem instance, the most appropri-ate Branch and Bound algorithm from among severalpromising ones. We restrict ourselves to the case ofconstraint optimization problems expressed in the Val-ued CSP framework (Schiex, Fargier, & Verfaillie 1995),which is an extension of the maximal constraint sat-isfaction framework, as explained in the next section.The proposed SPP method is based on an old and verysimple idea (Knuth 1975) allowing one to statisticallyestimate the size of a search tree by iterative sampling.It gives surprisingly good results on both strongly struc-tured and random problem instances. Estimating eachcandidate algorithm on the very instance to be solvedis the key to a successful choice.This paper is organized as follows. We �rst introducethe VCSP framework and describe Knuth's method ofestimation. We show how this estimation can be usedfor Branch and Bound algorithms. Then we introducethe SPP method, and show some experimental resultson both strongly structured and random problem in-stances. Lastly, after the review of some related works,we state our conclusions and discuss future directions.Valued CSPsA Constraint Satisfaction Problem (CSP) instance isde�ned by a triple (X;D;C), where X is a set of vari-ables, D is a set of �nite domains for the variables,and C is a set of constraints. A constraint is de�nedby a subset of variables on which it holds and by asubset of allowed tuples of values. A solution of an in-stance is a complete assignment | an assignment ofvalues to all of the variables | which satis�es all of theconstraints. Many CSP instances are so constrainedthat no solution exists. In this case, one can searchfor a solution maximizing the number of satis�ed con-straints. This is the maximal constraint satisfactionframework introduced by (Freuder & Wallace 1992).This framework can be further generalized by givinga weight or a valuation to each constraint, mirroringthe importance one gives to its satisfaction. The costof a complete assignment is the aggregation of the valu-ations of the unsatis�ed constraints. We then search for



a solution minimizing this cost. This extension of theCSP model is called the Valued CSP (VCSP) frame-work (Schiex, Fargier, & Verfaillie 1995). In this paper,we only consider �-VCSPs, for which the aggregationoperator is the ordinary sum. Algorithms for maxi-mal constraint satisfaction (Freuder & Wallace 1992;Larrosa & Meseguer 1996) are easily extended to VC-SPs. Knuth's method of estimationKnuth's method (Knuth 1975) is based on a statisti-cal estimation of the quantity ' def= Px2nodes(T ) f(x),where T is any tree. Among other quantities thismethod can estimate the number of nodes in a searchtree (f(x) = 1), or the total running time (f(x) beingthe time spent on the node x).Let S = hx1; x2; : : :i be a random path from the rootx1 to a terminal node, in which the successor of each in-ternal node is randomly selected according to a uniformdistribution. Let '̂(S) def= Pxi2S w(xi)f(xi), wherew(xi) def= Qi�1k=1 d(xk), and d(xk) is the number of suc-cessors of xk. '̂ is an unbiased estimate of '. This isformally expressed as E '̂ = ' (the expected value ofthe random variable '̂ is '). The variance of '̂ isV'̂ = Xx2nodes(T )w(x) X1�i�j�d(x)�'(x(i)) � '(x(j))�2(1)where x(i) is the ith successor of x, '(x) =Py2nodes(Tx) f(y), and Tx is the subtree rooted in x.The expression for the variance shows that it can bequite large, all the larger as the tree is unbalanced. Ofcourse, one can get a better estimate of ' by repeatedlysampling the tree. Let '̂n be the mean of '̂(Si) over nsuccessive random paths Si. We still have E '̂n = ',but the variance is now reduced to V'̂n = V'̂=n.When sampling search trees, experiments show that thedistribution of '̂ cannot be considered as a commonone, hence it is di�cult to provide a good con�denceinterval for '̂. However, Chebyshev's inequality1 givesa con�dence interval for ' with a probability of errorless than 1=c2 : Pr(j'̂n � 'j � cpV'̂=n) < 1=c2. Inpractice V'̂ is unknown and must be estimated fromthe n random paths Si using the well-known formulaV̂'̂ = 1n�1Pni=1('(Si)� '̂n)2.In his paper, Knuth suggests a re�nement called im-portance sampling, in which the successor of a node isselected according to a weighted distribution (instead ofa uniform one), the weight of each successor being anestimate of the corresponding '(x(i)). Knuth's methodhas been improved in di�erent ways by (Purdom 1978)and (Chen 1992). These improvements are based on adeep knowledge of the structure of problem instances.1It can be used because it does not make any assumptionon the actual distribution of the random variable '̂.

DFBB(ub0)c?  ub0success  falseSearch(1)Search(i)if i � nb-variablesthen vi  Variable-Choice(i)for each value k in Current-Domain[vi]A[vi]  kPropagate(i)b  Bound(i)if b < c? then Search(i+ 1)UnPropagate(i)else success  trueA?  Ac?  Cost(A)Figure 1: Depth First Branch and Bound search.In this paper, we choose to keep close to the originaland simplest prediction method.Estimating the Performance of a Branchand Bound AlgorithmIn this section, we will show how Knuth's estimationmethod can be used to predict the running time of aDepth First Branch and Bound algorithm for solvinga particular VCSP instance. This prediction is basedon the estimation of the number of nodes in the treedeveloped during the search.Figure 1 shows the pseudo-code of a Depth FirstBranch and Bound algorithm. It looks for a completeassignment A? of minimal cost c? less than an initialupper bound ub0. If such an assignment does not ex-ist (because ub0 is less than or equal to the optimalcost) then the algorithm ends with success equal tofalse. The current partial assignment, involving vari-ables v1; v2; : : : vi, is stored in A[1::i]. Propagate(i)is a procedure which, like forward-checking, propagatesthe choices already made for the assigned variables ontothe domains of the unassigned ones. This propagationmay result in value deletions in the domains of futurevariables, and thus may improve the subsequent lowerbound computation. Bound(i) returns a lower boundof the cost of any complete extension of the current par-tial assignment. UnPropagate(i) simply restores thedomains.Figure 2 shows the pseudo-code of the proce-dure Estimate-Nb-Nodes(ub0,n) which estimates thenumber of nodes that will be developed by the callDFBB(ub0). The procedure Variable-Choice usedin both Search (�gure 1) and Sample (�gure 2)chooses the next variable, using an appropriate heuris-tic. It should be stressed that the structure of the Sam-ple procedure is simply obtained from the structure ofthe Search procedure by changing the for loop into asingle random value choice.



Estimate-Nb-Nodes(ub0,n)c?  ub0'̂n  0for j = 1 to nw  1'̂  0Sample(1)'̂n  '̂n + '̂'̂n  '̂n=nreturn '̂nSample(i)if i � nb-variablesthen vi  Variable-Choice(i)k  randomly select a valuein Current-Domain[vi]A[vi]  kw  w � jCurrent-Domain[vi]j'̂  '̂+ wPropagate(i)b  Bound(i)if b < c? then Sample(i+ 1)UnPropagate(i)Figure 2: Estimating the size of a DFBB search treethrough iterative sampling.As mentioned by Knuth in his paper, \the estimationprocedure does not apply directly to branch-and-boundalgorithms". To better understand this, one shouldnote that Search updates the current upper bound c?each time it �nds a better complete assignment, thusallowing for a better subsequent pruning of the searchtree. On the contrary, Sample never updates its ini-tial upper bound: it estimates the size of a tree whichwould be generated by a search process in which theupper bound remained constant. Hence, the sampledsearch tree does not correspond exactly to the actualsearch tree.Search e�orts between the regular version and theconstant upper bound version of a Branch and Boundalgorithm can di�er tremendously. One extreme caseoccurs when the initial upper bound is set to in�nity:whereas the regular version �nds good solutions andconsequently prunes its search tree, the constant upperbound version has to explore all complete assignments.On the other hand, if the initial upper bound is lessthan or equal to the optimal cost, both versions developexactly the same tree. Eventually, good estimates needlow upper bounds. In practice, one can execute an in-complete method like a local search �rst in order to geta low upper bound of the optimal cost. This upperbound will help the estimation process as well as theresolution itself.The Sample procedure of �gure 2 makes it possibleto estimate the size (number of nodes) of the searchtree. However, we are in fact more interested in an es-timate of the running time. A simple way of estimatingthis running time is to estimate �rst the average time

SPP(I,L,t�,ts,ub0)for each BBi in L�̂  Estimate-Time-Per-Node(I,BBi,t�,ub0)'̂n  Estimate-Nb-Nodes(I,BBi,ts,ub0)timei  �̂ � '̂nreturn BBi such as timei is minimalFigure 3: The Selection by Performance Prediction(SPP) method.� spent on a node. To do this, we run the target algo-rithm during a brief interval of time and then deducean estimate of the average time per node. According toour experiments, such a simple procedure is su�cientto produce reasonable estimates.Experiments with several instances and algorithmsshow that the variance of '̂ is generally very large.Hence, it seems di�cult to produce useful con�denceintervals for the number of developed nodes (and hencefor the running time). The main contribution of this pa-per is to show empirically that the SPP method workswell in practice despite this huge variance and the dif-ference between sampled and actual search trees.Selecting the Best AlgorithmIn this section, we give a detailed description of the\Selection by Performance Prediction" method (SPP).Given an instance to be solved and a list of promisingcandidate Branch and Bound algorithms, we would liketo select the best possible algorithm from among thecandidates, that is, the algorithm which will solve theinstance within the shortest time.The principle of the method is very simple: we esti-mate the running time of each candidate algorithm onthe instance; then we select the algorithm which givesthe smallest expected running time. Figure 3 showsa pseudo-code of the proposed SPP method. I is theinstance to be solved. L is the list of candidate algo-rithms. t� is the time allocated for estimating � andts the time for estimating the size of each search tree.ub0 is the initial upper bound used both for the actualsearch and for the estimation process.Estimate-Time-Per-Node(I,BBi,t�,ub0) runs thealgorithmBBi for a time t� on the instance I using ub0as initial upper bound. It returns an estimate �̂ of theaverage running time per node forBBi. Estimate-Nb-Nodes(I,BBi,ts,ub0) samples during a time ts the treedeveloped by the algorithm BBi using ub0 as constantupper bound. It returns the mean value '̂n of the nrandom paths that have been generated. Estimate-Nb-Nodes is similar to Estimate-Nb-Nodes of �gure1 (however, while Sample in �gure 2 is given a �xed n,Estimate-Nb-Nodes is given instead a time limit).Although the SPP method is very simple, it workssurprisingly well in practice. Two reasons may explainthis success. First, the estimator is unbiased: it pro-duces on average good estimates despite a huge vari-



ance. Second, the method does not depend on absoluteperformance predictions: since it compares the constantupper bound version of each candidate algorithm, pes-simistic estimates due to a poor upper bound are pes-simistic for all algorithms.ExperimentsIn this section, we describe some experiments of theSPP method both on random and strongly structuredinstances2. We selected four well known algorithms ascandidates. Good descriptions of these algorithms canbe found in (Freuder & Wallace 1992), (Wallace 1994)and (Larrosa & Meseguer 1996). BB1 is a forward-checking (P-EFC3) with the widely used dynamic vari-able ordering: minimum current domain as �rst heuris-tic and decreasing degree to break ties. Its value order-ing is increasing IC (Freuder & Wallace 1992). BB2,BB3 and BB4 are forward-checking with Directed ArcConsistency Counts for lower bound computation (P-EFC3+DAC2 described in (Larrosa & Meseguer 1996)).They all use increasing IC + DAC as value ordering butthey di�er on their static variable ordering: BB2 usesdecreasing forward degree (FD in (Larrosa & Meseguer1996)) with max-cardinality (Tsang 1993, p 179) as sec-ond criteria, BB3 uses minimum width (Tsang 1993, p164) and BB4 uses decreasing degree. Our experienceon several problems shows that these algorithms appearto be among the best Branch and Bound algorithmsavailable today for strongly structured instances.Since we are mainly interested in solving realisticproblems, we chose for these experiments the �eld ofRadio Link Frequency Assignment Problems (RLFAP)(Cabon et al. 1998). We used sub-instances of CELARinstances 6 and 7 which are probably the two most dif-�cult instances of the set3. The next table summarizessome properties of these sub-instances:name # of # of # of optimalvariables values constraints costI1 16 44 207 159I2 14 44 300 2669I3 16 44 188 10310In the following experiments, we address three dif-ferent cases depending on the initial upper bound. The�rst case corresponds to the common situation in whichub0 is an upper bound of the optimal cost provided bya simple local search. In the second case, ub0 is theoptimal cost itself. Such a situation may occur whenthe optimal cost is easily found by a local search butthere is no proof of its optimality. In the last case, wetry to prove that ub0 is a lower bound of the optimalcost. This may be helpful to bound the optimal costwhen it is impracticable (de Givry & Verfaillie 1997).2All experiments have been done on a SUN Sparc5 with64 Mo of RAM using CMU Common Lisp.3The original instances and the sub-instances are avail-able at ftp://ftp.cs.unh.edu/pub/csp/archive/code/benchmarks/FullRLFAP.tgz.

We ran SPP 5000 times on each instance usingL=fBB1,BB2,BB3,BB4g, t� = 1 second and ts = 3seconds. In order to check predictions we then ran thecomplete algorithms using upper bounds given to SPP.The next table shows, for each instance and each al-gorithm, the running time in seconds of the completesearch using the given upper bound and nbc, the num-ber of times the algorithm was selected. For instance,algorithm BB3 solved instance I1 to optimality in 377seconds and was selected 4660 times among the 5000runs of SPP: I1 I2 I3ub0 159 2000 10413opt 159 2669 10310time nbc time nbc time nbcBB1 5800006 0 1200 4939 2116 441BB2 1961 170 18149 31 3200 229BB3 377 4660 40299 0 2162 881BB4 1015 170 18271 30 1010 3449These experimental results are very encouraging: forall instances, SPP is able to �nd the best algorithm inthe majority of runs. When it does not select the bestalgorithm, it generally selects a good one and rarelythe worst. As could be guessed, SPP is unable to dis-tinguish two algorithms which have close running times.More generally, the more the actual running times dif-fer, the easier it is for SPP to select the best algorithm.To give a more precise idea of the quality of theSPP method, we propose to compare it with two alter-native approaches in terms of expected running time.The �rst approach, Random, makes a random choicein the list of the candidate algorithms. When sev-eral algorithms seem to be suitable for the instance,one can pick one of them at random. The expectedrunning time one obtains using this approach is sim-ply the mean of the four running times. The sec-ond approach, Interleaved, runs all the candidatealgorithms in an interleaved way on the same proces-sor as proposed in (Huberman, Lukose, & Hogg 1997;Gomes & Selman 1997). The �rst algorithm which �n-ishes the search stops the others. For this approach, theexpected running time is four times the running timeof the best algorithm. We approximated the expectedrunning time one obtains using SPP with the simpleformula Pnbci � ti=Pnbci, where nbci is the numberof times SPP selects algorithm BBi and ti is the actualrunning time of the complete solving using BBi.Figure 4 compares the running times of each algo-rithm and the expected running time using Random,Interleaved and SPP on our three instances. ForSPP, we added the cost of the estimation process whichis 4 � (1+ 3) = 16 seconds to the expected running time(this appears in a darker grey).According to these experiments, SPP de�nitely out-performs Random and Interleaved approaches onthese instances. In each case, the expected running6This time is not the actual running time of BB1 on I1,but an estimation using t� = 3 minutes and ts = 1 hour.
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Figure 4: Expected running times using di�erent ap-proaches when solving instances I1, I2 and I3.time using SPP is very close to the running time of thebest algorithm: wrong selections have a small inuenceon the expected running time since they occur rarely.To validate our approach on more instances, we ex-perimented with the SPP method on a set of randominstances. The goal of the experiment was to solve se-quentially all instances of the set as quickly as possi-ble. For this experiment, we chose to tackle the casewhere there are only two promising candidates for solv-ing the whole set, neither algorithm clearly dominatingthe other. We restricted L to fBB1,BB2g and gen-erated 238 instances according to the model describedin (Smith 1994) modi�ed to allow valued constraints.These instances contain 20 variables and 10 values pervariable; the graph connectivity is 50% and the tight-ness of each constraint is 90%. Constraints are uni-formly valued in the set f1; 10; 100; 1000; 100000g. Withsuch parameters, both algorithms have nearly equalchances to be the best.For each instance, we �rst ran a simple Hill-Climbingto �nd an upper bound. Then we ran BB1 and BB2 oneach instance with the given upper bound and recorded
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Works mentioned below do not make use of Knuth'sestimator, but are related to this work in some way.An adaptive method, aiming at automatically switch-ing to good algorithms, has been proposed by (Bor-ret, Tsang, & Walsh 1996). Despite similar goals, theadaptive method and the sampling method are di�er-ent. The former one is based on a thrashing predic-tion computed during the regular execution of an algo-rithm. When such a thrashing is likely to occur, an-other algorithm is tried sequentially. Conversely, theSPP method, once its choice made, runs only one algo-rithm: the one which has the best chance of success.Heading in yet a di�erent direction, both (Gomes,Selman, & Crato 1997) and (Rish & Frost 1997) showthat, in the case of random unsatis�able CSPs, the log-normal distribution is a good approximation of the dis-tribution of computational e�ort required by backtrack-ing algorithms. We, too, observed a \heavy-tailed" dis-tribution for the random variable '̂, but were unableto identify it. Note that the distribution of '̂ on a par-ticular instance and the distribution of ' on a class ofinstances are two di�erent distributions.Algorithm portfolio design (Huberman, Lukose, &Hogg 1997; Gomes & Selman 1997) aims at combin-ing several algorithms by running them in parallel orby interleaving them on a single processor.(Minton 1996) addresses the problem of specializinggeneral constraint satisfaction algorithms and heuristicsfor a particular application.Conclusion and future workWe have proposed a simple method for selecting aBranch and Bound algorithm from among a set ofpromising ones. It is based on the estimation of therunning times of those algorithms on the particular in-stance to be solved. We provided experimental resultsshowing that the SPP method is a cheap and e�ectiveselection method. This e�cient performance has beenempirically demonstrated, in the �eld of constraint opti-mization problems, both on random and strongly struc-tured problem instances.Clearly, improvements on the proposed method mustbe sought in the estimation process itself. A betterknowledge of the structure of problems to be solvedwould probably make it possible to better estimate run-ning times. Improvements like importance sampling(Knuth 1975), partial backtracking (Purdom 1978) orheuristic sampling (Chen 1992) merit further investiga-tions into the �eld of constraint optimization problems.There is no doubt that this method can also be ap-plied to inconsistent CSP instances, because a proof ofinconsistency implies a complete search as well. Be-sides, it would be interesting to investigate the appli-cation of the proposed method to consistent CSP in-stances.Experimental results clearly show that each instanceis best solved with a particular algorithm. This con-�rms the interest of adapting general algorithms to suiteach instance.
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