
Learning Restart Strategies

Matteo Gagliolo
���

and Jürgen Schmidhuber
�����

�
matteo,juergen � @idsia.ch�

IDSIA, Galleria 2, 6928 Manno (Lugano), Switzerland�
University of Lugano, Faculty of Informatics,

Via Buffi 13, 6904 Lugano, Switzerland�
TU Munich, Boltzmannstr. 3,

85748 Garching, München, Germany

Abstract

Restart strategies are commonly used for minimiz-
ing the computational cost of randomized algo-
rithms, but require prior knowledge of the run-time
distribution in order to be effective. We propose a
portfolio of two strategies, one fixed, with a prov-
able bound on performance, the other based on
a model of run-time distribution, updated as the
two strategies are run on a sequence of problems.
Computational resources are allocated probabilis-
tically to the two strategies, based on their perfor-
mances, using a well-known � -armed bandit prob-
lem solver. We present bounds on the performance
of the resulting technique, and experiments with a
satisfiability problem solver, showing rapid conver-
gence to a near-optimal execution time.
Keywords: Randomized algorithms, restart strate-
gies, performance modeling, heavy-tailed distribu-
tions, algorithm portfolios, satisfiability, lifelong-
learning, adversarial multi-armed bandit problem.

1 Introduction
When trying to communicate across a lossy communication
channel with unbounded delays, how long should we wait
before resending an unanswered message? In multimodal
function optimization using gradient descent, how many steps
should we take before starting from a new random initial
point? In randomized search over a tree, how deep should
we go before abandoning all hopes of finding the goal, and
starting the search anew? In similar situations, it is desirable
to minimize the time to solve a given problem instance, with
a given algorithm, whose run-time is a random variable with
a possibly unknown distribution. A restart strategy can be
used, to generate a sequence of “cutoff” times, at which the
algorithm is restarted if unsuccessful.

It has been proved that knowledge of the run-time distribu-
tion (RTD) for a given algorithm/problem combination1 can

1In the following, for the sake of readability, we will often refer
to the RTD of a problem instance, meaning the RTD of different
runs of the randomized algorithm of interest on that instance; and
the RTD of a problem set, meaning the RTD of different runs of the
randomized algorithm of interest, each run on a different instance,

be used to determine an optimal uniform strategy, based on
a constant cutoff [Luby et al., 1993]. In the same paper, the
authors argue that such a strategy is of little practical inter-
est, as a model of performance is usually unavailable. They
then present a universal restart strategy, whose performance
is worse than the optimal strategy by a logarithmic factor.

These two strategies are based on opposite hypotheses
about the availability of the RTD. As a third alternative, a run-
time sample for a set of problem instances could be collected,
and used to learn a model of the underlying RTD. There are
two potential obstacles to this approach. First, gathering a
meaningful sample of run-time data can be computationally
expensive, especially in the very case where a restart strategy
would be most useful, i. e., when the run-time exhibits huge
variations [Gomes et al., 2000]. Second, a given problem
set might contain instances with significantly different RTDs:
the obtained model would capture the overall behavior of the
algorithm on the set, but the corresponding restart strategy
would be suboptimal for each instance. Problems met after
the initial training phase could also be captured poorly by the
estimated RTD, again leading to a suboptimal strategy.

Both obstacles are not difficult to circumvent. Training
cost can be reduced by using a small censored sample of
run-time values, obtained aborting runs that exceed some
cutoff time. This obviously has an impact on the model’s
precision, but, the requirements in this sense are less strict
than one would expect, and a coarse model already allows to
evaluate a near-optimal strategy [Gagliolo and Schmidhuber,
2006b]. The second problem is unavoidable in a worst case
setting; but in practical situations we do not expect the RTD
of each instance of a problem set to be uncorrelated, and a
sub-optimal uniform strategy based on the set RTD can still
have a great advantage over the large bound of the universal.

In this paper we show how Luby’s universal and uniform
restart can be effectively interleaved, to solve a set of problem
instances. The uniform strategy is based on a non-parametric
model of the RTD on the problem set, which is updated every
time a new problem instance is solved, in an online fashion.
The resulting exploration vs. exploitation tradeoff, is treated
as a bandit problem: a solver from [Auer et al., 1995] is used
to allocate runs among the two strategies, such that, as the
model converges, the uniform strategy is favored if the RTD

uniform randomly picked without replacement from the set.

of the set is close to the RTD of most instances, and worst-
case bounds on performance are preserved otherwise.

In the following, restart strategies (Sect. 2) are briefly in-
troduced, followed by a discussion of an “adversarial bandit”
approach to algorithm selection (Sect. 3), which will be used
in our strategy (Sect. 4). We give references to other related
work in Sect. 5. Sect. 6 presents experiments with a random-
ized satisfiability problem solver. Sect. 7 discusses potential
impact, and viable improvements, of the presented approach.

2 Optimal restart strategies
A restart strategy consists in executing a sequence of runs of
a randomized algorithm, in order to solve a same problem
instance, stopping each run � after a time

��� ��� if no solu-
tion is found, and restarting the algorithm with a different
random seed; it can be operationally defined by a function���	��
���

producing the sequence of thresholds
��� ��� em-

ployed. Luby et al. [1993] proved that the optimal restart
strategy is uniform, i. e. , one in which a constant

��� ����� �
is used to bound each run. They show that in this case the
expected value of the total run-time ��� can be evaluated as

��� � � ���
����� ���� ��� �! �

� ��� � (1)

where � � �!� is the cumulative distribution function (CDF)
of the run-time for an unbounded run of the algorithm, i. e.,
a function quantifying the probability that the problem is
solved before time � .

If such distribution is known, an optimal cutoff time
�#"

can
be evaluated minimizing (1). Otherwise, the authors suggest
a universal non-uniform restart strategy, with cutoff sequence$&%&'(%&'*)+',%	',%	'*)-'!./'(%	',0102013

,2 proving that its performance �*4 is
bounded with high probability with respect to the expected
run-time

�5� �6�87,� of the optimal uniform strategy, as

��4:9;� %,<=) �5� � � 7 � �?>A@CB+�5� � � 7 �EDGF&� (2)

3 Algorithm selection as a bandit problem
Consider now a sequence H� $JICKC'(020201'LINMO3

of problem in-
stances, and a set of algorithms PQ� $CRSKJ'�RUT�',010201'*RUV�3

, such
that each

INW
is solvable by at least one

R-X
. Without loss

of generality, we assume that the execution of each
R/X

can
be subdivided in sequential steps, and indicate with � X � ��� ,�Y� %	'L)+',01020

, the duration of the � -th step of the Z -th algorithm
on the current problem. Each

RSX
has its own mechanism for

determining � X � ��� : e. g., for an iterative algorithm, � X � ��� can
be the cost of the � -th loop . In this setting, one generally
wants to solve the incoming problem instances as fast as pos-
sible. This could mean identifying the single best algorithm
for the whole set, or for each instance (algorithm selection
[Rice, 1976]); or, in the more general setting of algorithm
portfolios [Huberman et al., 1997], the optimal schedule for
interleaving the execution of different algorithms, each per-
forming well on different subsets of H .

2The sequence is composed of powers of [: when [*\N]_^ is used
twice [\ is the next. More precisely, `#a�bCc![dcfegehe , ikjl`Cmon ap[\N]_^ if`qar[\os b ; i;jl`Cmtn a:ikjl` s [\N]/^Eu bNm if [\N]/^ov `;wx[\os b

In both cases, an obvious trade-off is faced, between ex-
ploration of the performance of the various

RSX
, and exploita-

tion of the solver(s) estimated to be fastest. A well-known,
and well aged, paradigm for addressing such a trade-off is the
multi-armed bandit problem. In its most basic form [Robbins,
1952], it is faced by a greedy gambler, playing a sequence of
trials against a � -armed slot machine, each trial consisting of
a choice of one of � available arms, whose rewards are ran-
domly generated from different stationary distributions. The
gambler can then receive the corresponding reward, and re-
gret what he would have gained, if only he had pulled any
of the other arms. The aim of the game is to minimize this
regret, defined as the difference between the expected cumu-
lative reward of the best arm, and the one cashed in by the
gambler. Generally speaking, a bandit problem solver (BPS)
can be described as a mapping from the entire history of ob-
served rewards y X for each arm Z to a probability distributionz � �g{ KJ'(020201' { V � , from which the choice for the successive
trial is picked.

In recent works, the original restricting assumptions have
been progressively relaxed. In the partial information case,
only the reward of the pulled arm is revealed to the gam-
bler. In the non-oblivious adversarial setting, the rewards
for a given trial can be an arbitrary function of the entire
history of the game, and are thus allowed to be deceptive,
but have to be set before the current choice is made. Based
on these pessimistic hypotheses, Auer et al. [1995] devised
a probabilistic gambling scheme (Exp3), whose regret on a
finite number of trials is bounded with high probability as| �?} TL~*� � ���1�&� �x�

K�~��
� , � being the number of arms,

}
the

number of trials (see Alg. 1). The algorithm features a fixed
lower bound � on the exploration probability, and a parame-
ter � controlling the amount of exploitation. Both can be set
based on

}
to obtain the optimal regret rate above.3

Algorithm 1 Exp3
�?} � by Auer et al.

set ��� �!� . ���2�	� �x��� } �
K�~*�

set �������2� $=%	' �!� ���2�	� ����� �) } �!�
K!~*� 3

initialize � X � �p� for Z�� %	'(020201' � ;
for each trial do

set
{ X#� � % DG�����6� , �

V Xf� K { X � %
pick arm Z with probability �{ X � � � % � �E� { X D:��� �
observe reward y X���� � ',%N�
update � X � �p� X D�� �L�� �

V
end for

The selection of a best algorithm for a set of problems can
be naturally described in a � -armed bandit setting,4 where

3The original formulation is based on a finite upper bound ¡ on
the cumulative reward of the best arm, which is at most ¢ as each
reward is in £ ¤	cfb�¥ . A variant (Exp3.1) of the algorithm is proposed
if ¢ is unknown. The authors also present a better bound on the
expected reward.

4The cases of selection on an per-instance basis, and of algorithm
portfolios, are more difficult to treat: bandit problem solvers usually
provide bounds on regret with respect to a single arm, but the best
algorithm might be different for each problem.

“pick arm Z ” means “execute the next step of algorithm
RSX

”
(Alg. 2).

Algorithm 2 Algorithm selection using H����
initialize H���� , z .
for each problem do

set � X � �p� , � X � �p� , Z�� %	'(020201' �
repeat

pick Z�� z
execute step � X D %

of
R+X

update timer � X � ��� X D %
, � X � ��� X Dr� X � � X �

if problem solved then
observe reward y X � � % �d� X

else
observe reward y X � �p�

end if
update z �pH���� � Z ' y X �

until problem solved
end for

Note that this simple scheme falls in the partial informa-
tion, non-oblivious adversarial setting, as we only observe re-
ward for successful algorithms, and this reward depends on
previous choices: for example, if

R X
takes � steps to solve a

problem, we will not see any reward for the first � � %
pulls.

Our adversary is not malevolent, but it can be deceptive, es-
pecially if the � X � ��� vary among algorithms:5 even so, any
bounds on performance of H���� will hold, and given our def-
inition of reward, the expected performance of (Alg. 2) will
converge to the one of the best solver for the set of problems.

4 Mixing restart strategies
Traditional statistical tests assess the goodness of a model
measuring the fit of the corresponding probability density
function (pdf) along the whole spectrum of observed sam-
ples. In our case, the sole purpose of the model �� of the
RTD is to set up a restart strategy, in order to gain on future
performance, so the only quantity of practical interest is the
loss in performance induced by the mismatch of our model.
In [Gagliolo and Schmidhuber, 2006b] we studied the impact
of increasingly censored sampling6 on the performance of an
estimated uniform restart strategy. This impact is quite low,
due to the fact that (1) depends only on the lower quantiles of
the distribution: a rough model of � , obtained from a heavily
censored sample from the lower portion of the time scale, suf-
fices to evaluate a near-optimal strategy, allowing to reduce its
training cost.

The practical implementation of such a technique requires
some censoring strategy to limit the cost of solving the train-

5Consider a situation in which � ^ solves a problem in one step of
time bL¤ , and gets reward ¤�ehb , while �
	 would have solved the same
problem with bL¤ steps of duration ¤�egb each, scoring reward b .

6Censored sampling is a commonly used technique in lifetime
distribution estimation (see, e. g., [Nelson, 1982]), which allows to
reduce the duration of a sequence of experiments, simply aborting
runs exceeding a time threshold. The information carried by these
runs can still be used for modeling, both in the parametric and non-
parametric settings.

ing instances. Assuming no a priori information about
�Y"

, an
ideal candidate is the universal strategy of Luby (Sect 2), as
it invests equal portions of run-time on a set of exponentially
spaced restart thresholds. Note that the restart thresholds of
unsuccessful runs can be exploited in the form of censored
samples. Such a simple scheme would allow to keep the per-
formance bound of the universal strategy during training, and
use the gathered data to estimate �� , and the corresponding
strategy �� , to be exploited for future problem instances. To
limit the cost of learning, and allow exploitation of the model
to start as soon as possible, we will instead adopt an online,
or life-long learning approach. We will use the “bandit” al-
gorithm selection scheme described in Sect. 3 at an upper
level, to control allocation of computational resources. In
this case, the arms are the two restart strategies, each gen-
erating a sequence of restart thresholds

� X � � X � , to bound a
same algorithm � ; “pull arm Z ” simply means “start � on the
current problem, with threshold

� X � � X � ”. If the problem is
not solved, � X � � X � � � X � � X � , and y X � � � ; if it is solved in
a time � � 9;� � X � � X � , � X � � X � � � � , and a positive reward is
observed.

Our strategy GAMBLER (Alg. 3) starts by solving the first
problem using the universal strategy alone. After a problem
instance is solved, the solution time of the successful run, and
all the collected censored samples from the unsuccessful runs,
can be used to update the estimate �� , and evaluate a new �� ,
to be used on next problem. To model � , we will use the
non-parametric product-limit estimator by Kaplan and Meier
[1958]. It guarantees large sample convergence to an arbi-
trary distribution, and can account for censored samples as
well. The non-parametric form is particularly appealing, as it
does not require any a-priori assumptions about the RTD, it is
fast to update, and the resulting CDF is a step-wise function,
which makes the evaluation of the integral in (1) inexpensive.

To use Exp3 as the H���� we only need to normalize the
rewards. We can do so by setting a lower and upper bound
on � � , �

W����� � �
� � W�� � . In order to limit the impact of

this choice on the convergence rate of Exp3, we adopt a log-
arithmic reward scheme: upon solution of a problem during a
restart with strategy Z , � X � � � �1�&� � W�� �

� �1�&� � X ��� � �2�	��� W�� �
�

�2�	��� W��� � , � X being the total time spent by strategy Z on that
problem, including unsuccesful runs. In this way

%
is the

maximum reward, that would be obtained by a strategy that
solved a problem in a time � W��� . Note that the use of a log-
arithm allows to set � W��� and � W�� � , respectively, to a very
small and a very large value, such that only the knowledge of
a very loose bound on � � is required.7

Let us now analyze how the bound (2) combines with the
optimal regret of Exp3. In the following,

�5��� � is the expected
value of a random variable

�
, � X represents solution time of

strategy Z on a single problem, � X the number of restarts
performed,

{ X�� � � ',%N� the probability of picking a restart
strategy, and indices

� "
, � , �� , will label quantities related to

7Also, the bound is not required to hold: if we always set ���kn a�����
� � � c��! #"%$'& , Exp3 will not be able to discriminate among two
algorithms that always have �!� v � #"�$ but will otherwise work; if
we always restart algorithms exceeding �!)(+* , Exp3 will still work
if ,.-Cj/�! 0(+*dm)1�¤Jm . In both cases we can keep 243.5 £ ¤�cfb*¥ .

Algorithm 3 GAMBLER
�?} � restart strategy for algorithm �

set � W��� , � W�� �initialize Exp3
� } � , { 4 � %

.
for each problem

%	'(020201' }
do

set � X � �p� , � X � �p� , Z�� %	'*)
repeat

pick Z�� z
run � with cutoff

� X � � X D % �
update timer � X � ��� X D % , � X � ��� X D�� �1� $ � �

' � X � � X � 3
if problem solved then

observe reward y X � � � �������	��
�� � ���� �� ����������
�� � �������	���else
observe reward y X � �p�

end if
update z � Exp3

� Z ' y X �
until problem solved

end for

the unknown optimal uniform, universal, and estimated opti-
mal uniform strategies, respectively, while

�
will identify our

novel strategy GAMBLER, interleaving the execution of the
latter two. On a given problem, for which the RTD of our al-
gorithm � is � � �!� , a restart strategy with thresholds

��� ��� can
be viewed as sequence of independent Bernoulli processes,
with success probabilities � �A��� ����� . The number of restarts
� required to solve the problem is then distributed with pdf{t� �#� ����� �

K
� � K � % � � �A��� ���!��� � �A��� �#�!� : for a uniform strat-

egy
��� ��� � �

,
{t� � �t� is geometric, with

�5� � � ��� % � � �A� � .
For any deterministic strategy, the expected time to solve a
problem is

� �	� �� � �!�5� ��� � � �� � K ��� ��� , a monotonic function
of
�5� �#� . For � this implies that the bound (2) can be trans-

lated into a bound on �Y4 , with the same high probability.
Given our simple reward scheme Exp3 will keep a constantz � �g{ 4 ' { �� � during solution of a single problem. Consider
now the worst-case setting in which �� is such that � � �� ���p� ,
i. e., the uniform restart �� will never solve the problem. If �
spends �#4 restarts, in the meantime another � �� restarts will
have been wasted on �� , with

�5� � �� � � �5� �#4 � � % ��{ 4���� { 4 .
As Exp3 always keeps

{ 4�� ���) , the expected perfor-
mance of GAMBLER on this problem will then be bounded
by
��� � 4 D � 4 ��Y�) � �8�*�C�E� with high probability, and upper

bounds on � 4 and � 4 will also guarantee an upper bound on�! .

5 Originality and related work
Restart strategies are particularly effective if the RTD of the
controlled algorithm exhibits “heavy” tails, , i. e., is Pareto
for both very large and very small values of time. Such
behavior is observed for backtracking search on structured
underconstrained problems in [Hogg and Williams, 1994;
Gomes et al., 2000], but also in other problem domains, such
as computer networks, as in [van Moorsel and Wolter, 2004].
An alternative solution is to run multiple copies of the same
algorithm in parallel (algorithm portfolios [Huberman et al.,
1997; Gomes and Selman, 2001]). In [Luby et al., 1993],
Luby presents parallel restart strategies, which represent the

natural combination with the portfolio approach: its solution
is not adaptive, as it simply consists in restarting each algo-
rithm with the universal strategy � . The literature on meta-
learning and algorithm selection [Giraud-Carrier et al., 2004;
Rice, 1976], algorithm portfolios [Huberman et al., 1997;
Gomes and Selman, 2001], anytime algorithms [Boddy and
Dean, 1994], provides many examples of the application of
performance modeling to resource allocation. Most works in
these field adopt a more traditional offline approach, in which
run-time samples are collected during an often impractically
long initial training phase, and the obtained model is used
without further tuning on subsequently met problems. As dis-
cussed in the introduction, this also implies stronger assump-
tions about the representativeness of the training set, and does
not guarantee upper bounds on execution time.

The Max � -armed bandit problem is a variation on the
original formulation, in which the estimated reward is only
updated for the arm obtaining the maximum reward value, on
a set of plays. Solvers for this game are used in [Cicirello and
Smith, 2005; Streeter and Smith, 2006] to maximize perfor-
mance quality, on a single problem instance.

Allocation of resources is usually set before each problem
instance solution, and possibly updated afterward. Dynamic
approaches, in which feedback information from the algo-
rithms is exploited to adapt resource allocation during prob-
lem solution, represent a notable recent trend. In [Lagoudakis
and Littman, 2000; Petrik, 2005], algorithm selection is
modeled as a reinforcement learning problem, a more gen-
eral setting than the bandit problem proposed in (Sect. 3).
Models of performance conditional on the dynamic state af-
ter a fixed execution time are used in [Kautz et al., 2002;
Wu, 2006] to implement dynamic context-sensitive restart
policies for SAT solvers: also in this case the main differ-
ence of our approach is the online learning setting. [Gagliolo
and Schmidhuber, 2006a] present a heuristic dynamic online
learning approach to resource allocation, in which a condi-
tional model of performance is trained and progressively ex-
ploited during training.

6 Experiments
The experiments were conducted using Satz-Rand [Gomes et
al., 2000], a version of Satz [Li and Anbulagan, 1997] in
which random noise influences the choice of the branching
variable. Satz is a modified version of the complete DPLL
procedure, in which the choice of the variable on which to
branch next follows an heuristic ordering based on first and
second level unit propagation. Satz-rand differs in that, after
the list is formed, the next variable to branch on is randomly
picked among the top " fraction of the list. We present results
with the heuristic starting from the most constrained vari-
ables, as suggested in [Li and Anbulagan, 1997], and noise
parameter set to � 0 . .

A benchmark from SATLIB was used, consisting of differ-
ent sets of “morphed” graph-coloring problems [Gent et al.,
1999]: each graph is composed of the set of common edges
among two random graphs, plus fractions

{
and

% ��{
of the re-

maining edges for each graph, chosen as to form regular ring
lattices. Each of the

<
problem sets contains

% �	� instances,

generated with a logarithmic grid of
<

different values for the
parameter

{
, from

) �
to
) ���

, to which we henceforth refer
with labels � ',010201'�� . Satz-Rand has an initialization cost which
depends only on the size of the problem, which in this case
is the same for all sets. This cost was found to be always
bigger than

% ��� . We then set � W �� � % ��� , � W�� � � % �
K!T

(about
% �&� minutes on our machine), and, to be fair with

the universal strategy, we multiplied and shifted its
� 4 � ��� as� W��� � % D � 4 � ����� . With

} � % �	� , parameters of Exp3 are
determined as �x� � 0 ��� , ��� � 01%C< .

Each experiment was repeated
) � times with different ran-

dom seeds, and a different random order of the instances. For
comparison purposes, we repeated the experiments running
the original algorithm, without restarts (labeled �) and the
universal strategy alone (�). To compare with the ideal per-
formance of

� "
, we evaluated, a posteriori for each run, the�

that minimized the cost of the problem set (
�	� � ��
C�!�), and

the cost of each instance (
��� ���� �,�!�), based on the actual run-

time outcomes. Note that these can be different for each run,
and their performances are lower bounds on the performances
of the optimal

� "
, evaluated from the unknown actual RTD

of, respectively, the problem set, and each problem instance.8

The difference of these two bounds is particularly interesting,
as it is an indirect measure of the heterogeneity of the RTD
of the instances in each set. To show the effect of a more
heterogeneous problem set, we also run experiments with all
the

< �&� instances grouped as a single set (labeled P in the
graph;

} � < �&� , � �� 01%�� , � � � 0 � <), again randomly
mixed. In figure 6 we present, for each set, the total compu-
tation time9 for our mixture (

�
), and the comparison terms.

Upper
< F % confidence bounds are given, estimated on the

) �
runs. Plots of the RTD and restart cost for each set can be
found in [Gagliolo and Schmidhuber, 2006b].

The results are quite impressive, and further confirm that
the estimated restart strategy �� is not very sensitive to the fit
of the model �� . In a typical run, between

. ��� and
� ��� of

the sample is censored, as there is only one uncensored run-
time for each task; the fit of the model is visibly bad, and it is
limited to the lower portion of the time scale, near or below�� , but �� itself quickly converges close enough to

�#"
, giving

a near-optimal strategy.
Problems in � are easy. Satz-rand solves all instances in

a similar time, any larger
�

is an optimal restart value, i.e.,
restarts are never executed, and the performance of a single
copy � is the same as the ones of the optimal restarts. Also
our GAMBLER quickly learns that, while � has to reach this
value for every problem, resulting in a five times worst perfor-
mance. In problems

%
to F we see the effect of a heavy-tailed

RTD. � solves each set with times between
%&0 ����% �

K �
(
%
)

8As �Yj/��� 7 mka ����� � � �#j/��� m�&����#j ����� � � ��� &,m;a �#j/�"!Sm in
both cases.

9As we are also conducting experiments with parallel portfolios
of heterogeneous algorithms, and thus we need a common measure
of time, we modified the original code of Satz-rand adding a counter,
that is incremented at every loop in the code. The resulting time
measure was consistent with the number of backtracks. All results
reported are in these loop cycles: on a [�e # GHz machine, bL¤%$ cycles
take about one minute.

0 1 2 3 4 5 6 7 8 A
0

0.5

1

1.5

2

2.5

3

3.5

4x 10
9

Problem set

T
im

e

L*(inst)

L*(set)
G
U
S

Figure 1: Experiments with Satz-Rand. Time to solve each set
of problems (bf¤�$'& b min.). (is our mixed strategy GAMBLER,
whose performance is initially as) , the universal restart strategy,
and quickly converges near *#-Cj,+.- � m , a lower bound on the perfor-
mance of the unknown optimal restart strategy for the whole set.
*)-Jj0/�12+ �6m is instead a lower bound on the performance of a distinct
optimal restart strategy for each instance. 3 is the heterogeneous
set obtained mixing all sets ¤	c*ehegegc54 . Upper 6%7 % confidence bounds
estimated on [,¤ runs.

and
./0 ����% �

K!T
(
�
). In practice, only a few “unlucky” runs

have very long completion times, but this is enough to pe-
nalize its performance dramatically. GAMBLER scores fairly
against the lower bounds, and � is between

�
and F times

worst. From problem
�

on, we see that the heavy tail effect
is less marked, but the two lower bounds diverge noticeably:
instances in these sets present more heterogeneous RTDs, and
the instance-optimal

� " �,�� �(�!� may vary of more than one or-
der of magnitude. Here � is only

)+0 F - � times worse than
GAMBLER. The worst performance of GAMBLER compared
to 8 "	� ��
C�!� can be seen on problem

�
, where � is about

%&0 F
times � � 7 � �:9 � � . Here most problems require a small threshold�

, and a few require one about ten times larger: in this sit-
uation also threshold

� "d� ��
,�!� varies visibly among different
runs, and �� sometimes overestimates the optimal threshold.
Results on the whole set of problems P are better than ex-
pected: � �d� � 7 � �:9 � � is about

%	02%C)
, but the performance com-

pared to � � 7 � �� � � � is obviously worst (
%	0 � F). This is natural,

as both GAMBLER and
� "�� ��
C�!� cannot discriminate different

restarts for each problem. � completes the set at
%	02%%;<�x% ��= ,

about
�-0 .

times worse than GAMBLER.

7 Conclusions and future work
We presented a novel restart strategy (GAMBLER), combin-
ing the universal and optimal strategies by [Luby et al., 1993],
based on a bandit approach to algorithm selection. GAM-
BLER takes the best of two worlds: it preserves the upper
bounds of the universal strategy in a worst-case setting, and
it proved to be effective in a realistic application, with only
a small overhead over an ideal lower bound. It can save a
few orders of magnitude in computation time for algorithms
with a heavy-tailed RTD, and, unlike the universal strategy,
it does not worsen the performance otherwise. It has a neg-
ligible overhead compared to the controlled algorithm, and

does not require the tuning of any parameter, nor any a-prior
assumption about the RTD, excluding very loose bounds on
execution time, which in the presented experiments differed
of
;

orders of magnitude. It does not require an initial training
phase.

The parameters of Exp3 are automatically set based on the
number of problems to be solved. If this number is not known
in advance, Exp3.1 can be used instead.

The obtained strategy can be applied to any randomized
algorithm, including, e. g., evolutionary algorithms, stochas-
tic local search, gradient descent from a random initial value.
Its main limitation is that it relies on the assumption that the
problems to be solved display a similar RTD, but we saw in
practice that this requirement is not strict, and the observed
performance was consistently better than the one of the uni-
versal strategy alone.

The strategy has a modular structure: it would allow in-
clusion of more strategies, with an

| � � �1�&� ��� impact on
performance, guaranteed by Exp3. Or more algorithms, each
with its own RTD model. We particularly expect improve-
ments from the use of conditional models, based on problem
features, as they should allow for a distinction among differ-
ent sub-classes of problems, sharing a similar RTD. A fur-
ther step could be taken including dynamic information from
the actual execution, as exemplified in [Kautz et al., 2002;
Gagliolo and Schmidhuber, 2006a].

Acknowledgments. The authors would like to thank
Faustino Gomez for precious comments on the draft of this
paper. This work was supported by SNF grant 200020-
107590/1.

References
[Auer et al., 1995] P. Auer, N. Cesa-Bianchi, Y. Freund, and

R. E. Schapire. Gambling in a rigged casino: the adver-
sarial multi-armed bandit problem. In Proc. 36th Annual
Symposium on Foundations of Computer Science, pages
322–331. IEEE, 1995.

[Boddy and Dean, 1994] Mark Boddy and Thomas L.
Dean. Deliberation scheduling for problem solving in
time-constrained environments. Artificial Intelligence,
67(2):245–285, 1994.

[Cicirello and Smith, 2005] Vincent A. Cicirello and
Stephen F. Smith. The max k-armed bandit: A new model
of exploration applied to search heuristic selection. In
AAAI, pages 1355–1361, 2005.

[Gagliolo and Schmidhuber, 2006a] Matteo Gagliolo and
Jürgen Schmidhuber. Dynamic algorithm portfolios. In
AI & MATH, 2006.

[Gagliolo and Schmidhuber, 2006b] Matteo Gagliolo and
Jürgen Schmidhuber. Impact of censored sampling on the
performance of restart strategies. In CP 2006 , pages 167–
181. Springer, 2006.

[Gent et al., 1999] Ian Gent, Holger H. Hoos, Patrick
Prosser, and Toby Walsh. Morphing: Combining structure
and randomness. In Proc. of AAAI-99, pages 654–660,
1999.

[Giraud-Carrier et al., 2004] Christophe Giraud-Carrier, Ri-
cardo Vilalta, and Pavel Brazdil. Introduction to the
special issue on meta-learning. Machine Learning,
54(3):187–193, 2004.

[Gomes and Selman, 2001] Carla P. Gomes and Bart Sel-
man. Algorithm portfolios. Artificial Intelligence, 126(1–
2):43–62, 2001.

[Gomes et al., 2000] Carla P. Gomes, Bart Selman, Nuno
Crato, and Henry Kautz. Heavy-tailed phenomena in sat-
isfiability and constraint satisfaction problems. J. Autom.
Reason., 24(1-2):67–100, 2000.

[Hogg and Williams, 1994] Tad Hogg and Colin P. Williams.
The hardest constraint problems: a double phase transi-
tion. Artif. Intell., 69(1-2):359–377, 1994.

[Huberman et al., 1997] B. A. Huberman, R. M. Lukose, and
T. Hogg. An economic approach to hard computational
problems. Science, 275:51–54, 1997.

[Kaplan and Meyer, 1958] E.L. Kaplan and P. Meyer. Non-
parametric estimation from incomplete samples. J. of the
ASA, 73:457–481, 1958.

[Kautz et al., 2002] H. Kautz, E. Horvitz, Y. Ruan,
C. Gomes, and B. Selman. Dynamic restart policies,
2002.

[Lagoudakis and Littman, 2000] Michail G. Lagoudakis and
Michael L. Littman. Algorithm selection using reinforce-
ment learning. In Proc. ICML, pages 511–518. Morgan
Kaufmann, 2000.

[Li and Anbulagan, 1997] Chu-Min Li and Anbulagan.
Heuristics based on unit propagation for satisfiability
problems. In IJCAI97, pages 366–371, 1997.

[Luby et al., 1993] Michael Luby, Alistair Sinclair, and
David Zuckerman. Optimal speedup of las vegas algo-
rithms. Inf. Process. Lett., 47(4):173–180, 1993.

[Nelson, 1982] Wayne Nelson. Applied Life Data Analysis.
John Wiley, New York, 1982.

[Petrik, 2005] Marek Petrik. Statistically optimal combina-
tion of algorithms, 2005. Presented at SOFSEM 2005.

[Rice, 1976] J. R. Rice. The algorithm selection problem. In
Advances in computers, volume 15, pages 65–118. Aca-
demic Press, New York, 1976.

[Robbins, 1952] H. Robbins. Some aspects of the sequential
design of experiments. Bulletin of the AMS, 58:527–535,
1952.

[Streeter and Smith, 2006] Matthew J. Streeter and
Stephen F. Smith. An asymptotically optimal algo-
rithm for the max k-armed bandit problem. In AAAI,
2006.

[van Moorsel and Wolter, 2004] Aad P. A. van Moorsel and
Katinka Wolter. Analysis and algorithms for restart. In
QEST ’04, pages 195–204, 2004. IEEE.

[Wu, 2006] H. Wu. Randomization and restart strategies.
Master’s thesis, University of Waterloo, School of Com-
puter Science, 2006.

