
Addressing the Selective Superiority Problem:Automatic Algorithm/Model Class SelectionCarla E. BrodleyDepartment of Computer ScienceUniversity of MassachusettsAmherst, MA 01003brodley@cs.umass.eduAbstractThe results of empirical comparisons of ex-isting learning algorithms illustrate that eachalgorithmhas a selective superiority; it is bestfor some but not all tasks. Given a data set,it is often not clear beforehand which algo-rithm will yield the best performance. Insuch cases one must search the space of avail-able algorithms to �nd the one that producesthe best classi�er. In this paper we presentan approach that applies knowledge aboutthe representational biases of a set of learn-ing algorithms to conduct this search auto-matically. In addition, the approach permitsthe available algorithms' model classes to bemixed in a recursive tree-structured hybrid.We describe an implementation of the ap-proach, MCS, that performs a heuristic best-�rst search for the best hybrid classi�er for aset of data. An empirical comparison of MCSto each of its primitive learning algorithms,and to the computationally intensive methodof cross-validation, illustrates that automaticselection of learning algorithms using knowl-edge can be used to solve the selective supe-riority problem.1 THE PROBLEM OF SELECTIVESUPERIORITYSeveral dozen inductive learning algorithms have beendeveloped over the last few decades, including versionsof perceptron, DNF cover, decision tree, instance-based, and neural-net algorithms. In every case, thealgorithm can boast one or more superior learning per-formances over the others, but none is always better.The results of empirical comparisons of existing learn-ing algorithms illustrate that each algorithm has a se-lective superiority: it is best for some but not all tasks(Weiss & Kapouleas (1989), Aha, Kibler & Albert(1991), Shavlik, Mooney & Towell (1991), Salzberg

(1991).) This is because each algorithm is biased, lead-ing to a good �t for some learning tasks, and a poor�t for others.An algorithm's success in �nding a good generalizationfor a given data set depends on two factors. The �rstis whether the algorithm's representation space con-tains a good generalization. In statistics, this space iscalled the algorithm's model class. For example, themodel class of a symbolic, univariate decision tree al-gorithm is the Disjunctive Normal Form. The modelclass of a perceptron learning algorithm is the class oflinear discriminant functions. Because an algorithm'smodel class de�nes the space of possible generaliza-tions, not even an exhaustive search strategy can over-come a poor choice of model class. The second factorof an algorithm's success is its search bias. Even algo-rithms that search the same model space have shownselective superiority. For example, if a set of instancesis not linearly separable then the Least Mean Squares(LMS) training rule provides a better solution thanthe Absolute Error Correction rule (ACR) for learn-ing the weights of a linear discriminant function (Duda& Hart, 1973). However, when the instances are lin-early separable the situation is reversed; LMS is notguaranteed to �nd a separating hyperplane, whereasACR is. In many cases, the choice of learning algo-rithm can be made on subject matter considerations.However, when such prior knowledge is not available,the choice can be made by comparing each algorithm'sperformance on the data.2 AUTOMATIC ALGORITHMSELECTIONSelecting the best algorithm for a data set in the ab-sence of prior knowledge is a search problem. Onewell-known approach from statistics is to use cross-validation (Linhart & Zucchini, 1986). Given a set ofdata, an n-fold cross-validation splits the data into nequal parts. Each candidate algorithm is run n times;for each run, n�1 parts of the data are used to form aclassi�er, which is then evaluated using the remaining



part. The results of the n runs are averaged and thealgorithm that produced classi�ers with the highestaverage classi�cation accuracy is selected. Recently,Scha�er (1993) applied this idea to selecting a classi�-cation algorithm. The results of an empirical compar-ison of a cross-validation method (CV) to each algo-rithm considered by CV, illustrated that on average,across the test-suite of domains, CV performed best.A cross-validation strategy performs an exhaustivesearch through the space of candidate methods. Asthe number of alternatives increases, the time requiredto search for the best algorithm may become imprac-tical due to the computational expense of performinga cross-validation. One of the oldest methods in Ar-ti�cial Intelligence for reducing search e�ort is to useknowledge about the problem domain. Here the prob-lem domain is selection of the best learning algorithmfor a given set of data. The search space is de�nedby the data set and the set of candidate algorithms.In this domain, knowledge stems from understandingthe biases of the candidate algorithms and how thiscan be applied to guide the search for the best algo-rithm/model class for a given set of data.A recent focus of research in machine learning is tounderstand the tasks for which a particular algorithmwill perform better than some speci�ed set of alter-natives (Feng, Sutherland, King, Muggleton & Henry,1993; Aha, 1992; Shavlik, Mooney & Towell, 1991;Rendell & Cho, 1990). Systems that allow the userto specify an inductive policy, require that the biasesof the available learning algorithm be known and berepresented explicitly (for manipulation during search)(Provost & Buchanan, 1992). The knowledge result-ing from such e�orts can be used to form a heuris-tic search procedure for automatic algorithm selection.To this end, we present a knowledge-based approachto algorithm/model class selection. Our approach dif-fers from cross-validation in two fundamental ways.Firstly, algorithm selection is guided by various kindsof hypothesis pathology that develop when using analgorithm that is a poor choice. We de�ne hypothesispathology to be the recognizable symptoms of whena hypothesis �ts the data poorly. When an algorithmand its underlying model class is inappropriate, oneneeds to �nd a di�erent one that is appropriate. Theability to do this depends both on recognizing whetherand why the algorithm is a poor choice, and on usingthis information to select a better one. We have en-coded this knowledge as a set of heuristic rules. Sec-ondly, our approach is applied recursively, providing amechanism for mixing the available model classes toform a hybrid classi�er.3 KNOWLEDGE-BASED SEARCHOur approach of using hypothesis pathology to guidethe search has the ability to assess why a particular

model class or search bias is inappropriate and fromthis assessment can make an informed choice as towhich to try next. If a hypothesis representation isjudged inappropriate, then we want to redirect thesearch to a part of the space that will produce a goodgeneralization. The type of pathology dictates wherein the space to redirect the search.A simple approach was illustrated in the work on per-ceptron trees (Utgo�, 1989). The algorithm �rst trieda simple perceptron as the test, but if it was doingpoorly, it was replaced by a single variable test. Thisapproach detected hypothesis pathology, and selecteda new representation, but the pathology was not usedto guide the selection, because there was only a singlealternate choice.FRINGE (1990) uses a di�erent approach. The con-cept representation is changed by adding compoundterms, based on those found at the fringe of the deci-sion tree, and rebuilding the tree. When a compoundterm would be useful, and is missing, the tree containsmany replicated subtrees. When such pathology ex-ists, the terms that would be useful in a compoundterm often appear near the fringe of the tree. Thus,the hypothesis pathology indicates a speci�c change inbias through the addition of compound terms.Our approach to searching the model space is dynamic;given a set of training instances, a best-�rst search forthe appropriate classi�er is performed. A set of heuris-tic rules is used to decide which model class to try next,which search bias to use, and to determine when thebest classi�er has been found. The best classi�er foundis then used to partition the instance space, and thesearch is applied recursively to each resulting partition.If during the best-�rst search, a subtree of the partiallyformed classi�er exhibits some type of pathology, theapproach can backtrack and replace the subtree witha di�erent classi�er.The heuristic rules are created from practical knowl-edge about how to detect when a generalization is agood �t, or whether a better one could be found bychanging the model class or search bias. For example,the model class of a univariate decision tree is a poorchoice when the features are related numerically. Inthis case, the features will be tested repeatedly in thedecision tree, giving evidence that a series of tests arebeing used to approximate a non-orthogonal partitionof the data that is not easily represented by a seriesof hyper-rectangles. The following rule not only de-tects this situation, but also directs the search to theappropriate model class.IF two or more features are tested repeatedlyin a path of the treeTHEN switch from univariate test to linear testAND �t a linear test of these features to theinstances at the top of the path



4 RECURSIVE COMBINATION OFMODEL CLASSESOur method builds a hybrid decision tree, with thetest at a node being created by selecting and applyinga primitive learning algorithm, each with a di�erentunderlying model class. The ability to combine thedi�erent model classes and apply di�erent learning al-gorithms allows for the possibility that the data set isnot best represented by a homogeneous classi�er. Forsome data sets, combining heterogeneous model classeswill produce the best classi�er. The ability to combinemodel classes in a single tree structure allows a spaceof classi�ers that is strictly richer than the union of itsconstituent primitive model classes. The case of pick-ing a single model class is not lost, but the approachalso permits hybrid classi�ers. In our approach, eachmodel class is permitted anywhere in the recursive treestructure. Both perceptron trees (Utgo�, 1989) andCRL (Yerramareddy, Tcheng, Lu & Assanis, 1992) re-strict where in the tree certain model classes are per-mitted. For example, in perceptron trees, internal testnodes must be univariate and symbolic, whereas leaf-node tests (tests right above the leaves) must be per-ceptrons.5 MCS: A MODEL CLASSSELECTION SYSTEMWe have implemented the approach in a system thatwe call the Model Class Selection (MCS) System.Given a set of data, MCS builds a hybrid classi�er us-ing a set of heuristic rules to guide a best-�rst searchfor the best model class for each node in the hy-brid classi�er. To avoid over�tting, the classi�er ispruned back to reduce the estimated classi�cation er-ror, as computed for an independent set of instances(Breiman, Friedman, Olshen & Stone, 1984). MCS'spruning procedure di�ers from the traditional pruningphase of decision tree algorithms. During MCS's tree-formation stage, if an alternative classi�er to the oneselected appears almost as good, it is stored for thepruning phase. When considering whether to pruneback a subtree in the hybrid classi�er, MCS computesthe classi�cation errors of both the subtree and the al-ternative classi�er. MCS compares the error rates tochoose among: keeping the subtree, replacing it withthe alternative classi�er or replacing it with a leaf nodecontaining the most frequently observed class for theinstances used to form the subtree. In the next two sec-tions we describe MCS's model classes and rule base.5.1 MODEL CLASSESMCS combines three primitive representations thathave been used extensively in both machine learn-ing and statistics algorithms: linear discriminant func-tions, decision trees and instance-based classi�ers. A

set of R linear discriminant functions de�nes a set ofR regions in the instance space, separated by hyper-planes, each labeled with a di�erent class name. A uni-variate decision tree splits the instance space with cutsorthogonal to each of the axes, forming a set of hyper-rectangular regions, each labeled with a class name.An instance-based classi�er de�nes a piece-wise linearpartition of the instance space; the number of pieces isdetermined by the number and distribution of the in-stances. The result is a set of regions, each labeled bya di�erent class name, separated by piece-wise linearboundaries.Each of the three model classes is a subclass of themodel class of piece-wise linear partitions. A univari-ate test in a decision tree is a special case of a lineardiscriminant function: a linear discriminant functioncan be based on all n of the input features, only onefeature or some subset of the n input features. A lin-ear discriminant function de�nes only one hyperplaneboundary in the instance space, whereas an instance-based classi�er forms a series of hyperplane bound-aries. In Figure 1a we show an instance space for whichclassi�ers from each of the three model classes wouldde�ne an identical partition of the instance space.For many data sets, classi�ers from each of the threemodel classes will de�ne di�erent partitions. Figures1b, 1c, and 1d illustrate the type of partition eachmodel class might de�ne for a simple instance spaceconsisting of �ve negative and three positive examplesof the concept to be learned. Which of these con-cept representations is best depends on where in theinstance space the true concept boundary lies.For each model class there are many di�erent algo-rithms for searching for the classi�er that best �ts thedata. The �tting algorithms for each model class thatMCS uses are:Univariate Decision Trees: To build a univari-ate decision tree, MCS uses the information gain-ratiometric (Quinlan, 1986).Linear Discriminant Functions: For two-classtasks the system uses a linear threshold unit, andfor multiclass tasks it uses a linear machine (Nilsson,1965). To �nd the weights of a linear discriminantfunction the system uses the Recursive Least Squaresprocedure (Young, 1984) for two-class tasks and theThermal Training rule (Frean, 1990; Brodley & Ut-go�, 1992) for multiclass tasks. To select the termsto use with a linear discriminant function, one of foursearch procedures is used: sequential backward elimi-nation (SBE) (Kittler, 1986), a variation of SBE thatuses the form of the function to determine which termsto eliminate (Brodley & Utgo�, 1992), sequential for-ward selection (SFS) (Kittler, 1986), and a methodthat examines a decision tree for replicated tests of asubset of the features, to suggest which terms to con-sider. The choice of which of these search biases to use
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    tree partition

b: Linear discriminant
    function partition

c: k-NN classifier
   partitionFigure 1: Partitions of the Instance Spaceis determined dynamically during learning, dependingon the hypotheses that have already been formed andwhat their pathologies suggested.Instance-Based Classi�ers: MCS uses two algo-rithms for �tting an instance-based classi�er to thedata. The �rst is the k-nearest neighbor algorithm(Duda & Hart, 1973), which stores each instance ofthe training data. To �nd k, the system uses the fol-lowing measure of accuracy: for each instance in thetraining data, classify that instance using the remain-ing instances. MCS searches for the value of k thatproduces the most correct classi�cations on the train-ing data. The second algorithm tries to eliminate in-stances that do not contribute to the classi�er's ac-curacy and is similar in spirit to IB3 (Aha, Kibler &Albert, 1991). To this end, when the accuracy of thek-NN is computed MCS keeps track, for each instance,of the number of times it was a k-nearest neighbor andwhether its class matched that of the instance beingclassi�ed. Instances for which the number of incor-rect matches was higher than the number of correctmatches are removed.5.2 RULE BASEThe heuristic rules use several types of pathology de-tection criteria to guide the search for the best clas-si�er. The following criteria are used in the rules todetect the success or failure of a hypothesis and pro-vide information about the reasons of failure:1. InformationGain-Ratio: This measure is usedto compare any two partitions of the instances; apartition can be de�ned by a univariate test, alinear discriminant function, a k-NN classi�er, oreven an entire subtree.2. Codelength: Our use of this measure is basedon the Minimum Description Length Principle,which states that the best \hypothesis" to in-duce from a data set is the one that minimizesthe length of the hypothesis plus the length ofthe exceptions (Rissanen, 1989). The codelengthof a classi�er (the hypothesis) is the number ofbits required to code the classi�er and the the

error vector resulting from using the classi�er toclassify the instances. This metric is used to de-termine by how much a symbolic or linear testcompresses the data. We de�ne the amount ofcompression to be the codelength of the errorswithout the test minus the codelength of the testplus the codelength of the errors resulting fromusing the test to classify the data. We use theexact error code for exceptions given in Rissanenand encode integers using Elias's asymptoticallyoptimal encoding (Rissanen, 1989).3. Concept Form: Analysis of a classi�er's formcan be used to guide the search for the best clas-si�er. For example, MCS examines a partiallyformed tree to determine whether a set of univari-ate tests is tested repeatedly in the tree. The ac-tion that is taken depends on the form of the repli-cation. Examination of a linear combination testyields information about the relative importanceof the di�erent features to classi�cation, which inturn yields information about which search biasand model class will be most appropriate.4. Information about the Data Set: We use onemeasure of training instances: the number of in-stances relative to the number of features.The process of selecting an algorithm to apply to adata set, often requires knowledge about how to deter-mine whether the best classi�er has been found, andif not, which algorithm to try next. Many learningpractitioners and statisticians make these decision byusing statistics (diagnostics) computed about the re-sulting classi�er and by examining the classi�er's form.In MCS this knowledge is encoded explicitly in therule base. In Table 1 we show a selection of rulesfrom MCS. Rule 1 begins the search and is based onDuda and Hart's (1973) observation that when thereare fewer than 2n instances (the capacity of a hyper-plane) a linear test will under�t the training instances;the fewer the instances, the higher the probability thatthe data will be �t by chance. Rule 2 examines theunivariate test to determine whether the initial deci-sion was correct. If the test is not 100% accurate,then MCS searches for a multivariate test using SFSif the average squared di�erence between the informa-



Table 1: A Selection of Rules from MCS's Rule Base1.) IF the number of instances is less than thecapacity of a hyperplaneTHEN �nd the best univariate testELSE form linear test LTn of all n features2.) IF the best univariate test is 100% accurateTHEN select it and recurse.ELSEIF the test does not compress the dataTHEN �t a k-NN (k=2)ELSIF the average di�erence in info-score ofeach feature to best feature is < �THEN start with best feature andsearch for a better test using SFSELSE select the univariate test and recurse3.) IF the instances are linearly separable(determined by accuracy of LTi)THEN continue trying to eliminate noisyand irrelevant featuresELSE examine the magnitudes of the weightsof the linear test:IF a few weights are larger than the othersTHEN �nd best univariate testELSIF many of the weights are close to zeroTHEN use greedy SBEELSE use SBE to �nd the best linear testbased on the fewest features4.) IF info-score(LTi) > info-score(LTi) OR i = 1THEN IF best linear test compresses dataTHEN select that test and recurseELSE �nd the best univariate testELSE continue trying to eliminate noisyand irrelevant variables5.) IF neither a univariate nor a linear testcompress the data (based on MDLP)THEN �nd the best value of k for an instancebased classi�er AND select from availabletests, the one with max info-score, recurse6.) IF the best univariate test's info-score is > thanthat of a linear test of n featuresTHEN search for a better test starting with theunivariate test and using SFSELSE examine form of the linear test to chooseSBE or greedy SBE (see Rule 3)

tion score of each of the other features and the bestfeature is less than a threshold (10% of the magnitudeof the best score). Using Rules 2 and 5, MCS checksto see that the best test found thus far compresses thetraining data, which occurs when the codelength of thetest plus the codelength of the error vector, resultingfrom using the test to classify the data, is less thanthe codelength of the error vector of the instances. Ifthe number of bits to code the test is not less thanthe number of bits to code the errors that the testcorrects, then MCS �ts a k-NN classi�er to the data.Rule 3 determines whether the initial selection of a lin-ear test was appropriate. If the instances are linearlyseparable then MCS tries to eliminate any noisy orirrelevant features from the test; otherwise MCS ex-amines the form of the test to decide where next todirect the search. Rule 4 evaluates the best linear testfound in the search; if the test compresses the datathen it is selected; otherwise a search for the best uni-variate test is conducted (if one has not been foundyet). Rule 6 starts a SFS for the best linear test if theinformation score of a univariate test is higher thanthat of a multivariate test based on all n features.Currently, MCS's rule base contains twenty-�ve rules,built using an iterative approach. Candidate ruleswere derived based on the author's knowledge of howto detect hypothesis pathology and whether a hypoth-esis is a good �t to the data. Each rule was thentested using a set of four development data sets (theBreast, Bupa, Cleveland and Segmentation data setsfrom the UCI data base). Based on statistics kept ofthe rule's usage, in comparison to the other rules' us-age, and on a detailed trace of the search through thegeneralization space, the rule was either kept, rejected,or altered and re-evaluated for inclusion into the rulebase. The rules were constructed such that only onerule will match; no conict resolution is required. Theauthor makes no claim that the current set of rules iscomplete or that better rules do not exist. However, asthe results of the next section illustrate, general rulescan be found that work well across many data sets.6 ILLUSTRATIONTo illustrate that knowledge about the biases of learn-ing algorithms can be used successfully by an auto-matic algorithm selection system, we compare MCSto each of the individual model classes: a k-NN, a lin-ear test based on all of the input features (LT) anda univariate decision tree (Utree). In addition, we in-clude a hybrid algorithm LMDT (Brodley & Utgo�,1992), which combines linear machine tests with de-cision trees. To determine how a knowledge-basedapproach compares to the traditional cross-validationscheme we report results for an algorithm that we callCV-10, which performs a ten-fold cross-validation onthe training data to select the best of k-NN, LT, Utreeor LMDT. CV-10 chooses the algorithm that achieves



Table 2: Accuracy for Test Data (Percent Correct)Method Hep. LED Road Votes Vowelk-NN 82.63 62.12 78.95 93.24 94.66LT 83.95 68.80 70.69 95.46 45.22LMDT 83.42 72.56 83.01 95.37 75.18Utree 78.95 73.36 83.19 95.09 68.02CV-10 81.58 72.40 83.19 94.63 94.66MCS 82.89 72.76 82.79 95.28 94.66the highest average accuracy and then runs that algo-rithm on the entire training set.None of the data sets used in this illustration wereused during development of the rule base. The datasets (all available in the UCI repository) are:Hepatitis: The task for this domain is to predictfrom test results whether a patient will die fromhepatitis. There are 155 instances described by19 numeric and Boolean attributes.LED:The data for the digit recognition problem con-sists of ten classes representing whether an LEDdisplay shows a 0-9. Each of seven Boolean at-tributes has a 10% probability of having its valueinverted. There are 500 instances.Road: The data come from four images of coun-try roads in Massachusetts. Each instance repre-sents a 3X3 grid of pixels described by three colorand four texture features. The classes are road,road-line, dirt, gravel, foliage, trunk, sky, tree andgrass. There are 8212 instances in this data setand 381 values are missing.Votes: In this domain the task is to classify each of435 members of Congress, in 1984, as Republicanor Democrat using their votes on 16 key issues.There are 392 values missing.Vowel: The task is to recognize the eleven steadystate vowels of British English. There are ten nu-meric features describing the 990 instances.To compare the performance of the six learning meth-ods we ran each ten times. For each run, the data weresplit randomly into a training and a test set, with 75%of the data in the training set and 25% in the test set.To determine the signi�cance of the di�erences amongthe learning methods we used paired t-tests. Becausethe same random splits of each data set were used foreach method, the variances of the errors for any twomethods are each due to e�ects that are point-by-pointidentical. For algorithms that require a separate data�le for pruning (Utree, LMDT and MCS) one third ofthe training data was reserved for pruning.Table 2 shows the sample average of each method'sclassi�cation accuracy on the independent test sets.

Table 3: Time Used to Select a Classi�er (Seconds)Method Hep. LED Road Votes VowelCV-10 390 598 29,593 838 1,263MCS 174 130 12,237 246 218Table 4: Model Classes in the MCS Classi�ersModel Class Hep. LED Road Votes Vowelk-NN 0.5 1.7 4.0 0.1 1.0Linear 0.6 3.5 9.3 1.0 0.0Univariate 1.7 2.2 23.4 0.9 0.0Looking �rst at the individual algorithms, we observetypical selective superiority results. Each of k-NN, LTand UTree was best for at least one of the data sets(LMDTwas close to the best for several data sets), andeach was statistically signi�cantly worse (at the 0.05level) than the best method for other data sets. MCS'sand CV-10's performances on the other hand, do notshow a selective superiority for these data sets - theyare robust across the set of tasks. Both CV-10 andMCS outperform each of the other methods on aver-age. MCS yields slightly higher accuracies than CV-10for four data sets, but these di�erences are not signif-icant. For the Hepatitis, LED and Votes data sets,one of the individual methods achieved slightly higheraccuracy, but in each case the di�erence between thebest individual method and MCS is not signi�cant.However both CV-10 and MCS are always statisticallysigni�cantly more accurate than the worst methods foreach data set.MCS required far less time than CV-10 and achievedthe same level of accuracy on all test problems. InTable 3 we report the number of CPU seconds usedby CV-10 and MCS on a DEC Station 5000/200. Thisresult illustrates that applying knowledge reduces thesearch required to �nd the best classi�er without com-promising the quality of the solution.The main point to take away from this comparisonis not that MCS \beats" the individual algorithms interms of accuracy. MCS achieves signi�cantly betteraccuracies than the worst methods and is competitivewith the best method for each data set. Therefore,we conclude from this comparison that MCS's perfor-mance demonstrates that knowledge can be success-fully applied to solve the selective superiority problemand at a much lower cost than cross-validation.One issue that requires further investigation is why thehybrid classi�ers are not signi�cantly more accuratethan the individual model classes. In Table 4 we showthe average number of test nodes from each model classin the classi�ers found by MCS. For four out of the�ve data sets, MCS selected hybrid classi�ers. This



Table 5: Classi�cation Overlap (Percentage)Pair Hep. LED Road Votes VowelMCS-k-NN 86 66 83 94 100MCS-LT 91 80 72 99 43MCS-Utree 84 85 85 99 66LT-Utree 84 75 70 99 26LT-k-NN 86 58 66 94 43Utree-k-NN 78 64 79 94 66raises the question of why the hybrid classi�ers did notachieve higher accuracy than each of the homogeneousclassi�ers for these four data sets.There are several possible answers. Firstly, for thesedata sets it may be impossible to achieve higher accu-racy than that obtained by the best individual methoddue to noise in the instances. A second possibility isthat MCS needs better rules to show the advantages ofa hybrid classi�er. Finally, MCS's model classes maybe too similar to show a di�erence. MCS creates hy-brid classi�ers that are piece-wise linear. Each of theprimitive model classes is also piece-wise linear, albeitwith di�erent restrictions on how they can partitionthe instance space and with di�erent search biases.To cast insight into which of the possible explanationsseems most likely, we examine the di�erences amongthe decision boundaries each classi�er forms. To thisend, we compute a heuristic measure of the similaritybetween two classi�ers' boundaries: we compute thepercentage overlap in the classi�cation decisions thateach makes. Although this does not tell us the exactdi�erence in the decision boundaries, it gives a roughmeasure of how di�erent these boundaries are for clas-si�cation of the types of instances observed.After each algorithm was run on a random partitionof a data set, we computed the overlap between theclassi�cation decisions made by each pair of learningalgorithms; we counted the number of instances thatwere classi�ed the same way by each of two classi-�ers constructed using di�erent algorithms. In Table5 we report the average for each data set, over the tenruns, of the classi�cation overlap percentage betweeneach pair of classi�ers. The higher the percentage, thecloser the decision boundaries are for classi�cation ofinstances likely to be observed in the domain. For ex-ample, the largest pair-wise overlap for the Hepatitisdata set is between MCS and LT. This indicates thatMCS de�nes decision boundaries that are more similarto LT's boundaries than Utree's or k-NN's. Combiningthe results reported in Tables 2 and 5, we observe thatMCS's classi�cation overlap is highest with the bestindividual method and therefore its decision bound-aries are in highest agreement with those of the bestindividual method. In addition, MCS's overlap withthe best method was higher than any pair-wise overlap

between the primitive algorithms for four of the datasets. The one exception is the Votes data set; both LTand Utree have an almost perfect overlap with MCSand therefore show a similarly high pair-wise overlap.Given that, on average, the hybrid classi�ers classifytest instances most similarly to the best of the primi-tive algorithms for each data set, we �nd that the twomost likely explanations for why the hybrid classi�ersdid not outperform the best of LT, Utree and k-NNon each data set are: it is impossible to achieve higheraccuracies on these data sets than the best of the ho-mogeneous classi�ers or MCS's model classes are toosimilar to improve classi�cation performance over thebest homogeneous classi�er for a given data set.7 FUTURE WORKIn our experiments the hybrid classi�ers produced byMCS did not achieve higher accuracy than the besthomogeneous classi�er for each of the �ve data sets.Therefore, we were not able to demonstrate that us-ing di�erent model classes for di�erent subspaces of alearning task (to form a hybrid classi�er) leads to thebest classi�er. Our classi�cation overlap analysis sug-gests two possible explanations that need further inves-tigation. Firstly, greater bene�ts of hybrid classi�ersmay be realized through the inclusion of model classesthat do not form piece-wise linear partitions; with theinclusion of classes such as splines or quadratic dis-criminant functions, the bene�ts of heterogeneous clas-si�ers may be more clearly illustrated. A second issueto investigate is whether data sets exist that are bestrepresented by a hybrid classi�er. Certainly, we cancreate arti�cial data sets for which this is true, butfrom the results of the illustration it is unclear whetherbetter accuracies can be achieved for the �ve data sets,than the accuracy of the best of the set of classi�ersconstructed using the primitive algorithms.As more knowledge about the biases of machine learn-ing, symbolic and statistical classi�cation algorithmsbecomes available, the e�ciency of the search and thequality of the solutions will improve. One direction inwhich to extend the recursive knowledge-based is toincorporate the results of e�orts such as the StatLogproject to reduce the amount of search required. Oneof the results of the StatLog project is a study thatrelates statistical measures of a data set to the perfor-mance of di�erent algorithms (Feng, et al. 1993). Mea-sures such as homogeneity of covariances and skewnesswere used to explain di�erences in the performances ofa set of machine learning, statistical and neural net al-gorithms on a test-suite of classi�cation tasks. Theknowledge resulting from this type of study could beused to begin the best-�rst search. By starting thesearch from a promising part of the space, it stands toreason that the time required to �nd the best classi�erwould be greatly reduced.
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