
Computational Intelligence, Volume 21, Number 4, 2005

APPLYING MACHINE LEARNING TO LOW-KNOWLEDGE CONTROL
OF OPTIMIZATION ALGORITHMS

TOM CARCHRAE

Cork Constraint Computation Center, Department of Computer Science, University College Cork, Ireland

J. CHRISTOPHER BECK

Toronto Intelligent Decision Engineering Lab, Department of Mechanical & Industrial Engineering,
University of Toronto, Canada

This paper addresses the question of allocating computational resources among a set of algorithms to achieve
the best performance on scheduling problems. Our primary motivation in addressing this problem is to reduce the
expertise needed to apply optimization technology. Therefore, we investigate algorithm control techniques that make
decisions based only on observations of the improvement in solution quality achieved by each algorithm. We call
our approach “low knowledge” since it does not rely on complex prediction models, either of the problem domain
or of algorithm behavior. We show that a low-knowledge approach results in a system that achieves significantly
better performance than all of the pure algorithms without requiring additional human expertise. Furthermore the
low-knowledge approach achieves performance equivalent to a perfect high-knowledge classification approach.

Key words: algorithm selection, algorithm control, machine learning, classifiers, scheduling.

1. INTRODUCTION

Despite both commercial and academic success of optimization technology, using it still
requires significant expertise. For nontrivial applications the quality of a system still has
much to do with the experience and capability of the person that implemented it (Le Pape
et al. 2002). In this paper, we investigate algorithm control techniques aimed at achieving
strong scheduling performance using off-the-shelf algorithms without requiring significant
human expertise. This is done through the application of machine learning techniques to
low-knowledge algorithm control. Rather than building knowledge-intensive models relating
algorithm performance to problem features, we base the control decisions on the changes in
solution quality over time.

Given a time limit T to find the best solution possible to a problem instance, we investigate
two control paradigms, shown in Figure 1. The first, predictive, paradigm runs a set of
algorithms during a prediction phase and chooses one to run for the remainder of T . Based
on these short runs during the prediction phase, we decide which algorithm to continue
running with the remaining time. We start by comparing some simple rules, such as choosing
the algorithm with the minimum cost found during the prediction phase. We then look at
a Bayesian classifier, which attempts to correlate the algorithm performance trends from
the prediction phase with the best performing algorithm for that problem instance. Once
it is trained, the Bayesian classifier is used to predict the algorithm that is expected to be
the best performer on new problem instances based only on performance in the prediction
phase.

In the second, switching, paradigm control decisions allocate computational resources to
each algorithm over a series of iterations such that the total runtime is T . In an iteration, we
run each algorithm, one after another, passing the best-known solution from one algorithm
to the next. Thus, rather than make a single decision about which algorithm to select for the
remaining runtime, we revisit our choice over and over. We apply a reinforcement learning
approach to allocate more runtime to algorithms that perform well.

We use a low-knowledge design in all of the algorithms explored here. We explain this
idea in more detail below, however it is important to stress why we make the distinction

C© 2005 Blackwell Publishing, 350 Main Street, Malden, MA 02148, USA, and 9600 Garsington Road, Oxford OX4 2DQ, UK.

APPLYING MACHINE LEARNING 373

Problem Instance

Algorithm 1
run for t seconds

Algorithm 2
run for t seconds

Algorithm 3
run for t seconds

Choose Algorithm

Selected Algorithm
run for Ts seconds

done

Problem Instance

Allocate CPU
Times and Order

Algorithms

Algorithm i
run for ti seconds

Algorithm j
run for tj seconds

Algorithm k
run for tk seconds

Analyze
Performance

Time Limit
Exceeded?

no

done

yesPrediction Switching

FIGURE 1. The two control methods presented in this paper. prediction makes a single decision based on
performance observations over short runtimes of a set of algorithms, while switching allocates computational
resources to each algorithm over a series of iterations.

between high- and low-knowledge approaches. As far as we are aware, all previous work on
algorithm control has required building predictive models based on a detailed feature analysis
of either problem structure or algorithm performance, or both. Such techniques require that
the implementer has significant knowledge about the algorithm and problem features to pose
the algorithm control problem. Even techniques that perform automated feature selection
(Boyan and Moore 2000; Leyton-Brown, Nudelman, and Shoham 2002) require an original
set of problem features from which to select. While existing methods have demonstrated
strong performance on the algorithm selection problem, they do not tackle the issue of the
external knowledge required to apply them to a new problem. This issue must be addressed
to make optimization technology easier to use.

The contributions of this paper are the introduction of a low-knowledge approach to
algorithm control and the demonstration that such an approach can achieve performance
significantly better than the best pure algorithm and as good as a perfect high-knowledge
approach.

2. THE ALGORITHM SELECTION PROBLEM

The algorithm selection problem is to choose the algorithm (or algorithm parameters) that
leads to a high level of performance on a given problem instance (Rice 1976). From its original
definition, this problem has been addressed by what we term “high-knowledge” approaches:
detailed models of both problem features and algorithm performance are developed and
correlated in a nontrivial model-building phase. The underlying justification, of course, is
that algorithms that perform well on a problem instance with a particular cluster of features
are likely to perform well on others instances with similar feature clusters.

Unfortunately, prediction models are typically limited to the problem classes and algo-
rithms for which they were developed. For example, Leyton-Brown et al. (2002) developed
strong selection techniques for the winner determination problem for combinatorial auctions.
They take into account 35 problem features and their interactions based on three problem
representations. Boyan and Moore (2000) developed STAGE, which attempts to correlate
problem features with search performance to build a new objective function that improves

374 COMPUTATIONAL INTELLIGENCE

search. Lagoudakis and Littman (2000) use a Markov decision process with reinforcement
learning applied to algorithm control. While this work takes a low-knowledge view of algo-
rithm behavior it still a high-knowledge approach as it requires the determination of useful
problem features and a suitable learning model. Other work applying machine learning tech-
niques to algorithm generation (Minton 1996) and algorithm parameterization (Horvitz et al.
2001; Kautz et al. 2002; Ruan, Horvitz, and Kautz 2002) is also knowledge intensive, de-
veloping models specialized for particular problems and/or search algorithms and algorithm
components.

2.1. Low-Knowledge Algorithm Selection

Our motivation for addressing the algorithm selection problem and its more general form
of algorithm control is to lessen the knowledge (i.e., the expertise) necessary to use optimiza-
tion technology. While existing algorithm control techniques have shown impressive results,
their knowledge-intensive nature means that domain and algorithm expertise is necessary to
develop the models. The requirement for expertise has not, therefore, been reduced; it has
been shifted from algorithm building to predictive model building.

It could still be argued that the expertise is reduced if the predictive model can be
applied to different types of problems. Unfortunately, the performance of a predictive model
tends to be inversely related to its generality. While models accounting for over 99% of the
variance in search cost exist, they are not only algorithm and problem specific, but problem
instance specific as well (Watson 2003). The model-building approach is general, but the
requirement for expertise remains: in-depth knowledge of the domain and different problem
representations is necessary to identify a set of features that may be predictive of algorithm
performance.

The distinction between low- and high-knowledge (or knowledge-intensive) approaches
focuses on the number, specificity, and computational complexity of the measurements that
need to be made of a problem instance. A low-knowledge approach has very few, inexpensive
metrics, applicable to a wide range of algorithms and problem types. A high-knowledge
approach has more metrics, which are more expensive to compute, and more specific to
particular problems and algorithms. This distinction is independent of the approach taken
to build a predictive model. In particular, sophisticated model-building techniques (e.g.,
based on machine learning) are consistent with low-knowledge approaches provided the
observations on which they are built do not require significant expertise to identify. The
extreme low-knowledge approach pursued in this paper, requires no knowledge of problem
features.

Given our motivation, our approach is to investigate algorithm control techniques to
reduce the engineering effort required to apply existing optimization techniques to a new
problem. In our experience, the most significant component of such an engineering effort
is the development of problem specific knowledge. An inexperienced engineer must first
develop an understanding of the “difficult” parts of a given problem and devise ways to
address them. It is typically through experimentation and trial and error that the challenging
problem characteristics are revealed. In contrast, an expert engineer already has a foundation
of knowledge and the difficult characteristics of a problem are sometimes readily apparent
or can be understood with minimal experimentation.

Automated, high-knowledge approaches to algorithm control seek to reproduce the
knowledge of an expert engineer but, as argued above, still require external knowledge to
identify likely problem features. Our approach seeks to achieve good algorithm performance
without such knowledge. Our goal is reduced engineering effort; our means is low-knowledge
algorithm control.

APPLYING MACHINE LEARNING 375

2.2. Pure Algorithm Assumptions

We make some basic assumptions about the pure algorithms for which our techniques
are appropriate. First, after a brief start-up time (at most, a few seconds) an algorithm is
always able to return the best, complete solution it has found so far. Secondly, we require
that an algorithm is able to take an external solution and search for solutions that are better. If
an algorithm has not found a better solution, when asked for its best solution, the algorithm
returns the external solution.

We believe these assumptions are very general: the anytime nature and being able to
improve a solution. In fact, the algorithms we use in our experiments are quite diverse: two
use only the upper bound of the best-known solution, the other modifies a copy of the solution
by making moves.

3. PROBLEM DOMAIN: SCHEDULING

To introduce the idea of algorithm selection, we describe the problem domain, job shop
scheduling, the scenario where these problems occur, and three algorithms that are used to
solve them.

3.1. Scenario

A problem instance is presented to a scheduling system and that system has a fixed CPU
time of T s to return a solution. We assume that the system designer has been given a learning
set of problem instances at implementation time and that these instances are representative of
the problems that will be later presented. We also assume that there exists a set of algorithms,
A, that are applicable to the given problem.

3.2. Problem Instances

The job shop scheduling problem involves scheduling n jobs across m machines. Each job
j consists of m ordered operations, such that each operation is scheduled one after another.
For each job, every operation requires a unique machine for a specified duration, and the
sequence of these requirements differs among jobs. We look at the objective of minimizing
makespan: the total time required from the start of the earliest scheduled operation to the
finish of the latest scheduled operation.

Three sets of 20 × 20 job shop scheduling problems are used. A total of 100 problem
instances in each set were generated and 60 problems per set were arbitrarily identified as
the learning set. The rest were placed in the test set.

The difference among the three problem sets is the way in which the activity durations
are generated.

In the random (Rand) set, durations are drawn randomly with uniform probability from
the interval [1, 99].

The machine-correlated (MC) set has activity durations drawn randomly from a normal
distribution. The mean and standard deviation are the same for the activities on the same
machine but different on different machines. The durations are, therefore, MC.

In the job-correlated (JC) set the durations are also drawn randomly from a normal
distribution. The means and standard deviations are the same for activities in the same job
but independent across jobs. Analogously to the MC set, these problems are JC.

These problem structures have been studied for flow-shop scheduling (Watson et al.
2002). They were chosen based on the intuition that the different structures may differen-
tially favor one pure algorithm and therefore the algorithms would exhibit different relative
performance on the different sets.

376 COMPUTATIONAL INTELLIGENCE

3.3. Algorithms

Three pure algorithms are taken from the scheduling literature and implemented in C++
using ILOG Scheduler 5.3, a constraint programming library. These algorithms were chosen
from a set of eight algorithms because they have generally comparable behavior on the learn-
ing set. The other techniques performed much worse (sometimes by an order of magnitude)
on every problem. The three algorithms are as follows:

1. tabu-tsab: a sophisticated tabu search due to Nowicki and Smutnicki (1996). The neigh-
borhood is based on swapping pairs of adjacent activities on a subset of a randomly
selected critical path. An important aspect of tabu-tsab is the use of an evolving set of
the five best solutions found. Search returns to one of these solutions and moves in a
different direction after a fixed number (1000 in our experiments) of iterations without
improvement.

2. texture: a constructive search technique using texture-based heuristics (Beck and Fox
2000), strong constraint propagation (Nuijten 1994; Laborie 2003), and bounded chrono-
logical backtracking. The texture-based heuristic identifies a resource and time point
with maximum competition among the activities and chooses a pair of unordered activ-
ities, branching on the two possible orders. The heuristic is randomized by specifying
that the resource and time point is chosen with uniform probability from the top 10%
most critical resources and time points. The bound on backtracks follows the pattern of
BT = {1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 4, 8, 1, 1, 2, 4, 8, 16, . . .}. Formally, BTi = �2k−2�
where k = n − (m(m + 1)/2) + 1, m = �(

√
8n + 1 − 1)/2� and n = i + 2. This was

inspired by the optimal, zero-knowledge pattern of Luby, Sinclair, and Zuckerman
(1993), but is more aggressive in how it increases the bound (Wu and van Beek
2003).

3. settimes: a constructive search technique using the SetTimes heuristic (Scheduler 2001),
the same propagation as texture, and slice-based search (Beck and Perron 2000), a
type of discrepancy-based search. The heuristic chronologically builds a schedule by
examining all activities with minimal start time, breaking ties with minimal end time,
and then breaking further ties arbitrarily. The discrepancy bound follows the pattern:
2, 4, 6, 8,

We assume that these pure algorithms are able to find a sequence of increasingly good
solutions. As we are minimizing a cost function, an initial solution (with a very high cost)
is always easily available. Each algorithm successively finds better solutions as it progresses
either through local search or branch-and-bound, terminating when it has either proved op-
timality or exceeded a time limit. At any given time, each algorithm can return the best
complete solution that it has found so far.

4. EXPERIMENTS WITH PURE ALGORITHMS

Our primary evaluation criterion is mean relative error (MRE), a measure of the mean
extent to which an algorithm finds solutions worse than the best-known solutions. MRE is
defined as follows:

MRE(a, K , R) = 1

|R|
1

|K |
∑

r∈R,k∈K

c(a, k, r) − c∗(k)

c∗(k)
, (1)

APPLYING MACHINE LEARNING 377

TABLE 1. Mean Fraction of Problems in Each Learning Problem Set for Which the Best Solution Was
Found by Each Algorithm (MFB) and Its Mean Relative Error (MRE)

MC Rand JC All

MFB MRE MFB MRE MFB MRE MFB MRE

tabu-tsab 0.39833 0.00740∗ 0.19333 0.01425 0.2 0.01308 0.26389 0.01158
texture 0.03833 0.02027 0.06 0.01608 0.87333 0.00197∗ 0.32389 0.01277
settimes 0.03333 0.04243† 0 0.04210† 0.38333 0.01152 0.13889 0.03202†
‘∗’ indicates significantly better (i.e., lower) MRE than all other pure techniques, while ‘†’ indicates significantly
worse performance than all other pure techniques.

where R is a set of independent runs with different random seeds, K is a set of problem
instances, c(a, k, r) is the lowest cost solution found by algorithm a on problem instance
k during run r, and c∗(k) is the lowest cost solution known for problem instance k. For
the learning set, c∗(k) is the best performance of the pure algorithms. For the test set, c∗(k)
is the best performance of the pure algorithms and the switching techniques, which outperform
the pure algorithms in some cases. Due to the stochastic nature of the algorithms, we run
each algorithm 10 times on every problem instance.

In Table 1, we also show the mean fraction of problems in each set for which the algorithm
found the best-known solution, known as mean fraction best (MFB).1 MFB is defined as

MFB(a, K , R) = 1

|R|
∑

r∈R

|best(a, K , r)|
|K | , (2)

where best(a, K, r) is the set of solutions for k ∈ K during run r where c∗(k) = c(a, k, r).
The pure algorithms were run for T = 1200 CPU seconds on the learning set of problem

instances. Table 1 displays the mean fraction of problems in each subset and overall for
which each algorithm found the best solution (MFB) and the MRE. Across all problems, the
difference in MRE performance between texture and tabu-tsab is not statistically significant.2

However, there are significant differences among the problems sets: while tabu-tsab dominates
in the MC problem set, the results are more uniform for the Rand problem set and texture is
superior in the JC set.

These results demonstrate the need to solve an algorithm selection problem as no one pure
algorithm dominates. In practice, a common approach is to simply choose the pure algorithm
that is best on average on the learning set (e.g., the algorithm with the lowest MRE) and run that
algorithm for all subsequent problem instances. Clearly, with no dominant algorithm, such an
off-line algorithm selection approach will not result in the best performance possible on each
problem instance. It is unclear, however, that an on-line approach (either high knowledge or
low knowledge) will be better as some on-line computational time must be spent in selecting
the algorithm.

1MFB reports the MFB of 10 runs on the same instance. In some cases the best solution will not be found in all runs. This
results in lower MFB scores than if we had experimented with a single run of each algorithm.

2All statistical results in this paper are measured using a randomized paired-t test (Cohen 1995) and a significance level
of p ≤ 0.005.

378 COMPUTATIONAL INTELLIGENCE

5. PREDICTION

On-line algorithm selection chooses an algorithm to run only after the problem instance
has been presented to the system. In this case, the time to make the selection must be taken
into account. To quantify this, let tp represent the prediction time and tr the subsequent time
allocated to run the chosen pure technique. It is required that the total runtime T = tp + tr . In
the prediction techniques investigated here, during the prediction phase each pure algorithm,
a ∈ A, is run for a fixed number of CPU seconds, t, on the problem instance. We require that
tp = |A| × t . The quality of solutions found for each run is used to select the algorithm that
will achieve the best performance given the time remaining. We assume that when a pure
algorithm has been selected it does not have to restart: it can continue the search from where
it left off in the prediction phase. The total runtime for the selected algorithm is Ts = tr + t.

5.1. Simple Prediction Rules

In Beck and Freuder (2004), three variations of simple prediction rules were investigated
on the same problem sets used in this paper. The rules considered the cost of solutions found,
pcost, the slope of improvements, pslope, and an extrapolation of improvements, pextrap.
The minimum, median and mean of these attributes was examined during the prediction
phase. The result of the experiments was that only by choosing the minimum of pcost was
a performance achieved that was significantly better than the best pure algorithm. For this
reason, the only simple rule we consider here is pcost min.

5.2. Bayesian Classifiers

A Bayesian classifier is constructed for each pure algorithm given a predefined prediction
time, tp, for the purpose of predicting the final performance of that algorithm at time Ts . In
each classifier, for every 10 s of prediction time, a feature variable is created with possible
values of “best” or “behind” for each pure algorithm. The value is assigned depending on
whether the algorithm has found the best solution out of all the algorithms, a ∈ A, at that
time point. More than one algorithm may have found the best solution at a particular time.
Each classifier has a class variable representing the final performance of the algorithm (i.e.,
at time Ts). It also has the value “best” or “behind.” For the learning phase, feature and class
values are input. For the test phase, only feature values are given and the classifier predicts
the final performance of each algorithm.

For example, let T = 1200, tp = 90, and |A| = 3, as shown in Figure 2. In this example,
we input nine feature variables: three for each algorithm at 10, 20, and 30 s and the classifiers
predict the final performance for each algorithm at Ts = 1140 s. The classifiers are used on
the learning set to train a hybrid algorithm that runs each pure algorithm for 30 s, uses the
classifiers to predict which of the algorithms will be best at 1140 s, and then runs the selected
algorithm for the remaining 1110 s, continuing the search from where it left off.

We repeat this procedure, learning a new set of Bayesian classifiers for values of
tp ∈ {30, 60, 90, . . . , 1200}. This results in an assessment of hybrid algorithm performance
for each prediction time. The prediction time with the best performance is t∗. The Bayesian
classifiers for tp = t∗ are then used on the test set.

In all cases, ties among the pure algorithms are broken by selecting the algorithm with the
best mean solution quality on the learning set at time T . The Bayesian classifiers are learned
using WinMine 2.0 (Chickering 2002) with default parameters. We refer to this techniques
as Bayes.

APPLYING MACHINE LEARNING 379

Features

Algorithm 10 sec 20 sec 30 sec

1 behind best behind
2 best behind best
3 best behind behind

Algorithm 1140 sec
1 behind

Class

Features

Algorithm 10 sec 20 sec 30 sec

1 behind best behind
2 best behind best
3 best behind behind

Algorithm 1140 sec
3 behind

Class

Features

Algorithm 10 sec 20 sec 30 sec

1 behind best behind
2 best behind best
3 best behind behind

Algorithm 1140 sec
2 best

Class

FIGURE 2. Three Bayesian classifiers are used together to predict the best algorithm at time Ts = 1140. In
this example the prediction time is tp = 90 s which means each algorithm is run for 30 s during the prediction
phase. The performance trends of these 30 s runs are input as features to all of the classifiers, each of which
predict the final performance of a specific algorithm.

5.3. Perfect Knowledge Classifiers

We can perform an a posteriori analysis of our data to compare our low-knowledge
approach with the best performance that can be achieved with a high-knowledge classifier
which seeks to select a pure algorithm for a given problem instance. The best-subset classifier
chooses the pure algorithm that is best, on average, for the problem set to which the test
instance belongs. This is the best result we can achieve with a high-knowledge classifier that
infallibly and with zero CPU time can categorize instances into the three problem sets. The
best-instance classifier makes a stronger assumption: that, with zero CPU time, the high-
knowledge classifier can always choose the best pure algorithm for a given instance. No
technique based on choosing a pure algorithm for a given instance can perform better.

5.4. Experiments: Prediction Control

For these experiments, once again the overall time limit, T , is 1200 CPU seconds. Each
pure algorithm is run for T s with results being logged whenever a better solution is found.
This design lets us process the results to examine the effect of different settings for the
prediction time, tp, and different values for T ≤ 1200. As noted, the number of algorithms,
|A|, is 3.

Recall that the learning set is used to build a set of Bayesian classifiers for each possible
prediction time and identify the one with the smallest MRE. The best tp for the Bayesian
classifiers was found to be 270 s, meaning that each pure algorithm is run for 90 s and then
the Bayesian classifiers are used to select the pure algorithm to be run for the subsequent
930 s.

Again we use the measure of MRE to compare algorithm performance, this time on a
test set of new problem instances. Recall that MRE is calculated by comparing how well an
algorithm did on a problem instance k against the best-known solution, c∗(k). The best-known
solution is not necessarily the optimal solution, but rather the best solution found during our
experiments. While no prediction technique can perform better than the best pure technique,
some of the switching techniques, which we will present in Section 6.1, do perform better
than the best pure technique on the test problem set. This has the effect of increasing the
MRE of the pure algorithms on the test set, as we are now finding better solutions with our

380 COMPUTATIONAL INTELLIGENCE

TABLE 2. The Performance of Each Technique on the Test Set

MC Rand JC All

MFB MRE MFB MRE MFB MRE MFB MRE

tabu-tsab 0.0075 0.01985 0.005 0.02115 0.175 0.01574 0.0625 0.01891
texture 0.0175 0.02919 0.0225 0.02056 0.7225 0.00894 0.2542 0.01956
settimes 0 0.04602 0 0.05185 0.325 0.01684 0.10833 0.03823
Bayes 0.0175 0.01918 0.015 0.01863 0.625 0.00737 0.21917 0.01506
pcost min 0.015 0.02038 0.0075 0.02110 0.6675 0.00729 0.23 0.01626
best-subset 0.0075 0.01985 0.0225 0.02056 0.7225 0.00894 0.25 0.01645
best-instance 0.025 0.01482‡ 0.0275 0.01498‡ 0.7225 0.00491‡ 0.25833 0.01157‡
rl-double 0.0525 0.0141‡ 0.0575 0.0142 0.7575 0.0042∗ 0.28917 0.0108‡
rl-static 0.015 0.0243† 0.0075 0.0265 0.76 0.0049 0.26083 0.0185

‘∗’ indicates significantly lower mean relative error (MRE) than all pure techniques, ‘‡’ indicates significantly
lower MRE than all other control algorithms, and ‘†’ indicates significantly worse performance than the best pure
technique. MFB (mean fraction best) is the mean fraction of problems in each set for which the algorithm found
the best-known solution.

hybrid approaches. Similarly, the mean fraction of best solutions found decreases for the pure
algorithms.

Table 2 presents the results of the experiment and the statistical significance of the
prediction and perfect classifier techniques compared with the pure algorithms and with all
prediction algorithms on the test set.3 Only the best-instance perfect classifier finds an MRE
significantly different (lower) than all other prediction techniques. In other words, there are
no significant differences among the two on-line prediction variations, and the best-subset
classifier. This demonstrates that even a simple rule can be applied in a low-knowledge
context to achieve competitive performance.

When we compare the results of the pure algorithms in Table 2 against Table 1, we see
a similar ranking of MRE performance, despite the MRE values increasing due to the better
values of c∗(k) for the reason mentioned above. However, when we look at the mean fraction
of best solutions (MFB) found for an instance, the performance varies significantly. This is
due to the switching approaches finding better solutions to problem instances, indicating that
the hybrid approach is often superior for these problem instances.

To address the issue of different time limits, we performed a series of experiments using
the same design as above with T ∈ {120, 240, . . . , 1200}. For each time limit, the learning
set was used to create a set of Bayesian classifiers and to identify the optimal prediction time,
t∗ for both Bayes and pcost min. Table 3 presents the results. The “Best Pure” column is the
MRE of the best pure technique on the test set for each time limit. For T ∈ {120, . . . , 960},
texture achieves the lowest MRE of all pure techniques. For T ≥ 1080, tabu-tsab is best. The
MRE of both Bayes and pcost min are not significantly better than the best pure algorithm
for any time limit and they are both worse than the best pure algorithm except for T = 120.
Though not shown in Table 3, best-subset is significantly better than all prediction techniques
(but not the switching techniques) at all time limits.

We conclude that the results for T = 1200 are applicable to other choices for an overall
time limit. The prediction approaches are no worse than the best pure technique except for

3The results for the switching algorithms presented Section 6.1 are also shown in the table. These will be discussed below.

APPLYING MACHINE LEARNING 381

TABLE 3. The Mean Relative Error (MRE) of Each Algorithm for Different Time Limits

Algorithm
Time
Limit Best Pure Bayes pcost min rl-double rl-static nl-double nl-static no-com

120 0.0387 0.0406† 0.0409† 0.0356 0.0340 0.0364 0.0347 0.0560†
240 0.0311 0.0298 0.0315 0.0270 0.0246∗ 0.0278 0.0270 0.0440†
360 0.0277 0.0258 0.0266 0.0216∗ 0.0211∗ 0.0232 0.0238 0.0387†
480 0.0256 0.0232 0.0238 0.0191∗ 0.0197∗ 0.0203∗ 0.0225 0.0353†
600 0.0241 0.0208 0.0216 0.0168‡ 0.0190 0.0188∗ 0.0220 0.0330†
720 0.0225 0.0196 0.0203 0.0147‡ 0.0187 0.0174∗ 0.0218 0.0311†
840 0.0215 0.0181 0.0193 0.0134‡ 0.0186 0.0158∗ 0.0217 0.0298†
960 0.0207 0.0169 0.0181 0.0125‡ 0.0186 0.0146∗ 0.0217† 0.0288†
1080 0.0198 0.0158 0.0171 0.0116‡ 0.0186 0.0139∗ 0.0217† 0.0277†
1200 0.0189 0.0151 0.0163 0.0108‡ 0.0185 0.0132∗ 0.0217† 0.0268†
‘∗’ indicates an MRE significantly lower than all pure techniques at the same time limit, ‘‡’ signifies an MRE
significantly lower than all other tested algorithms at the same time limit, while ‘†’ indicates significantly worse
than the best pure technique.

very low time limits. The pcost min technique does not perform significantly worse than
Bayes, demonstrating that even a simple rule can be applied in a low-knowledge context to
achieve competitive performance.

5.5. Summary: Prediction Control

Our results demonstrate that a prediction-based low-knowledge algorithm selection tech-
nique can perform as well as choosing the best pure algorithm (on average) based on a learn-
ing set and as well as a reasonable, though idealized, high-knowledge algorithm selection
technique that is able to infallibly classify problem instances into different underlying sets.
Performance is not as good as the optimal high-knowledge approach that is able to infallibly
choose the pure algorithm that will lead to the best solution for each problem instance.

Even as simple a rule as choosing the algorithm that returned the best solution in the pre-
diction phase achieves this level of performance. A more sophisticated prediction technique,
based on learning Bayesian classifiers performs no better than the simple rule. While these
experiments do not allow us to make general conclusions about the use of machine learning
techniques (or even Bayesian classifiers) within a predictive control paradigm, it does suggest
that our simple learning model provides insufficient information for the learning mechanism.
Given that our goal is to minimize the expertise necessary in choosing, building more compli-
cated learning models to use machine learning techniques as part of the predictive paradigm
does not appear to be a promising direction.

6. CONTINUOUS CONTROL

Our second approach to algorithm selection generalizes the single decision of the pre-
dictive paradigm to a control structure where the selection decision can be made multiple
times and, more generally, the decision is not one of selection but of allocation of compu-
tational resources to the pure algorithms. There are a number of ways that this paradigm

382 COMPUTATIONAL INTELLIGENCE

could be instantiated. In this paper, we investigate running a series of iterations where the
control problem consists of deciding what portion of the iteration time is given to each pure
algorithm.

6.1. Algorithm Switching

The switching paradigm allocates runtime to the pure algorithms during search. In con-
trast to predictive selection, the allocation decision is made multiple times. N iterations are
performed such that each iteration, i, has a time limit of ti CPU seconds and

∑
1≤i≤N ti = T .

During each iteration, the runtime of each pure algorithm, a ∈ A, is determined using a
weight, wi (a), which is learned as the search progresses. The weights for an iteration are
normalized to sum to 1, and therefore, wi (a) corresponds to the fraction of time ti allocated
to algorithm a. For example, if algorithm a has weight wi (a) = 0.2 and ti = 60 s, then a is
run for 12 s during iteration i. All weights are initialized to 1/|A|.

Weights are updated after each iteration by considering the current weight and the per-
formance of each algorithm during the last iteration. Performance is measured in cost im-
provement per second, which allows us to compare algorithms despite the differing run
times. We normalize the cost improvement per second to sum to 1 producing a performance
value, pi (a). The weights are then adjusted using a standard reinforcement learning formula:
wi+1(a) = (1 − α) × wi (a) + α × pi (a). The α value controls the influence of the previous
weight and the performance value. We show a diagram of the switching approach in Figure 3.

6.1.1. Sharing Solutions. Unlike the predictive paradigm, switching shares informa-
tion among algorithms. Each invocation of an algorithm begins with the best solution found
so far. However, different pure algorithms are able to exploit this information differently. The
constructive algorithms, texture and settimes, only make use of the bound on the solution
quality, searching for a solution that is strictly better than the best solution found so far. Each
iteration of tabu-tsab, however, must begin with an initial solution. The best solution found
so far is used. Recall that at any given time, each algorithm can return the best complete
solution that it has found so far. If, in a given time interval, no better solution has been found,
the solution found in the previous time interval is returned.

iteration i

Algorithm 1
run for ti x wi(1)

seconds

Algorithm 3
run for ti x wi(3)

seconds

Algorithm 2
run for ti x wi(2)

seconds

(best solution)

(best solution)

pi(1)

Adjust weights
and algorithm

order
pi(3)

pi(2)

(best solution)

(best solution)

iteration i+1

Algorithm 2
run for ti+1 x wi+1(2)

seconds

Algorithm 1
run for ti+1 x wi+1(1)

seconds

Algorithm 3
run for ti+1 x wi+1(3)

seconds

(best solution)

(best solution)

(best solution)

pi+1(2)

pi+1(1)

pi+1(3)

Adjust weights
and algorithm

order

FIGURE 3. Algorithm switching passes the best solution found from one algorithm to the next. Each algorithm
is run for a proportion of the iteration time ti based on the algorithm’s weight value wi (a). At the end of an iteration,
the performance, pi (a) of each algorithm a is used to adjust the weight values used in the next iteration. Here we
show two iterations.

APPLYING MACHINE LEARNING 383

6.1.2. Iteration Times. Two switching variations are used here. In rl-static, the length
of each iteration does not vary: ti = 60, for all i. For rl-double the time for the first two
iterations is fixed, t1, t2 = 60, and subsequently ti+1 = 2ti . The motivation for increasing
iteration times comes from the observation that the algorithms take more time to find better
solutions as we minimize the cost.

6.1.3. Algorithm Order. We switch between algorithms |A| − 1 times during an itera-
tion, running each algorithm exactly once. For each iteration, the order in which the algorithms
are run is randomly generated with uniform probability. Learning a good order of algorithms
is an interesting area for future work.

6.1.4. Learning Rate. Similarly, no weight updating is done until after the second
iteration, as it is very easy to find large improvements in solution quality in the first iteration.
In both rl-static and rl-double, α = 0.5. Experimenting with different values of α and ti is an
interesting direction we intend to pursue in our future work.

6.1.5. Learning Set. One distinct advantage of the switching approach is that it does
not rely on a learning set. All learning is done on-line, that is only after the problem instance
has been presented. This means the system does not require any off-line configuration and
so the switching technique is not dependent on the learning set being representative of the
real problems that will be encountered.

However, a learning set may be useful for tuning the switching parameters such as the
learning rate α, the duration of iteration times, and the ordering of algorithms. Perhaps the
most useful benefit from a learning set is the ability to filter out algorithms that are not
competitive at all with a particular problem class.4

6.2. Experiments: Algorithm Switching

Table 2 displays the results on the three problem sets averaged over 10 independent runs,
with T = 1200. We use the same method to compute MRE as described in Section 3.3.
The two reinforcement learning algorithms achieve strong performance. The better one, rl-
double, performs significantly better than all other algorithms based on MRE and is able
to find the best-known solution for over half the instances. One advantage of the switching
paradigm is that it can use different pure algorithms in different parts of the search, and
therefore, can achieve better performance on a problem instance than the best pure tech-
nique. In contrast, predictive selection techniques cannot perform better than the best pure
technique. In fact, rl-double finds a better solution than any pure technique in 45 of the test
problems. The rl-static technique performs significantly worse than rl-double. The doubling
of the time in the iterations appears to be an important part of the performance of rl-double.
Nonetheless, rl-static is able to achieve performance that is not significantly worse than the
best pure technique. Furthermore, it finds a better solution than any pure technique in 16 of
the problems.

As with the prediction techniques, we also varied the overall time limit. Table 3 presents
the results. The rl-static approach achieves significantly lower MRE than all pure techniques
for three time limits: T ∈ {240, 360, 480}. Finally, rl-double achieves MRE significantly
lower than all pure techniques for T ≥ 360 and comparable performance for T ≤ 240. For

4As mentioned in Section 3.3, we performed this filtering by hand but this could easily be automated.

384 COMPUTATIONAL INTELLIGENCE

TABLE 4. The Mean Relative Error (MRE) for Different Overall
Time Limits

Algorithm
Time
Limit rl-double best-subset best-instance

120 0.0356 0.0366 0.0313‡
240 0.0270 0.0291 0.0242‡
360 0.0216∗ 0.0259 0.0205
480 0.0191∗ 0.0234 0.0184
600 0.0168∗ 0.0219 0.0170
720 0.0147∗ 0.0203 0.0156
840 0.0134∗ 0.0190 0.0144
960 0.0125∗ 0.0180 0.0133
1080 0.0116∗ 0.0171 0.0122
1200 0.0108∗ 0.0164 0.0115

‘∗’ indicates a significantly lower MRE when comparing rl-double against
best-subset while ‘‡’ signifies the same thing comparing best-instance against
rl-double.

T ≥ 600, rl-double achieves significantly better performance than all other algorithms in
Table 3.

To assess reinforcement learning, we run rl-static and rl-double with α = 0, which
disables reinforcement learning by ignoring the current performance result and keeps the
weights constant. Each pure algorithm receives an equal portion of the iteration time, regard-
less of previous performance. We call these “no-learning” variations, nl-static and nl-double.
Results, also in Table 3, demonstrate that reinforcement learning has a strong impact. Al-
though the significant difference is not marked in the table, rl-static is significantly better than
nl-static for all T , and rl-double is significantly better than nl-double at all time limits except
T = 120. Interestingly, nl-double not only achieves significantly better performance than the
pure techniques on seven of the 10 time limits but also achieves a significantly lower MRE
than all algorithms except rl-double for T = 840 and T = 960.

Finally, to investigate the impact of communication among the algorithms, the no-com
technique is nl-double without sharing of the best-known solution among the algorithms;
each algorithm is allowed to continue from where it left off in the previous iteration.5 no-com
performs worse than any other technique at all time limits; communication between algo-
rithms is clearly an important factor for performance.

Turning to the comparison of the switching algorithms to the perfect knowledge clas-
sifiers, in Table 4 we present a very promising result. The rl-double technique achieves a
lower MRE than best-subset for T ≥ 360. Furthermore, rl-double performs as well as best-
instance for all time limits T ≥ 360. In other words, without complex model building our
best low-knowledge approach achieves performance that is as good as the best possible
high-knowledge predictive classification approach.

6.3. Algorithm Switching Summary

The experiments in this section show that the algorithm switching approach to algo-
rithm control can achieve strong performance. Not only is the strongest variation (rl-double)

5Another way to see this is that no-com runs each pure technique for T
|A| s and returns the best solution found.

APPLYING MACHINE LEARNING 385

significantly better than the best pure technique, it achieves performance that is equiva-
lent to the optimal high-knowledge predictive approach. There are three main components of
rl-double: communication of the best solution among the pure algorithms, the doubling of the
iteration time, and the reinforcement learning. Comparisons with variations that selectively
remove each of these components shows that they all contribute to the overall performance.

The fact that we have created a technique that achieves significantly better performance
than the best pure technique, and performance equivalent to an optimal high-knowledge clas-
sifier, is not the main conclusion to be drawn from these experiments. Rather, the importance
of these results stems from the fact that the technique does not depend on expertise, either
in terms of development of new pure scheduling algorithms, or in terms of development of
a detailed domain and algorithm model. A low-knowledge approach is able to achieve better
performance while reducing the required expertise.

7. FUTURE WORK

We have examined a number of algorithm control approaches on a single problem type.
While there is no reason to expect job-shop scheduling problems (JSPs) to be so unlike
other optimization problems that similar results would not be observed, it is necessary to
evaluate low-knowledge approaches on other optimization problems. In addition, it may be
more relevant to apply algorithm control to problems with particular characteristics. A real
system is typically faced with a series of related problems: a scheduling problem gradually
changes as new orders arrive and existing orders are completed. As the problem changes,
algorithm control techniques may have the flexibility to appropriately change the manner in
which underlying pure algorithms are applied.

We have examined a very simple version of reinforcement learning and the best control
technique, rl-double, made no use of the off-line learning set. Two obvious uses for the off-
line problems are as a basis for setting the α value and as a basis for iteration-specific weights.
If it is true that different pure algorithms are more appropriate for different phases of the
search, we could use the learning set to weight each algorithm in each iteration. The issue of
the ordering of the pure algorithms within an iteration is also an interesting area for future
work. It is clear from the result of nl-double that the simple act of switching among a set of
algorithms brings problem solving power. Understanding the reasons behind this may help
to further leverage such simple techniques.

Finally, we intend to investigate the scaling of these techniques as the number of pure
algorithms increases. It seems likely that the prediction-based techniques would suffer: pre-
diction time will need to be longer and/or the time given to each pure technique will be
reduced. These implications will both lead to poorer performance as less time is left for the
chosen algorithm and the algorithm selection will be less accurate. In contrast, switching
with reinforcement learning, especially if off-line learning is used to set iteration-specific
weights, may be able to isolate the subset of pure algorithms that are most useful.

8. CONCLUSION

We have shown that low-knowledge metrics of pure algorithm behavior can be used
to form a system that consistently and significantly outperforms the best pure algorithm.
Machine learning techniques play an important role in this performance, however, even a
simple-minded approach that evenly distributes increasing runtime among the pure algo-
rithms performs very well.

386 COMPUTATIONAL INTELLIGENCE

Our motivation for investigating low-knowledge algorithm control was to reduce the
expertise necessary to exploit optimization technology. Therefore, the strong performance of
our techniques should be evaluated not simply from the perspective of an increment in solution
quality, but from the perspective that this increment has been achieved without additional
expertise. We neither invented a new pure algorithm nor developed a detailed model of
algorithm performance and problem instance features. Therefore, we believe low-knowledge
approaches are an important area of study in their own right.

ACKNOWLEDGMENT

This work has received support from Science Foundation Ireland (grant 00/PI.1/C075),
Irish Research Council for Science, Engineering, and Technology (grant SC/2003/82), and
ILOG, SA.

REFERENCES

BECK, J. C., and M. S. FOX. 2000. Dynamic problem structure analysis as a basis for constraint-directed scheduling
heuristics. Artificial Intelligence, 117(1):31–81.

BECK, J. C., and L. PERRON. 2000. Discrepancy-bounded depth first search. In Proceedings of the Second In-
ternational Workshop on Integration of AI and OR Technologies for Combinatorial Optimization Problems
(CPAIOR’00), Paderborn, Germany.

BECK, J., and E. FREUDER. 2004. Simple rules for low-knowledge algorithm selection. In Proceedings of the
First International Conference on Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimisation Problems (CPAIOR’04), pp. 50–64, Nice, France.

BOYAN, J., and A. MOORE. 2000. Learning evaluation functions to improve optimization by local search. Journal
of Machine Learning Research, 1:77–112. http://citeseer.ist.psu.edu/boyan00learning.html

CHICKERING, D. M. 2002. The WinMine toolkit, Technical Report MSR-TR-2002-103, Microsoft, Redmond,
WA.

COHEN, P. R. 1995. Empirical Methods for Artificial Intelligence. MIT Press, Cambridge, MA.

HORVITZ, E., Y. RUAN, C. GOMES, H. KAUTZ, B. SELMAN, and M. CHICKERING. 2001. A bayesian approach to
tacking hard computational problems. In Proceedings of the Seventeenth Conference on uncertainty and
Artificial Intelligence (UAI-2001), pp. 235–244, Seattle, WA.

KAUTZ, H., E. HORVITZ, Y. RUAN, C. GOMES, and B. SELMAN. 2002. Dynamic restart policies. In Proceedings of
the Eighteenth National Conference on Artificial Intelligence (AAAI-02), pp. 674–681, Edmonton, Alberta,
Canada.

LABORIE, P. 2003. Algorithms for propagating resource constraints in AI planning and scheduling: Existing
approaches and new results. Artificial Intelligence, 143:151–188.

LAGOUDAKIS, M. G., and M. L. LITTMAN. 2000. Algorithm selection using reinforcement learning. In Proceedings
of the Seventeenth International Conference on Machine Learning. Morgan Kaufmann, San Francisco, CA,
pp. 511–518. citeseer.nj.nec.com/lagoudakis00algorithm.html

LE PAPE, C., L. PERRON, J. RÉGIN, and P. SHAW. 2002. Robust and parallel solving of a network design problem. In
Proceedings of the Eighth International Conference on Principles and Practice of Constraint Programming
(CP02), pp. 633–648, Ithaca, NY.

LEYTON-BROWN, K., E. NUDELMAN, and Y. SHOHAM. 2002. Learning the empirical hardness of optimization
problems: The case of combinatorial auctions. In Proceedings of the Eighth International Conference on
Principles and Practice of Constraint Programming (CP02), pp. 556–572, Ithaca, NY.

APPLYING MACHINE LEARNING 387

LUBY, M., A. SINCLAIR, and D. ZUCKERMAN. 1993. Optimal speedup of Las Vegas algorithms. Information
Processing Letters, 47:173–180.

MINTON, S. 1996. Automatically configuring constraint satisfaction programs: A case study. Constraints, 1(1,2):7–
43.

NOWICKI, E., and C. SMUTNICKI. 1996. A fast taboo search algorithm for the job shop problem. Management
Science, 42(6):797–813.

NUIJTEN, W. P. M. 1994. Time and resource constrained scheduling: A constraint satisfaction approach, PhD
Thesis, Department of Mathematics and Computing Science, Eindhoven University of Technology.

RICE, J. 1976. The algorithm selection problem. Advances in Computers, 15:65–118.

RUAN, Y., E. HORVITZ, and H. KAUTZ. 2002. Restart policies with dependence among runs: A dynamic pro-
gramming approach. In Proceedings of the Eighth International Conference on Principles and Practice of
Constraint Programming (CP-2002), Springer-Verlag, Berlin, pp. 573–586, Ithaca, NY.

SCHEDULER. 2001. ILOG Scheduler 5.2 User’s Manual and Reference Manual, ILOG, SA.

WATSON, J.-P. 2003. Empirical Modeling and Analysis of Local Search Algorithms for the Job-Shop Scheduling
Problem, PhD Thesis, Department of Computer Science, Colorado State University.

WATSON, J.-P., L. BARBULESCU, L. WHITLEY, and A. HOWE. 2002. Contrasting structured and random permutation
flow-shop scheduling problems: Search-space topology and algorithm performance. INFORMS Journal on
Computing, 14(2):98–123.

WU, H., and P. VAN BEEK. 2003. Restart strategies: Analysis and simulation. In Ninth International Conference
on Principles and Practice of Constraint Programming, p. 1001, Kinsale, Ireland.

