
Satisfiability Models and Algorithms
for Circuit Delay Computation
LUÍS GUERRA E SILVA, JOÃO MARQUES-SILVA, and L. MIGUEL SILVEIRA
IST/Technical University of Lisbon, INESC ID/Cadence European Labs, Portugal
and
KAREM A. SAKALLAH
University of Michigan

The existence of false paths represents a significant and computationally complex problem in the
estimation of the true delay of combinational and sequential circuits. In this article we conduct
a comprehensive study of modeling circuit delay computation, accounting for false paths, as a
sequence of instances of Boolean satisfiability. Several path sensitization models and delay models
are studied. In addition we evaluate some of the most competitive Boolean satisfiability algorithms
seeking to identify which are best suited for solving circuit delay computation problems. Finally,
realistic delay modeling (taking into account extracted interconnect delays and fanout data) is
considered in order to experimentally evaluate the complexity of solving real-world instances.

Categories and Subject Descriptors: D.6.3 [Logic Design]: Design Aids—Verification

General Terms: Algorithms, Verification

Additional Key Words and Phrases: Boolean satisfiability, circuit delay computation, delay model-
ing, false path, timing analysis

1. INTRODUCTION
Recent years have seen an ever-increasing need for more accurate delay esti-
mation methodologies in digital circuits, in particular due to the decisive role
that delay estimation plays in determining limiting operating clock frequen-
cies. A key problem associated with circuit delay estimation is the existence of
false paths, which cause straightforward and efficient topological path analy-
sis procedures to yield potentially conservative delay estimates. Unfortunately,
for reasons hard to assess and explain, current high-level synthesis systems
[Bergamaschi 1991] are prone to generate circuits with many false paths. Con-
sequently, there is a growing need for correctly identifying such paths to guide
performance optimization in a computationally efficient manner.

Authors’ addresses: L. Guerra e Silva, J. Marques-Silva, L. M. Silveira, INESC ID, Rua Alves Redol
9, 1000 Lisboa, Portugal; email: lgs@algos.inesc.pt; K. A. Sakallah, University of Michigan, Ann
Arbor, MI.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.
C© 2002 ACM 1084-4309/02/0100–0137 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002, Pages 137–158.



138 • L. Guerra e Silva et al.

In contrast with topological delay estimation, solving the false path problem
is computationally hard, being an NP-complete problem [McGeer 1989]. Re-
search work on false paths has been extensive and, among others, several
promising modeling and algorithmic approaches have been proposed [Ashar
et al. 1993; Chen and Du 1991; Devadas et al. 1993; McGeer and Brayton 1991;
Marques-Silva and Sakallah 1994; Yalcin and Hayes 1995]. Despite this re-
search effort, we believe that a comprehensive and unified computational study
of different models and algorithms for solving the false path problem is still
missing. In this article we propose to partially solve this problem by studying
a set of path sensitization criteria, under the assumption of floating mode cir-
cuit operation. This work is undertaken within a unified framework for solving
the false path problem, which is based on Boolean satisfiability (SAT). Further-
more, we explore more realistic delay modeling within the proposed framework,
thus evaluating how SAT-based circuit delay computation is dependent upon
the delay model considered.

The computational study described here is necessarily incomplete, since sev-
eral relevant models and algorithms are not covered. Nevertheless, this study
proposes an experimental procedure that can be generalized for those other
models. Furthermore, we note that false paths can exist in both combinational
and sequential circuits, even though in this article we exclusively consider com-
binational false paths.

The article is organized as follows. We start by introducing a few defini-
tions related to combinational circuits and the Boolean satisfiability problem.
In Section 3 we describe how to formulate the circuit delay computation prob-
lem as an instance of Boolean satisfiability. This section closely follows the work
of McGeer et al. [1991], but a significantly simpler approach is used to derive
the SAT models for the viability sensitization criterion [McGeer and Brayton
1991]. In addition, the SAT modeling approach of McGeer et al. [1991] is shown
to be easily extended to other path sensitization criteria under the floating
mode of operation, namely, static sensitization [Benkoski et al. 1987] and the
exact sensitization criterion [Chen and Du 1991]. Afterwards, in Section 4, we
describe the circuit delay computation algorithm and propose improvements
in the delay stepping strategies, which result in significant performance gains
over existing procedures. In Section 5, we discuss the use of more realistic delay
models in the formulation of the circuit delay computation problem in order to
evaluate the computational challenge posed by real-world instances. In Sec-
tion 6, the experimental procedure is described and experimental results are
shown and analyzed. Finally, the conclusions are presented in Section 7.

2. NOTATION AND DEFINITIONS

2.1 Combinational Circuits
In the following we represent a combinational circuit as a directed acyclic
graph C = (V , E), referred to as the circuit graph, composed of simple gates
and primary inputs, represented by nodes (vertices) in the graph, and connec-
tions, represented by directed edges between them. V and E denote, respec-
tively, the set of nodes and the set of edges. The primary inputs are nodes with

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.



Circuit Delay Computation • 139

no incoming edges. All the nodes with no outgoing edges are primary outputs
(note that there may be primary output nodes with outgoing edges). The sets of
primary inputs and outputs of C are, respectively, PI(C) and PO(C). A complete
path is a sequence of nodes1 connecting a primary input to a primary output. A
partial path connects any two nodes within a complete path. A complete path
is referred to simply as a path.

For each circuit node v ∈ V in the graph, all the nodes connected to v by
incoming edges are fanin nodes of v and all the nodes connected to v by outgo-
ing edges are fanout nodes of v. I (v) denotes the set of fanin nodes of v and O(v)
denotes the set of fanout nodes of v. Furthermore, each node v has an associated
Boolean value that can be either 0, 1, or X (also referred to as true, false, and
unassigned). The Boolean value of each node is represented by a Boolean vari-
able named after the node (e.g., the Boolean value of node v ∈ V is represented
by the Boolean variable v ∈B, with B = {0, 1, X }). If v is the output node of a
gate, then c(v) denotes the controlling logic value of the node and nc(v) denotes
the noncontrolling logic value of the node.

In order to model delays that digital signals suffer when traversing a com-
binational circuit, we associate with each edge a delay (in graph nomenclature
we call it a weight). This can be either an integer or a real number, depending
on the accuracy of the chosen delay model. The delay of edge 〈v, u〉, between
nodes v and u, is denoted d (v, u).

2.2 CNF Formulas and Boolean Satisfiability
A CNF formula ϕ on n Boolean variables x1, x2, . . . , xn, is the conjunction (AND)
of m clauses ω1, ω2, . . . , ωm, each of which is the disjunction (OR) of one or more
literals, where a literal is the occurrence of a variable on its complemented or
uncomplemented form. A CNF formula ϕ denotes a unique n-variable Boolean
function f (x1, x2, . . . , xn) and each of its clauses corresponds to an implicate
of f .

A clause is said to be satisfied if at least one of its literals assumes value 1,
unsatisfied if all of its literals assume value 0, unit if all but one literal assume
value 0, and unresolved otherwise. Literals with no assigned Boolean value are
said to be free literals. A CNF formula is said to be satisfied if all its clauses are
satisfied, and is unsatisfied if at least one clause is unsatisfied.

The Boolean satisfiability problem (SAT) is concerned with finding an as-
signment to the arguments of f (x1, x2, . . . , xn) that make the function equal to
1, or proving that the function is equal to the constant 0. The SAT problem is
known to be NP-complete, therefore it is commonly accepted that any algorith-
mic solution for solving SAT requires worst-case exponential time in the size of
each problem instance description.

3. PROBLEM FORMULATION
As first observed in Hrapc̆enko [1978], a combinational circuit may contain
paths that are never exercised, independently of the input vector. These are

1Assuming that every two nodes are connected by at most one edge. Otherwise, a path is an alter-
nating sequence of nodes and edges, starting and ending in a node.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.



140 • L. Guerra e Silva et al.

designated by false paths. Clearly, false paths cannot be responsible for the de-
lay of the circuit, since no signal transition can propagate along them. Therefore,
given a combinational circuit C, the circuit delay computation (CDC) problem
consists of computing the delay of the longest true (i.e., non-false) path of C. If
we define a function #C($) that assumes the value 1 if and only if C contains a
true path with delay no smaller than $, and 0 otherwise, then the CDC problem
can be formulated as

max $

s.t. #C($) = 1.
(1)

A true path is exercised by at least one input vector. Therefore, computing
the value of #C($) corresponds to determining if there is an input vector x that
exercises at least one path of C, with delay no smaller than $. For a given
delay $, two types of constraints govern the computation of x: functional and
temporal. Functional constraints describe the logical function of the circuit, and
are independent of the value of $ considered. Temporal constraints capture the
temporal behavior of the circuit, by relating component delays and stable times
of the nodes, and therefore are highly dependent on $. Assuming that these
constraints can be described as clauses of two CNF formulas ϕC(x) (functional
constraints) and ϕ$(x) (temporal constraints) we can compute x by solving the
satisfiability problem for (ϕ$ · ϕC)(x). Consequently, the following relation can
be obtained.

#C($) =
{

1 if (ϕ$ · ϕC) (x) is satisfiable
0 if (ϕ$ · ϕC) (x) is unsatisfiable.

(2)

In the remainder of this section, we derive CNF formulas for ϕC(x) and ϕ$(x).

3.1 Consistency Function
The functional constraints are Boolean constraints that describe the logical
behavior (function) of the circuit. The mapping of a circuit into a set of Boolean
constraints is made using gate consistency functions. The consistency function
of a circuit gate models consistent assignments on the Boolean values of its
input and output nodes. The definition follows.

Definition 1 (Gate Consistency Function ). Given a gate with n input nodes
x1, x2, . . . , xn, one output node y , and logical function f (x1, x2, . . . , xn), its con-
sistency function ξ :Bn+1 %→ B is defined by

ξ (x1, x2, . . . , xn, y) = f (x1, x2, . . . , xn) ⊕ y . (3)

As can be observed from the previous definition, the consistency function
assumes the value 1 when the Boolean values of the input and output nodes
of a gate are consistent with its logical function, and 0 otherwise. Since the
consistency function is a Boolean expression it can be represented by a CNF
formula. Table I shows the CNF formulas of the consistency functions for simple
gates, as proposed in Larrabee [1992].

For the consistency function of a combinational circuit to be 1, the consis-
tency function of every gate must be 1. Therefore, the consistency function of a

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.



Circuit Delay Computation • 141

Table I. Consistency Functions for Simple Gates

Type Logical Function Consistency Function (CNF)

AND y = x1 · x2 · . . . · xn

n∏
i=1

(xi + ȳ) ·
(

n∑
i=1

xi + y

)

NAND y = x1 · x2 · . . . · xn

n∏
i=1

(xi + y) ·
(

n∑
i=1

xi + ȳ

)

OR y = x1 + x2 + · · · + xn

n∏
i=1

(xi + y) ·
(

n∑
i=1

xi + ȳ

)

NOR y = x1 + x2 + · · · + xn

n∏
i=1

(xi + ȳ) ·
(

n∑
i=1

xi + y

)

INV y = x̄ ( y + x) · ( ȳ + x̄)
BUFFER y = x ( ȳ + x) · ( y + x̄)

combinational circuit is given by the conjunction of the consistency functions of
all the gates that belong to that circuit. Furthermore, if the consistency function
of each gate is represented by a CNF formula, then the consistency function of
the whole circuit will also be a CNF formula, because the conjunction of CNF
formulas is itself a CNF formula.

It becomes clear that the CNF formula ϕC(x) that represents the functional
constraints of circuit C is given by the CNF representation of the consistency
function of C. When solving an instance of SAT on circuit C, ϕC(x) must be
included in the formula to satisfy, in order to guarantee that any satisfiable
solution found will have consistent Boolean values assigned to the circuit nodes.

3.2 Characteristic Function
Assuming the floating mode of operation [Chen and Du 1991], any circuit node
is considered to undergo a single transition from an initial unknown value to
a final known stable value [Chen and Du 1991]. The time instant at which
this transition occurs is designated by stable time of the node [Chen and Du
1991]. Clearly, under the floating mode of operation the only relevant temporal
property of a node is its stable time. This property can be captured as a set of
Boolean constraints by using an appropriate characteristic function [McGeer
et al. 1991], which is defined as follows.

Definition 2 (Characteristic Function ). Given a circuit node y and an input
vector x, we define the characteristic function of y at time t as the Boolean
function χ y ,t(x) such that χ y ,t(x) = 1 if and only if circuit node y stabilizes no
earlier than t, when input vector x is applied to the primary inputs. Otherwise,
we have χ y ,t(x) = 0.

Clearly, Definition 2 leads to the observations presented in Lemma 1.

LEMMA 1. Given a circuit node y , an input vector x, and two time instants
τ1 and τ2 such that τ1 < τ2, the following conditions must hold.

1. [χ y ,τ2 (x) = 1] ⇒ [χ y ,τ1 (x) = 1]
2. [χ y ,τ1 (x) = 0] ⇒ [χ y ,τ2 (x) = 0].

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.



142 • L. Guerra e Silva et al.

Fig. 1. Capturing the temporal behavior of a node using a characteristic function.

PROOF. If a given node stabilizes no earlier than τ2, we can also say that it
stabilizes no earlier than τ1 = τ2 − ε, ε > 0. Therefore if χ y ,τ2 (x) is 1, then all
the characteristic functions χ y ,τ1 (x), corresponding to times earlier than τ2, are
also 1. Similarly, if a given node stabilizes earlier than τ1, we can also say that
it stabilizes earlier than τ2 = τ1 + ε, ε > 0. Therefore, if χ y ,τ1 (x) is 0, then all
the characteristic functions χ y ,τ2 (x), corresponding to times later than τ1, are
also 0.

Consequently, it can be concluded that if node y stabilizes at time τ , then
its characteristic function will be 1 for times smaller than or equal to τ and 0
for times greater than τ , as can be observed graphically in Figure 1. Thus the
temporal behavior of every circuit node can now be described as a set of Boolean
constraints, expressed in terms of node characteristic functions.

The purpose of CDC is to compute the true delay of a circuit. Hence, the
following theorem is of vital importance for SAT-based CDC.

THEOREM 1. Given a combinational circuit C with delay $, and considering
the set of primary outputs PO(C), then for at least one input vector x the following
equality must hold.

∑

y∈ PO(C)

χ y ,$(x) = 1. (4)

PROOF. If $ is the delay of a combinational circuit C, then there is an input
vector x for which at least one of the primary outputs of C stabilizes no ear-
lier than $. As a consequence, for at least one primary output y ∈ PO(C), we
must have χ y ,$(x) = 1. Therefore, the disjunction of the characteristic functions
χ y ,$(x) of all the primary outputs must be 1.

The previous theorem states that if $ is the delay of a combinational cir-
cuit then there is an input vector x for which the characteristic function of
at least one primary output is 1, at time $. This is a necessary but not
sufficient condition, because any delay below the delay of the circuit will
also satisfy it. The delay of the circuit is the largest delay that satisfies this
condition.

The temporal constraints simply require that, for a given delay $, there must
be an input vector x such that Condition (4) is satisfied. In order to satisfy
Condition (4), we must obtain the Boolean expression of χ y ,$(x), for each pri-
mary output y , implicitly or explicitly as a function of the input vector x.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.



Circuit Delay Computation • 143

Fig. 2. A characterization of path sensitization criteria, under the floating mode of operation: (a)
static; (b) viability; (c) exact.

3.3 Satisfiability Models for Path Sensitization
Next we show how to use characteristic functions to capture path sensitization
conditions.

3.3.1 Path Sensitization Conditions. The conditions under which signals
propagate from the primary inputs to the primary outputs in a combinational
circuit are generally referred to as path sensitization conditions. Path sensitiza-
tion conditions depend on the model of operation assumed for the circuit, in par-
ticular the different forms of stimuli on the primary inputs, and the waveform
model assumed at each node in the circuit. Even though detailed and precise
models can be considered, as we have mentioned before, we restrict ourselves
to floating mode operation, under which all nodes are assumed to undergo a
single transition, from an initial unknown value to a final known stable value.
Most criteria defined under floating mode operation are conservative (e.g., via-
bility [McGeer and Brayton 1991] and the exact criterion under floating mode
operation [Chen and Du 1991]), thus overestimating the circuit delay in some
situations. Nevertheless, as shown in McGeer and Brayton [1991], viability and
exact floating mode sensitization are robust, thus providing upper bounds on
the circuit delay under the bounded gate delay model (i.e., assuming that each
gate delay is within some interval [0, dmax]).

A characterization of different sensitization criteria for simple gates under
floating mode of operation and assuming single path sensitization is illustrated
in Figure 2. This diagram identifies logical and temporal constraints on the side
inputs of each node y (thick line) in a path. τ denotes the propagation delay
of a signal transition reaching y along a given path. The side input values
can either be controlling (c) or noncontrolling (nc). Shaded areas indicate that
a given circuit node value is unknown and may experience changes in time
(unstable).

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.



144 • L. Guerra e Silva et al.

For static sensitization, the side inputs are required to assume noncontrolling
values for propagation of a signal transition to occur. For viability, the side
inputs are required to be either noncontrolling or to stabilize later than the
node on the path. Finally, for the exact sensitization criterion under floating
mode operation, it is assumed that the initial value of each primary input is
unknown and changes to a known logic value at the specified arrival time. In the
exact floating-mode sensitization criterion, a node y in the fanout of a node z
stabilizes as a direct consequence of node z stabilizing, if z is either the earliest
controlling value to stabilize or all fanin nodes assume noncontrolling values
and z is the latest node to stabilize.

3.3.2 Static Sensitization. Under static sensitization (see Figure 2(a)), for
a signal transition to reach node y all its side inputs are required to assume
noncontrolling values. Therefore, and taking into account that multiple signal
transitions can be propagated from the fanin nodes to y , we get the following
definition of χ

y ,t
S (x),2

χ
y ,t
S (x) =

∑

z∈I ( y)



χ
z,t−d (z, y)
S (x) ·

∏

w∈I ( y)−{z}
[w = nc( y)]



 , (5)

which basically requires that, for a given input vector x at least one fanin node
z of y must stabilize no earlier than t − d (z, y) and such that the remaining
fanin nodes w assume noncontrolling values. Clearly this condition must hold
for any of the fanin nodes.

3.3.3 Viability. Given the interpretation of viability for simple gates in
Figure 2(b) and considering the generalization for multiple paths with the same
delay values, we have the following conditions for a given circuit node y to
stabilize at a time no earlier than t for some input vector x.

1. At least one fanin node z of y must stabilize at a time no earlier than
t − d (z, y). This condition permits the existence of multiply sensitized par-
tial paths.

2. Furthermore, either a fanin node w of y assumes a noncontrolling value or it
stabilizes at a time no earlier than t − d (w, y), thus being passive regarding
propagating a signal transition from z to y . Formally, we have

χ
y ,t

V (x) =
∑

z∈I ( y)

χ
z,t−d (z, y)
V (x) ·

∏

w∈I ( y)

(
χ

w,t−d (w, y)
V (x) + [w = nc( y)]

)
, (6)

which is basically equivalent to the simplified condition proposed in McGeer
et al. [1991].

3.3.4 Exact Floating Mode Sensitization. In order to capture the exact path
sensitization model under the floating mode of operation [Chen and Du 1991],
the following observations are useful.

2The subscript S under χ refers to static sensitization. After the definition we discard it, for the
sake of simplicity.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.



Circuit Delay Computation • 145

Fig. 3. A simple example circuit.

1. If the fanin node of y in any path being studied assumes a controlling value,
then the exact floating mode condition is equivalent to viability.

2. Otherwise, all input nodes must be noncontrolling. In this situation, propa-
gation from any potential fanin node z only requires that a transition reach
that node (i.e., χ

z,t−d (z, y)
F (x) = 1) and that all other inputs assume noncon-

trolling values.

These observations lead to the following definition of χ
y ,t
F (x).

χ
y ,t
F (x) =

∑

z∈I ( y)

[z = c( y)] · χ
y ,t

V (x) +
∏

z∈I ( y)

[z = nc( y)] ·
∑

w∈I ( y)

χ
w,t−d (w, y)
F (x). (7)

Observe that since a fanin node is required to satisfy χ
z,t−d (z, y)
F (x) = 1, then at

least one of these nodes will guarantee χ
y ,t
F (x) = 1 provided all inputs assume

noncontrolling values.

3.4 An Example
Let us consider the simple example circuit shown in Figure 3. Assuming a
unit-delay model (i.e., each gate has delay 1), the longest paths in the circuit
are {x1, x5, x7, x9} and {x2, x6, x7, x9}, both having delay 3. In order to decide
whether 3 is the true delay of the circuit we must compute an input vector x
that makes (ϕC · ϕ$=3)(x) satisfiable, or prove that such a vector does not exist.

The functional constraints ϕC(x) can be easily obtained by deriving, for every
circuit gate, the corresponding consistency function, as described in Table I. In
order to obtain the temporal constraints ϕ$(x), Theorem 1 and Expression (5),
(6), or (7) must be considered. From Theorem 1 we know that if 3 is the delay
of the circuit then,3

χ x9,3 = 1. (8)

Assuming the viability criterion, we can derive χ x9,3 by applying Expression (6)
to node x9 as follows.

χ x9,3 = (χ x5,2 + χ x7,2 + χ x8,2) · (χ x5,2 + x5) · (χ x7,2 + x7) · (χ x8,2 + x8).

This expression can be simplified by noting that since nodes x5 and x8 are
connected to the primary inputs by gates of delay 1, they cannot stabilize later
than 1, and therefore χ x5,2 = 0 and χ x8,2 = 0. Consequently, we obtain:

χ x9,3 = χ x7,2 · x5 · (χ x7,2 + x7) · x8. (9)

3In order to simplify the formulas, during this example we omit the argument (x) of the character-
istic functions.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.



146 • L. Guerra e Silva et al.

Fig. 4. Mapping of functional and temporal constraints into a circuit.

Similarly, by noting that χ x3,1 = 0, we can derive the characteristic function for
node x7 at time 2, as follows.

χ x7,2 = (χ x5,1 + χ x6,1) · (χ x5,1 + x5) · (χ x6,1 + x6) · x3. (10)

Since x5 and x6 are both outputs of an INV gate with delay 1, whose inputs are
x1 and x2, respectively, then x5 and x6 will stabilize exactly 1 time unit after x1
and x2, therefore:

χ x5,1 = χ x1,0 (11)
χ x6,1 = χ x2,0. (12)

The expressions that we have just derived implicitly represent χ x9,3 as a
function of the primary inputs x = (x1, x2, x3, x4). By performing simple sub-
stitutions, we could derive an explicit expression for χ x9,3 in terms of x. How-
ever, even for small-sized circuits it is computationally infeasible to obtain CNF
representations of the characteristic functions in terms of the primary inputs.
Therefore, instead of directly manipulating the characteristic functions, we map
them as nodes in a combinational circuit, from which we can easily derive the
corresponding CNF formula, given by the circuit consistency function. The cir-
cuit that maps χ x9,3 is presented in Figure 4. The thin line shows the mapping
of the characteristic functions, which originate the temporal constraints ϕ$(x).
The thick line shows the original circuit, which originates the functional con-
straints ϕC(x). The only primary output of this circuit is χ x9,3, which is also the
output node of an AND gate that represents Expression (9). Similarly, the AND
gate whose output is χ x7,2 represents Expression (10) and the buffers whose
outputs are χ x5,1 and χ x6,1 represent Expressions (11) and (12), respectively. By
computing the CNF formula of the consistency function of this circuit, we are
actually computing the CNF formula of (ϕC · ϕ$)(x).

After obtaining the CNF formula for (ϕC ·ϕ$)(x) we use a chosen satisfiability
algorithm to compute an input vector x that makes the formula satisfiable or
prove that no such vector exists and that the formula is thus unsatisfiable.
However, in this simple example just by inspecting the circuit in Figure 4 we

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.



Circuit Delay Computation • 147

can observe that
χ x9,3 = 1 ⇒ χ x7,2 = 1 ∧ x8 = 0
χ x7,2 = 1 ⇒ x3 = 1

x8 = 0 ⇒ x3 = 0

and thus we conclude that there is no input vector that makes χ x9,3 = 1, which
means that the corresponding CNF formula is unsatisfiable.

In fact, it turns out that due to the simplicity of this example it is possible, in
this particular case, to obtain an explicit CNF formula for χ x9,3 by simplifying
the previously derived expressions, as follows.

χ x7,2 = (χ x5,1 + χ x6,1) · (χ x5,1 + x5) · (χ x6,1 + x6) · x3
= (χ x1,0 + χ x2,0) · (χ x1,0 + x1) · (χ x2,0 + x2) · x3
= x1 · x2 · x3

χ x9,3 = χ x7,2 · x5 · (χ x7,2 + x7) · x8

= χ x7,2 · x1 · (x3 + x4)
= χ x7,2 · x1 · x3 · x4
= x1 · x2 · x3 · x1 · x3 · x4 .

Therefore the CNF formula for the temporal constraints is given by

ϕ$(x) = χ x9,3 = x1 · x2 · x3 · x1 · x3 · x4 .

Once more, it becomes clear that ϕ$(x) is unsatisfiable, because both x1 and
x3 appear in their complemented and uncomplemented form. Since ϕ$(x) is
unsatisfiable, so is (ϕC · ϕ$)(x). We stress, however, that only for very small
circuits is it possible to explicitly obtain the desired CNF formula which makes
such a procedure inapplicable in general.

4. THE CIRCUIT DELAY COMPUTATION ALGORITHM
Given Expressions (1) and (2) the CDC problem can be formulated as

max $

s.t. (ϕC · ϕ$)(x) is satisfiable.
(13)

Simply speaking, the CDC problem consists of computing the largest delay
$ that makes (ϕC · ϕ$)(x) satisfiable. In this section we detail the proposed
algorithm for solving this problem.

4.1 Basic Algorithm
An intuitive way of solving problem (13) is to initialize the target delay $ with its
largest value and iteratively decrease it until we find a $ that makes (ϕC · ϕ$)(x)
satisfiable. Clearly, an upper bound for the true delay of the circuit is the delay
of its longest (false or nonfalse) path, which corresponds to the longest topolog-
ical path delay (LTP). Therefore, by initializing $ = LTP and then iteratively
decreasing $ until (ϕC · ϕ$)(x) becomes satisfiable, we will obtain the true delay
of the circuit.

The proposed algorithm for solving the CDC problem is implemented by
function CDC(), listed in Figure 5. The only input argument of the algorithm is

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.



148 • L. Guerra e Silva et al.

Fig. 5. The CDC algorithm.

a combinational circuit C and the single result is its true delay, that we assume
to be a real number.

We start by initializing the target delay $ with the longest topological path
delay of C, computed by LTP(). In LTP(), we perform a forward traversal of the
circuit graph, and for each node we compute the delay of the longest path that
ends at that node. The longest topological path delay is the delay of the longest
path that ends at a primary output. Afterwards, the mapping of circuit C into
a CNF formula ϕC is performed by function FunctionalCNF(), as described in
Section 3.1. The CNF formula ϕ$ of the temporal constraints is generated by
function TemporalCNF() for each target delay $. Inside TemporalCNF() we
perform a backward traversal of the circuit graph, starting in the primary out-
puts, and for each node we compute all the necessary characteristic functions.
These functions are then mapped into a combinational circuit and the corre-
sponding CNF representation is obtained by extracting its consistency function.
Having computed a CNF formula for ϕC·ϕ$ we then call a chosen satisfiability al-
gorithm, implemented by function SAT() to verify whether ϕC · ϕ$ is satisfiable.
If it is satisfiable then the value of $ is returned, which corresponds to the true
delay of the circuit. Otherwise, we enter a loop in which new values for the target
delay $ are chosen by function IterateDelay(), and for each of which the corre-
sponding temporal constraints ϕ$ are generated by function TemporalCNF().
If for a given target delay $ the CNF formula ϕC · ϕ$ is satisfiable, the loop ter-
minates and the value of $, which is the true delay of the circuit, is returned.

4.2 Boolean Satisfiability Algorithm
Over the years a large number of approaches have been proposed for solving
SAT. It is widely accepted that the two most competitive classes of SAT al-
gorithms are local search and backtrack search. Local search algorithms are
not complete, in the sense that they cannot prove unsatisfiability. Most often,
this drawback prevents their utilization in a significant number of EDA applica-
tions. Consequently, backtrack search algorithms emerge as the most promising
solution for solving SAT in EDA, and thus are used to solve the CDC problem.

The overall organization of a generic backtrack search SAT algorithm is
implemented in function SAT() as shown as Figure 6. The only input argu-
ment of the algorithm is a CNF formula ϕ and the result is either SATISFI-
ABLE or UNSATISFIABLE, according to the satisfiability of the formula. This
SAT algorithm captures the organization of several of the most competitive

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.



Circuit Delay Computation • 149

Fig. 6. A generic SAT algorithm.

algorithms [Bayardo, Jr. and Schrag 1997; Marques-Silva and Sakallah 1996;
Zhang 1997].

The algorithm conducts a search through the space of the possible assign-
ments to the problem instance variables. At each stage of the search, an assign-
ment is selected with the Decide() function. A decision level λ is also associated
with each selection of an assignment. Implied necessary assignments are iden-
tified with the Deduce() function. Whenever a clause becomes unsatisfied, the
Deduce() function returns a conflict indication which is then analyzed using
the Diagnose() function. The diagnosis of a given conflict returns a backtrack-
ing decision level β, which corresponds to the decision level to which the search
process can provably backtrack. The Backtrack() function clears variable as-
signments from the current decision level λ up to a decision level β. The search
terminates in one of two situations: either Diagnose() detects a conflict at the
decision level 0, meaning that the formula is unsatisfiable, or Decide() detects
that all the clauses are satisfied, meaning that the formula is satisfiable.

Currently, and for solving large, structured, and hard instances of SAT, all
of the most efficient SAT algorithms implement a number of the following key
properties:

1. The analysis of conflicts can be used for implementing nonchronological back-
tracking search strategies. Hence, assignment selections that are deemed
irrelevant can be skipped during the search [Bayardo, Jr. and Schrag 1997;
Marques-Silva and Sakallah 1996; Zhang 1997].

2. The analysis of conflicts can also be used for identifying and recording new
clauses that denote implicates of the Boolean function associated with the
CNF formula. Clause recording plays a key role in recent SAT algorithms, de-
spite in most cases large recorded clauses being eventually deleted [Bayardo,
Jr. and Schrag 1997; Marques-Silva and Sakallah 1996; Zhang 1997].

3. Other techniques have been developed. Relevance-based learning [Bayardo,
Jr. and Schrag 1997] extends the lifespan of large recorded clauses that will

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.



150 • L. Guerra e Silva et al.

eventually be deleted. Conflict-induced necessary assignments [Marques-
Silva and Sakallah 1996] denote assignments of variables that are necessary
for preventing a given conflict from occurring again during the search.

Before running the SAT algorithm, different forms of preprocessing can be
applied [Li and Anbulagan 1997; Marques-Silva and Sakallah 1996]. This in
general is denoted by a Preprocess() function that is executed before invoking
the search process.

4.3 Delay Stepping Strategies
A key procedure in the circuit delay computation algorithm is the stepping
of target path delays [Guerra e Silva et al. 1998b], implemented in function
IterateDelay(). In general delay stepping plays a crucial role in the overall
efficiency of the algorithm, since it determines the number of iterations to
be executed.

The simplest delay stepping strategy is to change the specified delay by the
least delay unit at each iteration of the algorithm. Consequently, $ is contin-
uously decreased by 1 delay fraction (that corresponds to the smallest delay
variation possible, given a predefined precision). Although the computation of
$ is immediate, this kind of strategy can result in an enormous number of it-
erations, especially for circuits with a large number of false paths, where the
critical delay is much smaller than the topological delay, or whenever precise
delay models are assumed.

Moreover, it is clear that not all path delays are possible on each primary out-
put. Hence, instead of decreasing $ in a fractional step basis we can analyze
the circuit topology and get the next topological delay present at the speci-
fied primary output. This is called the next delay stepping strategy, because
the delay step is determined by the next topological delay present at a given
primary output. For circuits with few path delays, this strategy can yield a
reduction in the number of iterations, with a small increase in the time neces-
sary to compute $. However, for circuits with a large number of paths, where
there exists an almost continuous delay distribution, this strategy rapidly be-
comes as inefficient as the previous one, thus taking significantly more time to
compute $.

To overcome the limitations of the two previous strategies, we can use dy-
namic stepping. In this strategy the delay step is dynamically adjusted, accord-
ing to certain criteria, but it is independent of the circuit topology (no next delay
computation is performed). The basic principle behind this strategy is to choose
appropriate values for the steps in order to enclose the true delay of the circuit
in a series of intervals of decreasing size. We start by generating a SAT instance
of the CDC problem for $ = LTP. If this instance is unsatisfiable we iteratively
decrease $ by a delay step s0 until we reach a satisfiable instance. At this point
we know that the true delay of the circuit lies within the interval [$, $ + s0[, of
size s0. We can then choose a smaller step s1 (s1 < s0), and starting at $+ s0 − s1
continue to iteratively decrease $ until we reach a satisfiable instance. Again,
when that happens we know that the true delay of the circuit lies within the
interval [$, $ + s1[. By repeatedly using smaller delay steps si, we can obtain

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.



Circuit Delay Computation • 151

an estimate of $ with an arbitrary precision. It should be noted that to imple-
ment dynamic stepping in the CDC algorithm shown in Figure 5 the function
IterateDelay() must receive as an argument the result of the SAT() function.
Furthermore, the function IterateDelay() will replace the function SAT() in
the control of the loop.

The choice of the correct values for the delay steps is a trade-off between
faster progression, which is achieved using large steps, and smaller delay in-
tervals, which can be obtained using small steps. In addition it should be noted
that for delay values much smaller than the true delay of the circuit there are
many paths to be considered, and therefore the corresponding SAT instances
can become very large and potentially hard to solve. This makes the use of large
delay steps (or some strategies such as binary search) potentially dangerous,
because one could easily end up in a path delay zone far below the true delay
of the circuit, which could have disastrous results in terms of CPU time.

A particularly interesting implementation of dynamic stepping can be ob-
tained by matching the computation of a specific decimal place of the true
delay with the delay step used. Let us suppose that we want to compute
the digit kn (0 ≤ kn ≤ 9) of the nth decimal place (n≥ 1) of the true delay of
a circuit, given an estimate $n−1 with (n− 1) decimal places. The value of
kn can be obtained by bounding the previous estimate $n−1 to an interval
[$n−1 + 10−n × kn, $n−1 + 10−n × (kn +, 1)[. This can be easily accomplished by
iteratively testing all the delays starting at $n−1 + 10−(n−1) − 10−n and ending
at $n−1 + 10−n, with delay step s = 10−n. Clearly this procedure can be used to
compute estimates of the true delay with an arbitrary number of decimal places.
The computation of the value of each decimal place (starting from the first) takes
at most nine iterations. To compute the integer part of the true delay we start
by testing for $ = LTP and if the generated SAT instance is unsatisfiable we
round $ to the nearest integer smaller than LTP. If the instance generated for
this delay is still unsatisfiable we iteratively decrease $ using delay steps of 1
until we find a satisfiability instance. When that happens we have computed
the integer value of the true delay of the circuit and we can start using the
previously described procedure to identify the following decimal places.

Let us consider the example, shown in Figure 7, of a circuit with LTP of
20.0 and true delay of 17.3. Using fractional stepping we spend 28 iterations
to find the true delay, which corresponds to the number of all possible delays
with precision of 1 decimal place that exist between 20.0 and 17.3 (includ-
ing both). The next delay stepping strategy yields a slight reduction in the
number of iterations when compared to fractional stepping because not every
delay is present at each primary output, thus we only spend 22 iterations. Us-
ing dynamic stepping we start with a delay step of 1 to compute the integer
value of the true delay. When that value is computed (17) we reduce the delay
step to 0.1 and we decreasingly test all the delays starting in 17.9 (since 18.0
has already been tested) until 17.3, which corresponds to an estimate of the
true delay of the circuit with 1 decimal digit. This estimate is obtained in only
11 iterations.

From the previous example we can clearly conclude that when using a frac-
tional delay strategy the number of iterations increases geometrically with the

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.



152 • L. Guerra e Silva et al.

Fig. 7. Illustration of delay stepping strategies.

number of decimal places. With the next delay strategy, the rate of growth is
almost the same. However, using this particular implementation of dynamic
stepping, the number of iterations necessary to compute each decimal place
(starting at the first) is at most 9.

5. REALISTIC DELAY MODELING
Existing research work on CDC has focused mainly on path sensitization mod-
els and algorithms, and on gate and interconnect delay models. Nevertheless,
work in these two main areas has evolved separately, and so most path sensiti-
zation models and algorithms assume very rudimentary gate and interconnect
delay models. Even though such models provide an attractive framework for
comparing the correctness and performance of the various approaches to path
sensitization, due to their poor accuracy they cannot be used in practical cir-
cuit design. For robust and accurate CDC we need in general to consider more
realistic delay models which should take into account at least these constraints:

—different delay values for different types of gates;
—different delay values for different gate inputs;
—variation of delay with the number of fanouts/fanins (accounting for input

and output capacitances); and
—interconnect delay estimation (for circuits for which layout information is

available).

Gate delays and their variation with the number of fanouts/fanins can
be easily modeled using information available from the IC library databook.
Interconnect delay, however, is hard to estimate for the benchmark circuits
available, which are only described at the gate level. To obtain this information
the benchmark circuits were mapped using the standard-cell library ECPD07
(ES2/Atmel),4 and the parasitic capacitances of the interconnect were extracted.

4Mapping to this library requires that each gate with more than four inputs has to be expanded
into a sequence of gates each with no more than four inputs.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.



Circuit Delay Computation • 153

For each gate input, the propagation delay tp is given by

tp = tpi + dtp · Cl , (14)

where tpi is the intrinsic propagation delay, dtp is the differential (load-
dependent) propagation delay, and Cl is the load capacitance at the gate output.
Furthermore, this load capacitance is given by

Cl = Ci +
∑

j

Cg j , (15)

where Ci is the lumped interconnect capacitance and
∑

j Cg j is the sum of
the input capacitances of all the fanouts. The interconnect resistance for this
technology is very small, resulting in a negligible interconnect delay that has
been discarded. However, the interconnect capacitance is significant and was
used to more realistically model the load-dependent propagation delay of each
gate. Even though both rise and fall delays are available for each gate input,
that is not supported by the problem formulation proposed in Section 3 and
therefore the most conservative values are considered. We further note that all
delays were computed with two-digit precision.

Clearly this gate delay model will lead to a significantly larger number of
path delays, which will increase the number of iterations of the circuit delay
computation algorithm [Guerra e Silva et al. 1998a].

6. EXPERIMENTAL RESULTS
The CDC algorithm consists of iteratively generating and solving instances of
SAT for several circuit delays, starting at the largest topological path delay.
All the models and algorithms described in the previous sections have been
implemented and used for generating many instances of SAT, each of which
denotes the sensitization conditions for a certain specified delay, in a given
circuit. These instances have been solved using some of the most competitive
SAT algorithms currently available. The results obtained are presented and
discussed throughout this section. All the experiments were conducted on a
Sun Ultra 1 machine, with one 167 MHz UltraSPARC processor and 384 Mb of
physical memory. The CPU times are presented in seconds.

6.1 Sensitization Criteria and SAT Algorithms
The results of solving CDC, assuming a unit delay model, for static sensiti-
zation, viability, and the exact sensitization criterion under floating mode of
operation, are shown in Tables II, III, and IV, respectively. For each table, the
first column presents the name of the benchmark circuit and the second col-
umn exhibits the longest topological delay of each circuit and its true delay,
as computed by the CDC algorithm. The third column presents the number
of CDC iterations (i.e., the number of SAT instances generated and solved)
and the fourth column exhibits the CPU time spent generating all the SAT
instances. The remaining columns exhibit the CPU time used by the vari-
ous SAT algorithms for solving the instances derived from the CDC problem.
The algorithms used are: GRASP [Marques-Silva and Sakallah 1996], RELSAT

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.



154 • L. Guerra e Silva et al.

Table II. Run Times for CDC Using Static Sensitization

Circuit LTP/$ It CNF GRASP RELSAT POSIT SATO SATZ DP HHUGO TEGUS

c432 17/17 1 0.01 0.02 0.15 0.00 0.03 0.06 0.15 0.00 0.04
c499 11/11 1 0.01 0.03 0.27 0.01 0.09 0.08 0.61 1.00 0.04
c880 24/24 1 0.01 0.05 0.17 0.01 0.04 0.09 0.59 1.00 0.05
c1355 24/24 1 0.02 0.15 0.44 0.03 0.07 0.35 >1000 1.00 0.12
c1908 40/37 11 0.20 0.27 3.61 0.00 0.57 1.57 29.61 13.00 19.07
c2670 32/30 6 0.16 5.74 30.51 711.99 0.86 >1000 >1000 21.00 >1000
c3540 47/46 4 0.06 0.65 4.57 0.07 0.46 1.03 712.52 8.00 263.54
c5315 49/47 7 0.12 2.41 6.04 0.28 1.01 4.07 >1000 27.00 >1000
c6288 124/123 3 0.14 71.00 21.72 0.51 152.77 4.27 >1000 431.00 >1000
c7552 43/42 6 0.05 2.63 8.27 0.01 1.33 4.92 >1000 21.00 6.13
cla.16 34/33 2 0.01 0.04 0.08 0.00 0.03 0.01 0.77 2.00 0.44
cbp.12.2 40/23 73 1.07 0.97 5.29 0.11 1.99 2.48 143.27 50.00 10.31
cbp.16.4 44/27 83 0.90 1.12 5.67 0.09 2.19 2.66 119.60 43.00 36.92
csa.16.4 41/22 91 0.49 0.31 2.72 0.01 1.42 2.03 12.38 38.00 189.47
csa.32.4 81/30 571 9.08 12.30 50.15 0.73 14.62 30.24 >1000 393.00 >1000

Table III. Run Times for CDC Using Viability

Circuit LTP/$ It CNF GRASP RELSAT POSIT SATO SATZ DP HHUGO TEGUS

c432 17/17 1 0.01 0.02 0.10 0.00 0.03 0.07 0.14 0.00 0.03
c499 11/11 1 0.01 0.03 0.08 0.01 0.09 0.06 0.62 1.00 0.04
c880 24/24 1 0.01 0.05 0.16 0.01 0.03 0.11 0.59 0.00 0.05
c1355 24/24 1 0.02 0.26 0.41 0.07 0.08 0.23 >1000 1.00 0.13
c1908 40/37 11 0.19 0.31 3.44 0.00 0.62 1.40 54.92 12.00 15.38
c2670 32/30 6 0.18 5.07 28.67 623.99 2.08 >1000 >1000 258.00 >1000
c3540 47/46 4 0.06 0.67 4.03 0.06 0.37 1.10 908.99 9.00 266.40
c5315 49/47 7 0.13 3.25 5.78 0.26 1.10 4.11 >1000 538.00 >1000
c6288 124/123 3 0.16 47.33 28.57 >1000 9.27 1.71 >1000 >1000 148.69
c7552 43/42 6 0.05 2.66 9.77 0.01 1.33 4.87 >1000 21.00 3.77
cla.16 34/34 1 0.00 0.02 0.04 0.00 0.02 0.01 0.33 1.00 0.17
cbp.12.2 40/23 73 1.20 1.23 4.81 0.31 2.08 2.82 >1000 45.00 11.08
cbp.16.4 44/27 83 1.01 1.34 5.64 0.17 2.37 3.06 357.81 45.00 35.57
csa.16.4 41/22 91 0.54 0.33 2.73 0.02 1.46 2.22 15.48 56.00 378.87
csa.32.4 81/30 571 9.92 14.75 48.28 1.80 15.12 32.54 >1000 427.00 >1000

Table IV. Run Times for CDC Using the Exact Criterion

Circuit LTP/$ It CNF GRASP RELSAT POSIT SATO SATZ DP HHUGO TEGUS

c432 17/17 1 0.01 0.05 0.18 0.01 0.03 0.10 0.35 1.00 0.05
c499 11/11 1 0.01 0.03 0.09 0.01 0.10 0.15 0.68 1.00 0.04
c880 24/24 1 0.01 0.06 0.23 0.01 0.03 0.15 1.10 1.00 0.07
c1355 24/24 1 0.04 0.36 0.76 0.00 0.13 0.49 >1000 9.00 0.47
c1908 40/37 11 0.33 1.00 8.86 0.14 0.96 2.27 111.07 15.00 23.91
c2670 32/30 6 0.32 12.20 38.05 >1000 3.76 >1000 >1000 65.00 >1000
c3540 47/46 4 0.13 1.05 9.32 0.13 0.47 1.57 >1000 13.00 557.68
c5315 49/47 7 0.27 7.78 13.70 3.99 1.30 8.68 >1000 173.00 >1000
c6288 124/123 3 0.35 42.61 47.92 >1000 108.67 21.40 >1000 27.00 >1000
c7552 43/42 6 0.11 5.22 17.30 0.04 1.52 5.46 >1000 25.00 33.55
cla.16 34/34 1 0.01 0.07 0.08 0.00 0.04 0.03 4.46 1.00 0.11
cbp.12.2 40/23 73 2.39 10.97 23.55 1.97 7.72 6.99 >1000 83.00 252.40
cbp.16.4 44/27 83 2.02 10.69 23.77 1.96 8.90 6.17 >1000 80.00 >1000
csa.16.4 41/22 91 1.07 3.19 10.43 0.56 2.37 11.78 >1000 61.00 >1000
csa.32.4 81/30 571 21.18 179.43 314.61 34.80 51.99 >1000 >1000 938.00 >1000

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.



Circuit Delay Computation • 155

[Bayardo, Jr. and Schrag 1997], POSIT [Freeman 1995], SATO [Zhang 1997],
SATZ [Li and Anbulagan 1997], DP [Barth 1995], HEERHUGO [Groote and Warners
1999], and TEGUS [Stephan et al. 1992].5 It should be noted that instead of gen-
erating an instance of SAT for each target delay (as is described in the proposed
algorithm), we have decided to generate a SAT instance for each output/delay
pair. Using this approach we are able to split a hard instance in many easier
instances, which has proven to be a much more efficient technique in terms of
CPU time, even though more iterations are usually required.

As can be seen, the SAT instances are very easy to generate, even for large
circuits. It is interesting to observe that the vast majority of the instances of
SAT are extremely easy to solve with most SAT algorithms. The exception to
this rule is DP, the basic Davis–Putnam procedure [Davis and Putnam 1960],
which is unable to solve a significantly large number of benchmarks. On the
other hand, only a few SAT algorithms are able to solve all the instances in a
reasonable amount of time. In general, GRASP, RELSAT, and SATO seem to be the
most efficient and robust algorithms for solving this class of instances of SAT.

Comparing the sensitization criteria we can observe that static sensitization
spends the smallest CPU time, followed by viability and the exact criterion.
However, static sensitization is known to underestimate the circuit delay, as
can be observed for cla.16, which makes it unusable. Clearly, viability seems to
exhibit the best trade-off between correctness and performance.

6.2 Realistic Delays
In Table V we present the CPU times for checking satisfiability using GRASP and
RELSAT6 obtained assuming both a unit delay model and a realistic delay model
on the technology mapped circuits. For this experiment the path sensitization
criterion used was viability. As can be observed, the CPU times increase signif-
icantly as more realistic delays are considered, not only because the number of
iterations of the algorithm also increases, but also because the SAT instances
are harder to solve due to a larger number of characteristic functions generated
by an almost continuous delay distribution. However, this added complexity
signifies that we are now able to obtain much more accurate estimates for the
circuit delay.

5GRASP refers to the February 2000 version, run by command “sat-grasp +V0 +rt8 +g20 <file>”.
RELSAT refers to version 1.1.2 modified to print the elapsed CPU time instead of the elapsed real
time, run by command “relsat 3 <file>”. POSIT refers to version 1.0, run by command “posit -f

<file>”. SATO refers to version 3.0, run by command “sato -f <file>”. SATZ refers to the September
1996 version, run by command “satz <file>”. DP refers to version 0.2, run by command “dp -h2

-t2 -0 -f<file>”. HHUGO (HEERHUGO) refers to version 0.3, run by command “heerhugo” with input
file Ain, in propositional format. TEGUS refers to the satisfiability checker incorporated into version
1.4 of SIS, to which an interface able to read DIMACS files was added. Furthermore, a number of
search strategies were added with an increasing number of backtrack limits in order to prevent
TEGUS from aborting instances before exceeding the CPU time limit.
6Even though SATO exhibits the smallest of the CPU times, it is known to compute the wrong answer
for some instances, and therefore we chose not to include it in the following tests.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.



156 • L. Guerra e Silva et al.

Table V. Run Times for Unit Versus Realistic Delay Models, Using Viability

Unit Delay Realistic Delay
Circuit LTP/$ It CNF GRASP RELSAT LTP/$ It CNF GRASP RELSAT

c432 17/17 1 0.01 0.02 0.10 21.81/21.46 36 0.32 0.31 2.12
c499 11/11 1 0.01 0.03 0.08 16.96/16.96 1 0.00 0.02 0.11
c880 24/24 1 0.01 0.05 0.16 18.06/18.06 1 0.00 0.03 0.15
c1355 24/24 1 0.02 0.26 0.41 23.19/22.76 85 2.51 3.35 10.59
c1908 40/37 11 0.19 0.31 3.44 26.00/23.36 881 1174.89 44.74 75484.41
c2670 32/30 6 0.18 5.07 28.67 35.16/33.33 336 34.49 146.75 1873.77
c3540 47/46 4 0.06 0.67 4.03 35.33/33.63 171 304.41 260.38 15395.12
c5315 49/47 7 0.13 3.25 5.78 62.51/61.25 174 5.96 37.59 94.98
c6288 124/123 3 0.16 47.33 28.57 92.62/91.69 134 173.94 989.61 14018.60
c7552 43/42 6 0.05 2.66 9.77 37.60/35.25 435 48.26 120.63 891.55
cla.16 34/34 1 0.00 0.02 0.04 28.05/28.03 3 0.02 0.07 0.08
cbp.12.2 40/23 73 1.20 1.23 4.81 27.44/17.41 3856 142.62 209.58 539.44
cbp.16.4 44/27 83 1.01 1.34 5.64 31.72/20.64 5299 62.33 93.27 326.61
csa.16.4 41/22 91 0.54 0.33 2.73 35.51/19.90 7348 48.88 30.36 220.53
csa.32.4 81/30 571 9.92 14.75 48.28 72.00/28.42 45695 28.42 5158.47 13245.08

Table VI. Results for Various Delay Stepping Stategies Using Viability and Realistic Delays

Fractional Next Dynamic
Circuit LTP/$ It CNF GRASP It CNF GRASP It CNF GRASP

c432 21.81/21.46 36 0.32 0.31 23 0.30 0.23 11 0.37 0.26
c499 16.96/16.96 1 0.00 0.02 1 0.00 0.02 1 0.00 0.02
c880 18.06/18.06 1 0.00 0.03 1 0.00 0.03 1 0.00 0.03
c1355 23.19/22.76 85 2.51 3.35 77 2.56 3.33 16 3.00 4.20
c1908 26.00/23.36 881 1174.89 44.74 631 1164.66 42.87 30 36.87 1.43
c2670 35.16/33.33 336 34.49 146.75 210 31.25 124.38 28 9.22 28.94
c3540 35.33/33.63 171 304.41 260.38 158 299.29 262.01 15 94.38 178.14
c5315 62.51/61.25 174 5.96 37.59 59 3.64 22.40 20 1.55 10.38
c6288 92.62/91.69 134 173.94 989.61 134 172.33 1019.02 15 51.77 553.93
c7552 37.60/35.25 435 48.26 120.63 178 43.24 88.97 37 11.49 32.49
cla.16 28.05/28.03 3 0.02 0.07 3 0.02 0.07 5 0.04 0.13
cbp.12.2 27.44/17.41 3856 142.62 209.58 1088 75.96 104.90 65 3.23 7.98
cbp.16.4 31.72/20.64 5299 62.33 93.27 554 16.02 17.47 80 1.05 1.86
csa.16.4 35.51/19.90 7348 48.88 30.36 402 4.87 3.24 105 0.76 0.59
csa.32.4 72.00/28.42 45695 28.42 5158.47 12690 2044.94 3046.32 511 32.70 58.84

6.3 Delay Stepping Strategies
The delay computation results for the three delay stepping strategies analyzed,
using realistic delays and viability criteria, are shown in Table VI. Observing
the table one can easily conclude that the selection of the delay stepping strategy
significantly affects the overall efficiency of the algorithm. For fractional delay
stepping, a huge number of iterations is required to solve certain instances, with
the corresponding large CPU times. Using next delay stepping, a reduction in
the number of iterations is achieved. Finally, for dynamic stepping a dramatic
reduction in the number of iterations is observed, with the corresponding small
CPU times.

7. CONCLUSIONS
In this article we propose a unified propositional satisfiability modeling and
algorithmic framework for studying circuit delay computation. Different path

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.



Circuit Delay Computation • 157

sensitization criteria were considered and reasonably efficient results were ob-
tained. Regarding the SAT algorithms used, one class provides by far the most
efficient and robust results. The algorithms in this class (GRASP, RELSAT, and
SATO) use a number of search pruning techniques, which are shown to be par-
ticularly effective for solving circuit delay computation problems. Moreover,
more realistic delay models, which take into account extracted interconnect
delays and fanout data, were incorporated into the proposed modeling and al-
gorithmic framework. Preliminary results suggest that the approach is still
feasible, although necessarily more inefficient. Three delay stepping strate-
gies were considered: fractional delay stepping, next delay stepping and dy-
namic stepping. The dynamic stepping provides by far the most efficient and
robust results.

REFERENCES

ASHAR, P., MALIK, S., AND ROTHWEILER, S. 1993. Functional timing analysis using ATPG. In Pro-
ceedings of the European Design Automation Conference.

BARTH, P. 1995. A Davis–Putnam based enumeration algorithm for linear pseudo-Boolean opti-
mizations. Tech. Rep. MPI-I-95-2-003 (Jan.), Max-Planck-Institut für Informatik.

BAYARDO, JR., R. AND SCHRAG, R. 1997. Using CSP look-back techniques to solve real-world SAT
instances. In Proceedings of the National Conference on Artificial Intelligence (AAAI’97 ).

BENKOSKI, J., MEERSCH, E. V., CLAESEN, L., AND DE MAN, H. 1987. Efficient algorithms for solving
the false path problem in timing verification. In Proceedings of the International Conference on
Computer-Aided Design (Nov.), 44–47.

BERGAMASCHI, R. 1991. The effects of false paths in high-level synthesis. In Proceedings of the
International Conference on Computer Aided-Design (Nov.).

CHEN, H.-C. AND DU, D. H. C. 1991. Path sensitization in critical path problem. In Proceedings of
the International Conference on Computer Aided-Design (Nov.), 208–211.

DAVIS, M. AND PUTNAM, H. 1960. A computing procedure for quantification theory. J. ACM 7,
201–215.

DEVADAS, S., KEUTZER, K., AND MALIK, S. 1993. Computation of floating-mode delay in combina-
tional circuits: Practice and implementation. IEEE Trans. CAD 12, 12 (Dec.), 1924–1936.

FREEMAN, J. W. 1995. Improvements to propositional satisfiability search algorithms. PhD Thesis,
Department of Computer and Information Science, University of Pennsylvania.

GROOTE, J. AND WARNERS, J. 1999. The propositional formula checker HeerHugo. Tech. Rep. SEN-
R9905, Centre for Mathematics and Computer Science (CWI), Amsterdam, The Netherlands.

GUERRA E SILVA, L., MARQUES-SILVA, J., SILVEIRA, L. M., AND SAKALLAH, K. A. 1998a. Realistic de-
lay modeling in satisfiability-based timing analysis. In Proceedings of the IEEE International
Symposium on Circuits and Systems (Monterey, CA, May–June).

GUERRA E SILVA, L., MARQUES-SILVA, J., SILVEIRA, L. M., AND SAKALLAH, K. A. 1998b. Timing anal-
ysis using propositional satisfiability. In Proceedings of the IEEE International Conference on
Electronics, Circuits and Systems (Lisboa, Portugal, Sept.).

HRAPČENKO, V. 1978. Depth and delay in a network. Soviet Math. Dokl. 19, 4.
LARRABEE, T. 1992. Test pattern generation using Boolean satisfiability. In IEEE Trans. Comput.

Aided Des. 11 (Jan.), 4–15.
LI, C. M. AND ANBULAGAN. 1997. Look-ahead versus look-back for satisfiability problems. In Pro-

ceedings of the International Conference on Principles and Practice of Constraint Programming.
MARQUES-SILVA, J. AND SAKALLAH, K. A. 1994. Efficient and robust test-generation based timing

analysis. In Proceedings of the International Symposium on Circuits and Systems, 303–306.
MARQUES-SILVA, J. AND SAKALLAH, K. A. 1996. GRASP: A new search algorithm for satisfiability.

In Proceedings of the International Conference on Computer-Aided Design (Nov.), 220–227.
MCGEER, P. C. 1989. On the interaction of functional and timing behavior of combinational logic

circuits. PhD Thesis, Department of Electrical Engineering and Computer Science, University
of California at Berkeley, Berkeley, CA.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.



158 • L. Guerra e Silva et al.

MCGEER, P. C. AND BRAYTON, R. K. 1991. Integrating Functional and Temporal Domains in Logic
Design. Kluwer Academic, Norwell, Mass.

MCGEER, P. C., SALDANHA, A., STEPHAN, P. R., BRAYTON, R. K., AND SANGIOVANNI-VINCENTELLI, A. L. 1991.
Timing analysis and delay-fault test generation using path-recursive functions. In Proceedings
of the International Conference on Computer Aided-Design, 180–183.

STEPHAN, P. R., BRAYTON, R. K., AND SANGIOVANNI-VINCENTELLI, A. L. 1992. Combinational test
generation using satisfiability. Tech. Rep. UCB/ERL M92/112 (Oct.), Department of Electrical
Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA.

YALCIN, H. AND HAYES, J. P. 1995. Hierarchical timing analysis using conditional delays. In
Proceedings of the International Conference on Computer Aided-Design (Nov.).

ZHANG, H. 1997. SATO: An efficient propositional prover. In Proceedings of the International
Conference on Automated Deduction (July), 272–275.

Received March 2000; accepted July 2001

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.


