
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 1, JANUARY 2010 157

were run on an Intel Xeon running at 3.20 GHz machine with 3 GB
of RAM running Linux Red Hat 3.4.26.fc3. The running time given
comprises the entire exploration process including the HLS.

B. Results and Discussion

Table II shows the results of the DSE. From the experiments it
can be observed that our clustering method is on average 90% and
92% faster than the annealer method for the CDS-Exp(min) and CDS-
Exp(max) method respectively. The drawback is that on average only
36% and 47% of all Pareto optimal designs are found. Table II also
shows that our methods on average finds the smallest design that is
7% and 9% larger than the actual smallest case and 28% and 32%
longer latency respectively. Although approximately one third and
one half, respectively, of the Pareto optimal points are not found the
smallest and fastest designs are found in some cases and in most cases
almost found. This is important as in most cases these are the designs
that are finally used and provide the boundary points of the explo-
ration. In order to expand the search space using our method more
clustering stages could be introduced changing the clusters attributes
more often. This would find more optimal points at the expense of
increasing the design space increasing, therefore, the runtime.

VI. Conclusion

High-level synthesis is becoming a must in state of the art
hardware designs. Designers can no longer describe and model
entire systems on chips in low-level languages and need to raise
the level of abstraction. Tools that bridge the gap between untimed
high-level languages and RTL are needed. In this paper, we present
a DSE method to speed up the exploration of high-level language
design descriptions given in C and SystemC. The presented method,
called CDS-ExpA, is based on a clustering method that clusters
explorable operations and assigns a fix set of attributes to these based
on the global cost function in order to reduce the design space. Two
variations of the CDS-Exp are presented. CDS-ExpA(min) creates the
smallest possible clusters and CDS-ExpA(max) the largest possible
ones. The trade-offs between further reducing the design space by
building larger clusters versus smaller is also investigated. Results
show that the DSE dramatically reduces the runtime by around 90%
at a cost of missing on average 36% and 47% of all Pareto optimal
designs. On the other hand the smallest and fastest designs are found
in many cases and on average 7% and 9% respectively larger than
the actual smallest case and 28% and 32% longer latency designs are
found. We believe that this exploration method is a valid solution for
initial DSEs as half of the Pareto points are found and closely the
smallest and fastest ones which provides valuable design information
to the designer at the earliest design stage extremely fast.

References

[1] B. C. Schafer, T. Takenaka, and K. Wakabayashi, “Adaptive simulated
annealer for high-level synthesis design space exploration,” in Proc.
Int. Symp. Very-Large-Scale Integration Design, Automat., Test, 2009,
pp. 106–109.

[2] Behavioral Description Language [Online]. Available:
http://www.cyberworkbench.com

[3] Single Assignment C (SA-C) [Online]. Available: http://www.cs.
colostate.edu/cameron

[4] C. Haubelt, T. Schlichter, J. Keinert, and M. Meredith, “SystemCo-
Designer: Automatic design space exploration and rapid prototyp-
ing from behavioral models,” in Proc. Design Automat. Conf., 2008,
pp. 580–585.

[5] M. Kim, S. Banerjee, N. Dutt, and N. Venkatasubramanian, “Design
space exploration of real-time multimedia MPSoCs with heterogeneous
scheduling policies,” in Proc. Int. Conf. Hardware/Software Codesign
Syst. Synthesis (CODES+ISSS), 2006, p. 1621.

[6] S. Mamagkakis, D. Atienza, C. Poucet, F. Catthoor, D. Soudris, and
J. M. Mendias, “Automated exploration of pareto-optimal configurations
in parameterized dynamic memory allocation for embedded systems,” in
Proc. Design, Automat., Test Eur., 2006, pp. 874–875.

[7] I. Ahmad, M. Dhodi, and F. Hielscher, “Design-Space exploration for
high-level synthesis,” in Proc. IEEE 13th Ann. Int. Phoenix Conf.
Comput. Commun., 1994, pp. 491–496.

[8] M. Holzer, B. Knerr, and M. Rupp, “Design space exploration with
evolutionary multiobjective optimization,” in Proc. Ind. Embedded Syst.,
2007, pp. 125–133.

[9] C. Haubelt and J. Teich, “Accelerating design space exploration,” in
Proc. Int. Conf. Applicat.-Specific Integr. Circuit, 2003, pp. 79–84.

[10] V. Kianzad and S. S. Bhattacharyya, “CHARMED: A multiobjective
cosynthesis framework for multimode embedded systems,” in Proc.
IEEE Int. Conf. Applicat.-Specific Syst., Architect., Processors, 2004,
pp. 28–40.

[11] S. Bilavarn, G. Gogniat, J.-L. Philippe, and L. Bossuet, “Design space
pruning through early estimation of area/delay trade-offs for FPGA
implementations,” in Proc. Int. Conf. Comput. Aided Design, vol. 25.
Oct. 2006, pp. 1950–1968.

[12] I. D. L. Anderson and M. A. S. Khalid, “SC Build: A computer-aided
design tool for design space exploration of embedded central processing
unit cores for field-programmable gates arrays,” Inst. Eng. Technol.
Comput. Digital Tech., vol. 3, no. 1, pp. 24–32, Jan. 2009.

[13] B. So, M. W. Hall, and P. C. Diniz, “A compiler approach to
fast hardware design space exploration in FPGA-based systems,”
in Proc. Conf. Program. Language Design Implement., Jun. 2002,
pp. 165–176.

[14] B. So, P. C. Diniz, and M. W. Hall, “Using estimates from behavioral
synthesis tools in compiler-directed design space exploration,” in Proc.
Design Automat. Conf., 2003, pp. 514–519.

[15] P. Coussy and A. Moraweic, “All-in-C behavioral synthesis and ver-
ification with CyberWorkBench” in High-Level Synthesis from Algo-
rithm Digital Circuit. Berlin, Germany: Springer-Verlag, 2008, ch. 7,
pp. 113–127.

Effective Corner-Based Techniques
for Variation-Aware IC Timing Verification

Luis Guerra e Silva, Joel Phillips, and L. Miguel Silveira

Abstract—Traditional integrated circuit timing sign-off consists of
verifying a design for a set of carefully chosen combinations of process

Manuscript received July 11, 2008; revised April 17, 2009 and July 24,
2009. Current version published December 18, 2009. This work was supported
by Cadence Design Systems, Inc., San Jose, CA, USA. This paper was
recommended by Associate Editor R. Suaya.

L. G. e Silva is with INESC-ID Lisbon and with the Department of Infor-
mation Systems and Computer Science, Instituto Superior Técnico, Technical
University of Lisbon, 1049-001 Lisbon, Portugal (e-mail: lgs@inesc-id.pt).

L. M. Silveira is with INESC-ID Lisbon and with the Department of
Electrical and Computer Engineering, Instituto Superior Técnico, Technical
University of Lisbon, 1049-001 Lisbon, Portugal and also with Cadence
Research Laboratories, Cadence Design Systems, Berkeley, CA 94704 USA
(e-mail: lms@inesc-id.pt).

J. Phillips is with Cadence Research Laboratories, Cadence Design Systems,
Berkeley, CA 94704 USA (e-mail: jrp@cadence.com).

Digital Object Identifier 10.1109/TCAD.2009.2034343

0278-0070/$26.00 c© 2010 IEEE

158 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 1, JANUARY 2010

and operating parameter extremes, referred to as corners. Such corners
are usually chosen based on the knowledge of designers and process
engineers, and are expected to cover the worst-case fabrication and op-
erating scenarios. With increasingly more detailed attention to variability,
the number of potential conditions to examine can be exponentially large,
more than is possible to handle with straightforward exhaustive analysis.
This paper presents efficient yet exact techniques for computing worst-
delay and worst-slack corners of combinational and sequential digital
integrated circuits. Results show that the proposed techniques enable
efficient and accurate detection of failing conditions while accounting for
timing variability due to process variations.

Index Terms—Corner, timing, variability, verification.

I. Introduction

Parametric performance models, where performance metrics, most
commonly related to timing and power, are expressed as functions
of parameter variations, have been introduced for early prediction
and detection of integrated circuit (IC) performance issues due to
process variability, inherent to the latest nanometric IC technologies.
New analysis techniques that make use of these parametric models
have likewise been proposed. The most significant such example
is statistical static timing analysis (SSTA), where parameters are
treated as distributions rather than fixed numerical values. Several
promising SSTA modeling techniques have been proposed [1]–[4],
some of which are already implemented in commercially available
tools. However, SSTA is mostly used as an aid in design optimization.
Therefore, for the most part, the industry golden standard method-
ology for timing sign-off still resorts to traditional corner analysis
techniques.

Even though SSTA techniques have received the most attention
in the literature, the parametric delay modeling technologies they
advocate have much wider applicability. In particular, they can be
used in reducing pessimism and automating well established timing
verification methodologies. Conventional IC timing sign-off consists
in verifying a design for a set of carefully selected combinations of
process and operating parameter extremes, commonly referred to as
corners, that are expected to cover the worst-case scenarios. However,
there is no established systematic methodology for picking such
worst-case corners in a realistic manner, and this task usually relies
on the experience of design and process engineers. Compounding
the problem, for feature sizes in the nanometric scale, the number
of parameters to be considered increases significantly. In an effort
to overcome this limitation of established timing sign-off method-
ologies, this paper proposes an efficient automated methodology for
computing the worst-timing corners in a digital integrated circuit,
when parametric delay models are available. Specifically, we address
the computation of worst-delay corners of combinational blocks and
of worst-slack corners of sequential circuits. In this approach, param-
eters only need to be characterized by their respective value ranges.
The proposed methodology casts the computation of the worst-timing
corners as a search problem, which provides an intellectual paradigm
that is more general and useful than most previous approaches.

While it has become commonplace in the literature to argue for a
shift away from a corner-based analysis to a statistical methodology,
there are important reasons to improve the efficiency of a corner-like
methodology. First, such techniques are easily integrated within cur-
rently used design and verification paradigms. Second, they impose
less stringent requirements on parameter characterization. Finally,
efficient worst-case analysis can be a complementary technique to

SSTA, by providing insight into unusual circuit operating conditions.
This last setting is a primary motivator for our paper.

Recently, Onaissi and Najm [5] have proposed a linear-time
approach for timing analysis of combinational circuits that computes
a delay upper bound estimate, covering all process corners. Such
estimate is just a conservative approximation, and the corresponding
worst-delay corner cannot be inferred from such estimate. Further, it
is difficult, if not impossible, to trace the corresponding critical path.
The goal of our paper is quite different, as we target the determination
of the exact worst-delay corner and associated paths. Additionally,
unlike [5] our paper covers the analysis of sequential circuits.

This paper is organized as follows. Section II introduces a few
basic concepts and notation. Section III formulates the worst-delay
corner problem and discusses exhaustive procedures for its solution.
Section IV describes a worst-delay corner computation technique,
proposed in [6]. Section V proposes a novel technique for comput-
ing worst-slack corners of sequential circuits. Section VI discusses
the experimental results and Section VII presents brief concluding
remarks.

II. Background

This section introduces background information. We start by re-
viewing the concept of timing graph, used to represent the timing
information of a circuit. Subsequently, we introduce the parametric
affine delay formulation used throughout the paper and sometimes
referred to as the canonical representation in the SSTA literature [4].

A. Timing Graph

The timing information of a circuit is modeled by a timing graph
G = (V, E), where vertices, v ∈ V , correspond to pins in the circuit,
and directed edges, e ∈ E, correspond to pin-to-pin delays in cells or
interconnect. Each edge is annotated with the corresponding delay.
Further, some vertices are annotated with timing constraints, such
as required arrival times. The primary inputs are vertices with no
incoming edges. All vertices with no outgoing edges are primary
outputs, but there may also be primary outputs with outgoing edges.
The sets of primary inputs and outputs of G are respectively PI(G)
and PO(G). A complete path is a sequence of edges, connecting a
primary input to a primary output. A partial path is a sequence of
edges connecting any two vertices. A complete path will be referred
to simply as a path.

Cell and interconnect delays are the result of a delay calculation
procedure, where slews are forward propagated across the circuit and,
using appropriate cell and interconnect models, the delays and output
slews for each component are computed. Cell delays are annotated in
the edges connecting the vertices corresponding to input/output pins
of the cell. Interconnect delays are annotated in the edges connecting
the vertices corresponding to port/tap pins of interconnect nets. It
is out of the scope of this paper to discuss the delay computation
procedure [7] therefore, in the following, we will assume that the
timing information of any circuit is already made available in the
form of a timing graph.

B. Parametric Delay Formulation

This paper assumes delays to be described by affine functions of
process and operational parameter variations, corresponding to a first-
order linearization of every delay, d, around a nominal point, λ0, in
the parameter space. Considering the parameter space to have size

GUERRA E SILVA et al.: EFFECTIVE CORNER-BASED TECHNIQUES FOR VARIATION-AWARE IC TIMING VERIFICATION 159

p, and representing d as a function of the incremental parameter
variation vector, "λ = λ − λ0, around a nominal value λ0, we obtain

d("λ) = d0 +
p∑

i=1

di"λi = d0 + dT "λ (1)

where d0 = d(λ0) is the nominal value of d and di is the sensitivity
of d to parameter λi, i = 1, 2, . . . , p, computed at the nominal point
λ0. This representation is mathematically equivalent to the canonical
formulation prescribed in [4], but the interpretation and subsequent
treatment is, as we shall see, quite different. Throughout this paper,
and without loss of generality, we will assume that all the parametric
formulas have been normalized such that "λ ∈ [0, 1]p.

When delays are given in the form of (1), arrival times can be
exactly represented by piecewise-affine functions, since they are
the result of a sequence of min/max and sum operations between
piecewise-affine functions and affine functions. An important prop-
erty of affine functions is their convexity [8]. Both the min/max and
sum operators produce convex functions when operating on convex
functions. In the context of timing analysis, convexity implies that
the smallest/largest delay or arrival time is obtained by setting each
parameter to one of its extreme values. For the simple case of delays
that are represented by affine functions this value is fairly easy to
compute. Assuming that "λi ∈ [0, 1], if in (1) we set to 1 all the
parameter variations with positive sensitivities, and to 0 the remaining
ones, we are maximizing the value of the affine delay function over
the parameter space, therefore obtaining the maximum value

max
"λ

[d("λ)] = d("λ∗) = d0 +
p∑

i=1

di"λ∗
i (2)

where the maximizing parameter variation assignment is

"λ∗
i =

{
1 if di ≤ 0

0 if di > 0
, i = 1, 2, ..., p . (3)

The min can be computed by symmetry. For affine functions this
computation takes linear-time in the number of parameters, however,
for piecewise-affine functions this computation is much more expen-
sive, since it requires an implicit or explicit enumeration of all the
2p possible solutions (corners), which makes it exponential in the
number of parameters.

III. Worst-Delay Corner

This section formulates the problem of computing the worst-delay
corner (WDC) of a combinational circuit, and discusses exhaustive
methods for its solution.

A. Problem Formulation

Consider the timing graph of a combinational block with n inputs
and m outputs. Assuming that delays, annotated in edges, are affine
functions of the process parameters, as in (1), then any delay, di,j("λ),
from an input i to an output j can be accurately represented by a
piecewise-affine function.

The WDC problem, consists in computing an assignment, "λ∗,
to the parameter variation vector, "λ, that produces the worst-delay,
di,j("λ), from any input i = 1, . . . , n to any output j = 1, . . . , m.

In late mode, the worst-delay is the largest delay. Assuming that
dlate

i,j ("λ) is the piecewise-affine function of the delay in late mode

from input i to output j, then the WDC problem is formulated as

max
"λ

{
max

j=1,...,m

[
max

i=1,...,n
dlate

i,j ("λ)

]}
. (4)

As we have seen, since arrival times are represented by piecewise-
affine functions which are convex, their largest value is obtained
by setting each parameter variation to one of its extreme values.
Therefore, this problem can be cast as a combinatorial optimization
problem. The major difficulty with this type of discrete problems,
as opposed to continuous linear problems, is that we do not have
any optimality conditions to check whether a given feasible solution
is optimal or not. In order to conclude that a feasible solution is
optimal, we must somehow compare its cost with the cost of all the
other feasible solutions. This amounts to always explore the entire
solution space, either explicitly or implicitly, by a complete or partial
enumeration of all the feasible solutions and their associated costs.

B. Exhaustive Methods

The simplest exhaustive algorithm that can be conceived for com-
puting the WDC consists in evaluating the delay of the circuit for each
of the 2p possible parameter variation corners, and verifying which
corner produces the worst circuit delay, which corresponds to the
WDC. Clearly, this algorithm has exponential run-time complexity
in the number of parameters.

Another possible approach consists instead in computing the WDC
over all paths, rather than over all corners. Since the number of
paths can grow exponentially with the number of vertices, and this
procedure must be applied to every single path, the overall procedure
can have, in the worst-case, an exponential run-time complexity.

As can easily be concluded, both exhaustive methods exhibit
exponential run-time complexity, either in the number of parameters
or in the number of vertices. For very small circuits, or when
a small number of parameters is of interest, they may constitute
viable options. However, even average size circuits will render both
approaches unpractical, due to the excessive run-time required for
their successful completion.

IV. Dynamic Pruning

In this section, we propose an approach for computing the WDC
using branch-and-bound techniques [9], in order to dynamically prune
parts of the search space and therefore avoid an explicit enumeration
of all the possible solutions.

In the previous sections we did not make explicit the meaning
of worst, as it can represent the largest or smallest value of a given
timing estimate. For the sake of clarity, and without loss of generality,
in the following we will assume that the worst value of a given
estimate it is its maximum value.

Both parameter-based and path-based exhaustive search algorithms
described earlier can be improved by employing branch-and-bound
techniques. To understand how this can be achieved, we detail a
path-based search algorithm that is able to efficiently compute the
worst-delay corner, by finding one path where it occurs. Considering
one primary output at a time, the algorithm performs an implicit
search over all the complete paths that end at that output, that we will
designate as the active primary output. The timing graph is traversed
in a backward fashion, starting at the active primary output, going
through the internal vertices, and eventually ending at the primary
inputs (if no pruning is performed). The vertex being explored in a

160 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 1, JANUARY 2010

given step is designated by current vertex. The path taken to reach
that vertex from the active primary output is designated by trail.
When reconvergent fanouts exist, the same vertex can be reached
from the same primary output, through distinct trails. The worst-delay
(e.g., maximum delay), w∗, among the delays of the complete paths
already analyzed, is continuously updated, as well as its originating
parameter variation assignment, "λ∗. For each step, where the current
vertex is v, the algorithm relies on three parametric delay estimates.

1) din
v is an upper bound on the delay of all the partial paths that

start at a primary input and end in v (e.g., in the fanin cone of
v).

2) dout
v is the exact delay of the trail path, that starts in the current

vertex, v, and ends in the active primary output.
3) dpath

v = din
v +dout

v , which represents an upper bound on the delay
of all the complete paths that include the trail.

As v gets closer to the primary inputs, the upper bound given by
din

v gets tighter. If v is a primary input: din
v = 0 and dpath

v = dout
v is

the exact delay of the trail, rather than an upper bound.
The rationale underlying the proposed algorithm is that if the

worst-delay, among all the complete paths going through v and
including the trail, max"λ[dpath

v], or an upper bound of such delay,
is not larger than the worst-delay already computed for some other
complete path, w∗, then it is useless to further explore the fanin cone
of v, as the worst-delay, w∗, cannot be improved by such action.

The pseudocode of the algorithm is presented in function WDC-
PATH-BNB. It receives the timing graph, G, as the single argument
and returns a tuple, 〈w∗, "λ∗〉, with the worst-delay value and its
originating parameter variation assignment, respectively.

The algorithm starts by invoking INITIALIZE on the timing graph,
G, which performs a forward levelized breadth-first traversal of

the timing graph and, for each vertex v, computes the parametric
formula for din

v . This formula, and delay upper bounds in general, are
computed by performing a max operation over the sum of the delay
of each incoming edge with the din estimate of the corresponding
source vertex. The upper bounds can either be constant values, affine
functions or piecewise-affine functions, depending on how the max
function is implemented.

After completing the initializations, the algorithm processes the
primary outputs, one at a time. For every primary output it invokes
the recursive function PROCESS-VERTEX, that performs a backwards
depth-first traversal of the timing graph toward the primary inputs.
In each step, a given vertex v is visited (e.g., deemed the current
vertex), and one of its fanins is scheduled to be visited in the next
step. Therefore, the current vertex v is always connected to the active
primary output by the incomplete path used to reach v, that we already
designated by trail. All the vertices along the trail were visited before
v. For a given vertex v, the exact delay of the trail, dout

v , can be
computed by adding the delay of all the edges in the trail. That
computation is implicitly performed in Process-Vertex. The value of
dpath

v , computed by adding din
v and dout

v , is an upper bound on the
delay of any path that contains v, starts at any primary input, and
reaches the active primary output trough the trail. dpath

v is an affine
function of the parameter variations. The worst value of dpath

v , that
we designate by w, and the corresponding corner, that we designate
by "λ, can be computed by applying (2) and (3).

If w is smaller than the largest (worst) known delay, w∗, computed
so far, then the worst-delay path cannot contain the trail, and therefore
we stop the traversal at this vertex, and backtrace within the trail. If
w is larger than w∗, and v is a primary input, then there is a complete
path with delay larger than the largest known delay computed so far,
and therefore the largest known delay is updated, which corresponds
to update the value of w∗ with w. If we are not at a primary input,
the delay estimate is just an upper bound, and therefore it cannot be
used to update w∗. We proceed until all the paths in the circuit are
explicitly or implicitly explored. On termination, the largest known
delay w∗ and the corresponding corner, "λ∗, are the worst-delay and
the WDC of the circuit, respectively.

A similar set of branch-and-bound techniques can be applied when
searching in the parameter space (see [6] for details).

V. Worst-Slack Corner

Proper operation of a sequential circuit requires that the input data
line of any flip-flop must be stable for a specific period of time
before the capturing clock edge, designated by setup time, tsetup. Let
us assume that a flip-flop, with clock latency (i.e., delay from clock
source) lini , connected to the ith primary input of the combinational
block, is injecting data, and another flip-flop, with clock latency lout

j ,
connected to the jth primary output of the combinational block, is
capturing the result. Assuming that the clock edge is generated in
the clock source at time 0, then it will reach the injecting flip-flop
at time lini , making the data available at the primary input of the
combinational block. If the propagation delay in the combinational
block in late mode (i.e., considering that the output of a cell is
changed by the last input that changed), from the ith primary input
to the jth primary output, is dlate

i,j , then the results will be available in
the output at most at time lini +dlate

i,j . The next clock edge will reach the
capturing flip-flop at time T + lout

j . For a correct operation, the results
must be available at the jth primary output of the combinational block

GUERRA E SILVA et al.: EFFECTIVE CORNER-BASED TECHNIQUES FOR VARIATION-AWARE IC TIMING VERIFICATION 161

TABLE I

Results for Worst-Delay and Worst-Slack Corner Computation

Design #C #N |V | |E|
Path Exhaustive Path BnB Parameter Exhaustive Parameter BnB

#Search CPU(s) #Search CPU(s) #Search CPU(s) #Search CPU(s)
c432 88 124 415 575 1920392 3.4 561 <0.01 65536 27.45 1701 4.01
c1908 178 211 756 1065 3318560 6.22 1026 0.01 65536 67.88 2125 11.65
c3540 443 494 1882 2756 34153708 64.83 1052 <0.01 65536 299.31 2219 44.95
c5315 554 734 2644 3701 4218632 8.25 740 0.02 65536 417.06 701 23.94
c6288 1584 1653 5131 6998 >1571711079 >3000 2318098 8.62 65536 803.05 1339 133.18
c7552 820 1031 3483 4807 3788036 6.67 922 0.03 65536 550.29 1001 52.64

Design #C #S #N |V | |E|
Worst Setup Slack Worst Hold Slack

Path Exhaustive Path Bnb Path Exhaustive Path BnB
#Search CPU(s) #Search CPU(s) #Search CPU(s) #Search CPU(s)

s838 1 265 33 334 1002 1409 11526 0.01 176 <0.01 11526 0.03 64 <0.01
s1423 469 75 563 1829 2609 452286 0.85 334 0.03 452286 0.90 214 0.02
s9234 1 726 150 920 2999 4337 159966 0.30 402 0.03 159966 0.30 208 0.03
s5378 799 166 1058 3468 5049 67706 0.12 156 0.04 67706 0.16 70 0.03
s38584 5243 1187 6455 22863 34003 394194 0.81 138 0.43 394194 0.77 30 0.42
s38417 5517 1597 7153 25750 39948 15284978 29.28 298 0.61 15284978 30.51 34 0.63
s35932 6825 1763 8916 29305 43056 318414 1.01 222 0.70 318414 1.06 86 0.68

tsetup time before the next clock edge reaches the capturing flip-flop.
Therefore, the setup time in the capturing flip-flop is observed only
if the following condition holds

lini + dlate
i,j ≤ T + lout

j − tsetup. (5)

This condition must hold for every 〈i, j〉 input/output flip-flop pair.
For a given output flip-flop j this set of constraints can be compactly
written as

max
i=1,...,n

(lini + dlate
i,j) ≤ T + lout

j − tsetup. (6)

This expression induces a slack s
setup
j , defined as

s
setup
j = T + lout

j − tsetup − max
i=1,...,n

(lini + dlate
i,j) (7)

that is nonnegative when the conditions are met and negative other-
wise. The worst-slack corner for s

setup
j is the corner where its value

is minimized, formally

max
"λ

(−s
setup
j) = max

"λ

[
max

i=1,...,n
(lini + dlate

i,j) − T − lout
j + tsetup

]
. (8)

The corner, "λ∗, that maximizes the value of −s
setup
j among all

outputs j = 1, . . . , m is given by

max
"λ

{
max

j=1,...,m

[
max

i=1,...,n
(lini + dlate

i,j) − T − lout
j + tsetup

]}
. (9)

Comparing (4) and (9) we can easily detect that they exhibit a similar
structure. For building (9), having (4) as a starting point, we only
need to add the clock latency, lini , inside the max in i, corresponding
to the inputs, and subtract the required arrival time, T + lout

j − tsetup,
inside the max in j, corresponding to the outputs. Therefore, it can
be concluded that the worst setup slack corner problem can be cast
as an instance of the WDC problem, if the original timing graph of
the combinational block is modified by adding edges with the input
clock latency and required arrival time.

A similar formulation can be employed in the computation of worst
hold slacks, as well as slacks induced by other types of parametric
arrival times.

VI. Experimental Results

The proposed algorithms were coded in C++. Benchmark circuits,
selected from the ISCAS suite were synthesized and mapped to a
90 nm industrial technology. As process parameters, we considered
the widths and thicknesses of the eight metal layers needed to route
each circuit, resulting in a total of 16 parameters. For each circuit
a timing graph was generated having affine cell/interconnect delays
annotated as edge properties.

The experimental results for worst-delay corner computation and
worst-slack corner computation are presented in Table I. All the
experiments where conducted on a machine with an AMD Opteron
850 processor at 2.4 GHz, and 32 GB of RAM. For the benchmark
circuits presented, the memory never exceeded 600 MByte. “#C,”
“#S,” and “#N” columns report the number of combinational cells,
the number of sequential cells and the number of nets, respectively.
“|V |” and “|E|” report the number of vertices and edges in the
corresponding timing graph. For each analysis method, “#Search”
and “CPU” report the amount of search and the CPU time in seconds.
For path-based methods the amount of search is the number of vertex
visits, while for parameter-based methods the amount of search is
the number of decisions. The proposed branch-and-bound-based
algorithms are exact. The computed worst corner/delay/slack results
are the same as their corresponding exhaustive versions. There are
no errors or approximations in the analysis. Therefore, due to space
constraints we are not showing the corner and delay/slack values.

Table I presents the results for WDC computation in combinational
circuits, using path-based and parameter-based approaches. For each
approach an exhaustive and a branch-and-bound-based procedure
were evaluated. Clearly, the branch-and-bound techniques are quite
effective in reducing the amount of search. The computational
overhead incurred by the branch-and-bound approaches is largely
compensated by the CPU time saved during the search procedure. The
path-based approaches seem to be the most effective, even in the ex-
haustive case. A exception is the design c6288 for which the exhaus-
tive path-based procedure does not terminate after 3000 s, most likely
due to the huge number of paths. It is also in this design that the effi-
ciency of the branch-and-bound techniques is most noticeable, as the
path-based branch-and-bound procedure completes in less than 9 s.

162 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 1, JANUARY 2010

Table I also presents the results for worst-slack corner computation
in sequential circuits, for setup and hold slacks, obtained by applying
path-based WDC computation procedures. Once more the branch-
and-bound procedure yields a significant reduction in the amount of
search, consequently producing a significant reduction in the CPU
time. Such reduction is most noticeable for design s38417. Clearly,
this problem seems to be much easier to solve than the WDC problem.
This is not surprising, since the depth of the combinational blocks
in the sequential benchmark circuits is typically much smaller than
the depth of the combinational benchmark circuits, and therefore
the number of potential paths between two registers it is also much
smaller than the number of paths in a combinational circuit.

VII. Conclusion

This paper proposes a set of efficient branch-and-bound-based
techniques for automating the computation of the exact worst-timing
corners of combinational and sequential circuits, when delays are
represented by affine functions of the process parameters. These
techniques are particularly adequate for handling variability effects,
that are of extreme relevance in the latest nanometric IC technologies.
Experimental evidence demonstrates that such techniques are quite
effective, outperforming exhaustive approaches by several orders of
magnitude.

Acknowledgments

The authors would like to thank A. Kuehlmann, C. Albrecht, V.
Kariat, and I. Keller for their helpful discussions.

References

[1] J.-J. Liou, K.-T. Cheng, S. Kundu, and A. Krstic, “Fast statistical
timing analysis by probabilistic event propagation,” in Proc. Assoc.
Comput. Mach./IEEE Des. Automat. Conf., Las Vegas, NV, Jun. 2001,
pp. 661–666.

[2] S. Bhardwaj, S. B. K. Vrudhula, and D. Blaauw, “Tau: Timing analysis
under uncertainty,” in Proc. Int. Conf. Comput. Aided Des., San Jose, CA,
Nov. 2003, pp. 615–620.

[3] H. Chang and S. S. Sapatnekar, “Statistical timing analysis considering
spatial correlations using a single Pert-like traversal,” in Proc. Int. Conf.
Comput. Aided Des., San Jose, CA, Nov. 2003, pp. 621–625.

[4] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, and
S. Narayan, “First-order incremental block-based statistical timing anal-
ysis,” in Proc. Assoc. Comput. Mach./IEEE Des. Automat. Conf., San
Diego, CA, Jun. 2004, pp. 331–336.

[5] S. Onaissi and F. N. Najm, “A linear-time approach for static timing
analysis covering all process corners,” IEEE Trans. Comput. Aided Des.,
vol. 27, no. 7, pp. 1291–1304, Jul. 2008.

[6] L. Guerra e Silva, J. Phillips, and L. M. Silveira, “Efficient computation
of the worst-delay corner,” in Proc. Des. Automat. Test Eur. Exhib. Conf.,
Nice, France, Apr. 2007, pp. 1–6.

[7] L. Guerra e Silva, Z. Zhu, J. Phillips, and L. M. Silveira, “Variation-aware,
library compatible delay modeling strategy,” in Proc. Int. Federation Inf.
Process. Very Large Scale Integr.-Syst. Chip Conf., Nice, France, Oct.
2006, pp. 122–127.

[8] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[9] E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,”
Oper. Res., vol. 14, no. 4, pp. 699–719, Jul.–Aug. 1966.

