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Abstract

In this paper we describe a flexible and efficient new
algorithm for model order reduction of parameterized sys-
tems. The method is based on the reformulation of the para-
metric system as a parallel interconnection of the nominal
transfer function and the non-parametric transfer function
sensitivities with respect to the parameter variations. Such
a formulation reveals an explicit dependence on each pa-
rameter which is exploited by reducing each component sys-
tem independently via a standard non-parametric structure
preserving algorithm. Therefore, the resulting smaller size
interconnected system retains the structure of the original
with respect to parameter dependence. This allows for bet-
ter accuracy control, enabling independent adaptive order
determination with respect to each parameter and adding
flexibility in simulation environments. It is shown that the
method is efficiently scalable and preserves relevant system
properties such as passivity. The new technique can han-
dle fairly large parameter variations on systems whose out-
puts exhibit smooth dependence on the parameters. Several
examples show that besides the added flexibility and con-
trol, when compared with competing algorithms, the pro-
posed technique can, in some cases, produce smaller re-
duced models with potential accuracy gains.

1 Introduction

As we step toward the nano-scale and higher frequency
eras, parameter variability can no longer be disregarded as
it directly impacts system behavior and performance. In re-
cent years, interconnect has become a dominant factor in
such performance. Interconnect models are usually repre-
sented by large systems of frequency dependent linear equa-
tions. Accounting for the effects of manufacturing or op-
erating variability, such as geometric parameters, temper-
ature, etc., leads to parametric interconnect models whose
complexity must be tackled both during the design and ver-
ification phases. For this purpose, Model Order Reduction
(MOR) techniques that can handle parameterized descrip-
tions are being considered as essential in the determination
of correct system behavior. The systems generated after
Parametric MOR (pMOR) must retain the ability to model
the effects of both geometric and operating variability as
well as variations caused by small random fluctuations, in
order to accurately predict behavior and optimize designs.

Several pMOR techniques have been developed for mod-
eling large-scale parameterized systems. The most com-
mon and effective ones appear to be extensions of the ba-
sic MOR algorithms [7, 9] to handle parameterized descrip-
tions. An example of these are multiparameter moment-
matching pMOR methods which match, via different ap-
proaches, generalized moments of the parametric transfer
function, and build an overall projector. This can be ac-
complished by accounting for the functional dependence on
both the frequency as well as the parameters and matching
moments of the joint space [1, 5], or simply matching the
moments of the individual parameter spaces [3]. However,
the structure of such methods may present some computa-
tional problems, and the resulting system models usually
suffer from oversize when the number of moments to match
is high, either because high accuracy (order) is required
or because the number of parameters is large. Sample-
based techniques have been proposed in order to contain
the large growth in model order for multiparameter, high
accuracy systems [8, 11]. They rely on sampling of the
multi-dimensional frequency and parameters space. This
approach allows the inclusion of a priori knowledge of the
parameter variation, and provides some error estimation.
However, the issue of sample selection becomes particularly
relevant, as the sampling must now be done in a potentially
high-dimensional space.

A different approach based on a Taylor-series represen-
tation of the effect of parameters on the output of the system
has been proposed in [6]. This approach is interesting as it
directly captures the parametric dependence in an explicit
sense, being able to tackle fairly large parameter variations
in some scenarios. Unfortunately the technique does not
guarantee desirable model characteristics, such as passiv-
ity, and the parametric dependence is lost in the resulting
model. Therefore, the method is not efficiently scalable if
higher order approximation on the parameters is required.

In this paper we present a new algorithm for model or-
der reduction of parameterized systems. Similar to [6],
the method is based on the reformulation of the paramet-
ric system revealing an explicit dependence on each pa-
rameter. Unlike [6], however, here this dependence is di-
rectly exploited by reducing each component system inde-
pendently. Therefore, in the proposed approach, the result-
ing reduced model retains the structure of the original with
respect to parameter dependence. This allows for better ac-
curacy control, enabling independent adaptive order deter-
mination with respect to each parameter and adding flexibil-
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ity in simulation environments. Furthermore, the procedure
is shown to guarantee passivity and is efficiently scalable if
higher accuracy, thus higher order is required.

The paper is structured as follows: in Section 2 an
overview of pMOR and the existing techniques is presented,
along with a discussion of their pros and cons. In Section 3
the new scheme will be introduced, starting with a descrip-
tion of the underlying representation and the methodology
for reduction. We argue that the reduction effort and the Re-
duced Order Model (ROM) size are fairly independent from
the variation range envisioned. We also show that the proce-
dure preserves passivity of the model. In Section 4 several
examples are shown that illustrate the efficiency of the pro-
posed technique, and in Section 5 conclusions are drawn.

2 Background

2.1 Parametric System Formulation

Variability in actual fabrication of physical devices leads
to a dependence of the extracted circuit elements on several
parameters, of electrical or geometrical origin, that must be
accounted for. This leads to parametric state-space system
representations, which in descriptor form can be written as

C(λ) ẋ(t,λ) + G(λ)x(t,λ) = Bu(t)
y(t,λ) = Lx(t,λ) (1)

where C,G ∈ Rn×n are respectively the dynamic and static
matrix descriptors, B ∈ Rn×m is the matrix that relates the
input vector u ∈Rm to the state x ∈Rn, and L ∈Rn×p is the
matrix that links those inner states to the outputs y ∈ Rp.
The elements of C and G, as well as the states x, depend
on a set of M parameters λ = [λ1,λ2, . . . ,λM] which model
the effects of the mentioned uncertainty. Usually the system
is formulated so that the matrices related to the inputs and
outputs (B and L) do not depend on the parameters. This
time-domain descriptor yields a parametric dependent fre-
quency response modeled via the transfer function

H(s,λ) = L(sC(λ)+G(λ))−1B (2)

for which we seek to generate a reduced order approxima-
tion, able to accurately capture the input-output behavior of
the system for any point in the joint frequency-parameter
space.

Ĥ(s,λ) = L̂(sĈ(λ)+ Ĝ(λ))−1B̂ (3)
In general, one attempts to generate a ROM whose struc-
ture is as similar to the original as possible, i.e. exhibit-
ing a similar parametric dependence. The reasoning behind
this is that such models are better suited and allow more
control within analysis and optimization frameworks. The
most common procedure to achieve this goal is to use some
form of projection scheme. Once a suitable subspace basis
is computed, the system can be projected into that subspace,
and a reduced model such as (3) can be obtained, that cap-
tures the behavior of the system under parameter variations.

2.2 Parametric Model Order Reduction

In the past few years several techniques have emerged
in order to tackle this problem. Extensions to nomi-
nal moment-matching techniques (e.g. [7]), in order to

match generalized moments of the parametric transfer func-
tion (2), and build an overall projector, have been proposed.
This can be accomplished by accounting for the functional
dependence on both the frequency as well as the param-
eters and matching moments of the joint space [1, 5], or
simply matching the moments of the individual parameter
spaces [3]. These methods, which rely in local matching,
usually suffer from oversize of the models when the num-
ber of moments to match is high, either because high ac-
curacy is required or because the number of parameters is
large, and their variation can lead to vastly different dynam-
ics changes in different frequency ranges. Techniques that
rely on sampling of the multi-dimensional frequency, pa-
rameter space, are potentially less sensitivity to these is-
sues [8]. They allow the inclusion of some knowledge of
the parameter variation in order to guide the reduction. A
technique that is concerned with the issue of sampling and
bridges into the moment-based realm has been presented
in [11]. However, when the range of parameter variations is
large, the sampling effort can be considerable.

A different approach is explored in [6]. Here an explicit
moment matching with respect to the parameters is first
done, via Taylor-series expansion, followed by an implicit
moment matching in frequency (via projection). The advan-
tage of this technique is that the subspace basis is generated
from the augmented system, so the frequency moments are
captured for both the nominal and first (or higher) order sen-
sitivities with respect to the parameters. It not only captures
deviations in the output caused by the parameter, (to the
prescribed order), but they are captured for any variation
range, and for all frequency space. This approach is spe-
cially suited for systems where the output dependence on
the parameters is smooth. However, in the approach of [6],
the parametric dependence is lost after reduction, making
model evaluation for different parameter values expensive
and decreasing flexibility. Also, the method is not scalable,
as the expansion order with respect to the parameters must
be decided a-priori. Furthermore, accuracy considerations
for the frequency moment matching based on a single ex-
pansion point may require high orders in large frequency
ranges. This, however, can be improved with the usage of a
sampling scheme as that of [11].

3 Scalable Parametric Aware REduction

In this section we outline SPARE, a scalable and flexi-
ble new method for passive, structure preserving, paramet-
ric MOR based on a formulation similar to that of [6], which
overcomes most of the difficulties of that method. The al-
gorithm exhibits the following properties:

• explicit structural dependence on the parameter set

is maintained which implies that re-evaluation of the
model for different parameter values is very efficient
(only the weighted sum of the parameter related trans-
fer functions must be done, using existing values).

• model evaluation is efficient as the reduced model is
described by a sparser block lower triangular form, that
can be computed via recursive procedures.

• model is accurate for smooth output dependence on
the parameters, as any range of variation is perfectly



matched as long as the underlying output Taylor Series
formulation is accurate enough.

• accuracy control is enhanced as independent adap-

tive order determination with respect to each param-
eter is possible.

• algorithm and model are scalable as terms can be
added or removed at any stage to modify the order, de-
pending on the accuracy required, by reusing the data.
The accuracy/order trade off can be easily determined
from the output sensitivities, and model size increases
linearly the number of terms.

• passivity is preserved in the reduction process.
• model construction is flexible in the sense that either

moment-matching or sampled techniques can be used
for generating the projector.

3.1 Proposed Representation

As mentioned, the approach followed is akin to the one
developed in [6] in terms of representation, but, as we shall
see, it deviates from it afterwards. Let us reformulate the
system by expanding it in Taylor Series, which we suppose
accurate enough in the range of our parameter variation set
[λ1 . . .λM]. In the following we will assume this representa-
tion to be our parametric system. We can expand the state
vector in Taylor Series with respect to the parameters, but
not with respect to the frequency, leading to

x(s,λ) = x0(s)+
∞

∑
i=1

�
x1i(s)λi

1 + x2i(s)λi
2 + . . .

�
(4)

similarly, for the parametric dependent matrices C and G,

G(λ) = G0 +∑∞
i=1

�
λi

1G1i +λi
2G2i + . . .

�

C(λ) = C0 +∑∞
i=1

�
λi

1C1i +λi
2C2i + . . .

� (5)

where G0,C0 and x0 are the nominal values for the matri-
ces and the states vector, and G ji, Cji, and x ji are the ith

sensitivities w.r.t. the jth parameter. The Taylor series can
be extended up to the desired (or required) order, including
cross derivatives, for the sake of accuracy. As an illustra-
tion, let us now suppose two parameters, λ1 and λ2, with
second order expansion, and one cross term, indicated by
xt. Mimicking the procedure of matching the coefficients of
the same powers, we can write,

x0(s) = (G0 + sC0)−1Bu
x11(s) = −(G0 + sC0)−1(G11 + sC11)x0(s)
x12(s) = −(G0 + sC0)−1(G11 + sC11)x11(s)−

−(G0 + sC0)−1(G12 + sC12)x0(s)
. . .

xxt(s) = −(G0 + sC0)−1(Gxt + sCxt)x0(s)−
−(G0 + sC0)−1(G21 + sC21)x11(s)−
−(G0 + sC0)−1(G11 + sC11)x21(s)

(6)

where the derivation for some terms has been omitted as
they are analogous to those shown. The system in (6) can
be rewritten in its transfer function expression

H(s,λ) = H0 +λ1H11 +λ2
1H12 +λ2H21+

+λ2
2H22 +λ1λ2Hxt

(7)

where Hii = Lxii, making the parametric dependence clearly
explicit. In other words, the parametric transfer function
can be written as the contribution of the nominal transfer
function plus the contribution of the non-parametric trans-
fer function sensitivities w.r.t. the parameters, i.e. a linear
combination of the multiple non-parametric transfer func-
tions weighted by the parameter variation, or an intercon-
nection of several different systems in parallel. Recall that
this representation can be extended up to any order on the
parameters, including cross-terms and, as we shall see, ad-
ditional terms can be added with little extra cost.

The system in (7) is a parallel combination of systems
generated as terms of a truncated Taylor series expansion
in the parameters. It is known that Taylor expansions are
not in general globally accurate, so for values of parame-
ters very far from the nominal the Taylor expansion will
likely loose accuracy and, more importantly, could poten-
tially loose passivity. In this work, we explicitly assume
that neither of these issues is a concern. This implies for
once that there is a known, pre-established range or limit of
validity for the variability of the parameters such that the
Taylor expansion is still accurate within that range. Further-
more, we assume that passivity in the truncated model is
guaranteed by construction, possibly by making sure that
the computation of the sensitivies is performed consistently
with computation of the individual (nominal) terms and that
an appropriate stamping is used (e.g. we assume that any
term contributing to (5) is passive by construction; a resis-
tor or capacitor between any two nodes is positive for all
parameter combinations and thus C(λ),G(λ) are likewise
positive definite). Failure to guarantee this would cause the
model in (7) and any subsequent reduction not to be passive.

Every transfer function in (7) can be easily represented
in its state space descriptor starting from the nominal matri-
ces and the sensitivities of the Taylor Series expansion (5).
A compact formulation in state-space form for the complete
system generating the individual transfer functions is as fol-
lows:

H(s,λ) = λA HA(s) (8)
HA(s) = LA(sCA +GA)−1BA (9)

λA = [Ip λ1Ip λ2
1Ip λ2Ip λ2

2Ip λ1λ2Ip ] (10)

where Ip is the p× p identity matrix and

CA =





C0
C11 C0
C12 C11 C0
C21 C0
C22 C21 C0
Cxt C11 C21 C0




xA =





x0
x11
x12
x21
x22
xxt





BA=diag{B, B, B, B, B, B} LA=diag{L, L, L, L, L, L}

uA = [uT
0 0 0 0 0 0]T

(11)
(GA, and yA, omitted for space considerations, have
the same structure as, respectively, CA and xA), and
diag{B, B, . . .} represents a block diagonal matrix. The
choice of BA (and its effect on the definition of uA) may ap-
pear strange and is in fact not done in [6]. However, it im-
plies that BA = LT

A when B = LT , which, as we shall see has



Figure 1. Parametric System representation as a cascade
of non-parametric systems (Second order representation).

important implications. A graphical depiction of the above
system representation is shown in Figure 1. The state-space
descriptor matrices in (11) have a very characteristic struc-
ture that can be further exploited: the matrices can be stored
block-wise, therefore, when the system is needed, it can
be easily “assembled” for computation. Furthermore, if we
only need to work with a subset of the parameter variations,
it is not necessary to build the complete system, just the
structure related to the varying parameters up to the required
order. Additionally, the block lower triangular structure en-
ables recursive procedures to be used for model evaluation
of the individual responses, from which the output can be
obtained through linear combination of terms. The effect
of a change in the parameter values can be efficiently ad-
dressed by a weighted sum of such terms, sparing from ex-
tra evaluations. This adds flexibility, making it possible to,
on the fly, generate a model as comprehensive as necessary,
and is an interesting side benefit of the method. Preserving
the structure is in itself a worthwhile endeavor, as previ-
ously discussed in [2, 10]. However it turns out that in this
case it can lead to further advantages in terms of reduction
and simulation.

3.2 Proposed Reduction

Let us now describe a projection-based MOR methodol-
ogy for this formulation that maintains the explicit parame-
ter dependence and avoids high computational costs. Such
a methodology preserves the structure of the system, not
only in terms of the structure of the underlying electrical
circuit (thus in the sense described in [2]) but also in terms
of the interconnection of systems prescribed in (6) and Fig-
ure 1. Due to the special structure of this representation,
it is possible to apply a Block Structure Preserving (BSP)
technique [2, 10] in order to maintain the block structure of
the complete system. The expanded basis leads to larger re-
duced models, but this reduction has additional advantages,
notably in terms of accuracy (see [10] for details).

In the present case, the input of every system depends on
previous states, and the output is the contribution of all the
partial outputs weighted by the parameter values (see Fig-
ure 1). From this viewpoint, the BSP projector can be built
block-wise in a recursive manner. Each block must span a
basis that, after projection, captures the most relevant be-
havior of each block of states xi j in (6), so the complete
reduced system will capture the most relevant behavior of
the parametric system for any parameter variation. We point
out that any technique that produces a suitable projector can
be used at this point, attesting to the generality and flexibil-
ity of the algorithm. For instance, one can compute a basis

for a space that spans the moments of that particular sub-
system. This can be done efficiently and in a numerically
stable fashion. It is in fact akin to the computation of the
multiparameter moments as defined in [11] but here per-
formed in an individual basis, which adds flexibility in that
only the desired moments need to be computed. An alterna-
tive is to use a sampling-based technique such as [9]. For
illustration, this is the approach that we now outline.

The PMTBR algorithm is based on the Gramian estima-
tion via a frequency sampling scheme. This technique has
been shown to enable considerable reductions while provid-
ing a good heuristic error bound, useful to control the reduc-
tion size as a function of accuracy. To apply PMTBR to the
multiple interconnected, individual systems can be very ex-
pensive due to the sample effort required. However, careful
consideration of the structure of the system matrices and of
the computation involved can lead to considerable savings.
Consider for instance the transfer function

H11(s) =−L(G0 + sC0)−1(G11 + sC11)(G0 + sC0)−1B.

In order to sample this function in the PMTBR scheme we
need to obtain the sample vectors

z11k = (G0 + skC0)−1(G11 + skC11)(G0 + skC0)−1B.

The term (G0 + skC0)−1 is common to the nominal and all
sensitivity transfer functions. Thus it only needs to be gen-
erated once for each sample, factored and then reused in
ensuing computations. This computation requires care in
order to ensure numerical stability. In fact a single LU
factorization at each sample point allows us to obtain the
sampled vectors of all the transfer functions in (7) with
much less computational effort. Once the samples are ob-
tained for each transfer function (i.e. for every xii), the cor-
responding projector Vii can be obtained. When all such
blocks are available, a BSP-type projector can be read-
ily assembled [10], VA, and applied to the augmented sys-
tem (11). Under a good sampling scheme, a small number
of vectors is enough for accurately characterizing the sys-
tem (whereas more samples are required to cover a multidi-
mensional space, as seen in [8]). This approach also allows
us to control the frequency sampling range, focusing on the
more interesting areas or the more affected by the variation.
Once the projector VA is obtained, a reduced system can be
computed as

Ĥ(s,λ) = λA L̂A(sĈA + ĜA)−1B̂A = λAĤA(s) (12)

where L̂A = LAVA, ĈA = V T
A CAVA, ĜA = V T

A GAVA, B̂A =
V T

A BA, and λA was defined in (10). The following result
shows that passivity is preserved during the reduction.

Theorem 3.1 Considering the system in (9), where
LA,CA,GA,BA are defined in (11), then the projected system
ĤA(s,λ) in (12) is passive if the original system is passive.

Proof. In Section III-B of [7], its was shown that for a
system formulated generically as that of Eqn. (9), where
LA = BT

A , a sufficient (but not necessary) condition for pas-
sivity preservation in a congruence-type projection is that
GA and CA both be non-negative definite (strictly speaking



Figure 2. Spiral and CMIM example: |Z11| versus fre-
quency for −15% variation in p1 and +12% in p2.

that their symmetric parts, e.g. GA + GT
A and CA +CT

A be
non-negative definite, but this has no relevance here). In our
case, by construction, LA = BT

A , so it is sufficient to show
that GA and CA are non-negative definite. Consider CA as
defined in (11). Clearly CA is a block-lower triangular ma-
trix with block diagonal C0. Therefore its eigenvalues are
the same as those of C0 (with multiplicity dependent on the
number of parameters and the order of the expansion used).
Since by construction C0 resulting from an MNA formu-
lation is non-negative definite, all its eigenvalues are non-
negative. Therefore all eigenvalues of CA are non-negative
and this implies that CA is non-negative definite. A simi-
lar reasoning applies to GA, recalling that G0 resulting from
MNA is also non-negative definite.

4 Simulation Results

In this Section we benchmark the proposed algorithm
against those presented in [8], denoted as VPMTBR,
and [6], denoted as CORE. In general, we will denote our
algorithm as SPARE and, when necessary, as K-SPARE or
BT-SPARE to distinguish approximations where our pro-
jector was computed either by moment matching or the
PMTBR approach. The non-reduced model response will
be denoted as Nominal or Taylor Series (TS), depending on
whether a variation of the parameters has been applied.

For our first example we use an EM model of a pla-
nar spiral inductor connected in series with a MIM (metal-
insulator-metal) capacitor, including surrounding and sub-
strate. The model, obtained by solving the full wave EM
equations (via Finite Integration Technique, FIT [4]), has
a size of 11005, and depends on two parameters. One is
the length of the side of the square that forms the spiral,
and the other is the insulator width. Sensitivity (1st or-
der) information relative to these parameters is obtained
for G and C. Table 1 shows the relevant characteristics
of the models and algorithms used, namely the number of
nonzero elements in the model (NNZ), the sparsity factor
(ratio of NNZ), the cost of model generation (Gen. Effort)
and evaluation (Speed-Up, a ratio of the time spent evalu-
ating the reduced versus the original models). In the case
of CORE, K-SPARE, and BT-SPARE, the ROMs are ob-
tained for 1st order w.r.t. the parameters (linear approxi-
mation). The sizes of all the ROMs are set to 150, in or-
der to compare them. The effort needed for generating such
models varies: Krylov based techniques, such as CORE and

Figure 3. Spiral and CMIM example: Relative Error (dB)
of the ROMs of Z11 versus the parameter variation at 1GHz.

Table 1. Characteristics of the pMOR methods applied for
the n = 11005-states LC example

NNZ (G C) Gen.Effort Speed-Up
& Sparsity (1 eval)

VPMTBR 22500 22500 60 Spl.(w+λ) 145×
150 1.00 1.00 SVD(nx150)

CORE 22500 22500 75 BM 254×
150 1.00 1.00 QR(3nx150)

K-SPARE 12500 12500 25 BM 1021×
150 (50,50,50) 0.55 0.55 3xQR(nx50)

BT-SPARE 12500 12500 20 Spl(w) 1021×
150 (50,50,50) 0.55 0.55 3xSVD(nx50)

K-SPARE, are cheaper. However, the number of block mo-
ments (BM) computed for K-SPARE is one third of that
computed in CORE (see Table 1), as the basis is expanded.
The cost of BT-SPARE is lower than that of VPMTBR,
as it only samples the frequency, and the SVD is applied
on a much smaller number of vectors. The VPMTBR
model is computed using the same frequency samples as
BT-SPARE, plus parameter samples around those frequency
points. The evaluation of the models is again much faster
in the SPARE-based models, as their matrices are sparser
and block lower triangular (see Table 1, where the ROM,
and the blocks sizes in the SPARE case are shown below
the method name) whereas CORE and VPMTBR yield full
models. Furthermore, any change in the parameter values
implies a complete reevaluation of the model for all tech-
niques but SPARE. For SPARE this cost is negligible and,
therefore, for N different parameter settings, the Speed-Up
increases by a factor of N. With respect to the accuracy
of the models, Figure 2 shows the frequency transfer func-
tion computed by all methods, for a given setting of the pa-
rameters. CORE and K-SPARE show good agreement for
low frequencies, but with increasing error as frequency rises
(more frequency moments would improve their accuracy).
VPMTBR is not able to maintain the accuracy for parameter
variations whereas BT-SPARE of 1st order exhibits the best
accuracy for the whole frequency range and for a fairly large
variation on the parameters. Figure 3, on the other hand,
shows the transfer function variation with respect to param-
eters p1 (Up) and p2 (Down), for a fixed frequency point.



Figure 4. Frequency transfer function and relative error
of the PEEC example with −0.15 parameter variation.

Table 2. PEEC example with n = 304: ROMs features
Method NNZ (G C) Gen. Effort Speed-Up

Sparsity (1 eval)
VPMTBR 3025 3025 40 Spl.(w+λ) 35.4×

55 1.00 1.00 SVD(nx55)
CORE 4900 4900 70 BM 27.1×

70 1.0 1.0 QR(2nx70)
SPARE 3684 3684 30 Spl.(w) 57.5×

70 (32,38) 0.751 0.751 2xSVD(nx38)

It is clear that the SPARE based models are able to capture
the parametric behavior for fairly large variations. CORE
exhibits a similar behavior, but loses accuracy as frequency
rises. The accuracy of VPMTBR varies and deteriorates
when the variations increase (for the same ROM size). p2
has a less relevant effect, and all the algorithms are able to
capture it accurately, although the SPARE based techniques
display a smoother behavior.

For our next example, a PEEC model of size 304 will be
used to test the methodology for small variation in highly
non-linear environments. A synthetic single parameter is
applied with different effects on the resistive, capacitive and
inductive elements of the matrices. 1st order BT-SPARE
will be benchmarked against CORE and VPMTBR. Fig-
ure 4 shows the frequency response for a chosen parameter
value. SPARE of order 70 provides a better approximation
than CORE, but in this situation is unable to match the ac-
curacy of the VPMTBR algorithm. However, the generation
cost and the speed-up in model evaluation is still better than
for VPMTBR, even for a smaller model (see Table 2).

5 Conclusions

In this paper, a flexible and efficient parametric MOR al-
gorithm was presented. The method is based on a reformu-
lation of the original system as a parallel interconnection of
the nominal transfer function and the non-parametric trans-
fer function that describe the effect of the various param-
eters. This formulation reveals an explicit dependence on

the parameters which is exploited and preserved during re-
duction. This allows for better accuracy control, enabling
independent adaptive order determination with respect to
each parameter and adding flexibility in simulation environ-
ments. The new technique can handle fairly large parameter
variations on systems whose outputs exhibit smooth depen-
dence on the parameters and has been shown to preserve
passivity. Examples show that besides the added flexibility
and control, the proposed algorithm can produce smaller re-
duced models with potential accuracy gains in comparison
with competing methods.
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