
Handling Intra-Die Variations in PSTA

Luis Guerra e Silva
INESC-ID

IST / TU Lisbon
Lisbon, Portugal

lgs@inesc-id.pt

L. Miguel Silveira
Cadence Res. Labs/INESC-ID

IST / TU Lisbon
Lisbon, Portugal

lms@inesc-id.pt

ABSTRACT
For integrated circuit (IC) fabrication technologies of 45nm
and below, the impact of process variability in circuit per-
formance is extremely relevant. Parametric static timing
analysis (PSTA) techniques, whereby delays are modeled as
affine functions of process parameters, were thus introduced
to enable the computation of accurate timing estimates, ac-
counting for process variability. Most often, only variations
that occur between fabricated ICs (inter-die) are modeled,
as the number of variables necessary to model such effects
is manageable. Variations that occur across the same IC
(intra-die) are usually neglected, as modeling them can add
significant complexity to the model. This paper evaluates
the impact of modeling intra-die variations in the context of
PSTA and proposes effective techniques for handling them.

Categories and Subject Descriptors
B.7.2 [Hardware]: Integrated Circuits—Design Aids

General Terms

Algorithms, Design, Theory, Verification

Keywords
Intra-die variations, Parametric static timing analysis

1. INTRODUCTION
The need to adequately model the process variations that

occur in modern IC technologies, has motivated the intro-
duction of parametric delay models, where cell and inter-
connect delays are given by functions of the parameters of
the fabrication process [7], rather than fixed nominal values.
Several compatible PSTA techniques have likewise been pro-
posed. The most well known of such techniques is statistical
static timing analysis (SSTA), whereby process parameters
are assumed to follow a given statistical distribution [7].

The perception that it might be abusive to assume the pro-
cess parameters to follow a specific statistical distribution,
has motivated the development of new PSTA methodolo-
gies, where process parameter variations are only specified

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’11, May 2–4, 2011, Lausanne, Switzerland.
Copyright 2011 ACM 978-1-4503-0667-6/11/05 ...$10.00.

by ranges. Such methodologies have the advantage of being
a natural extension to traditional corner-based approaches.
In this context, [6] proposed a linear-time approach for com-
puting an affine function of the process parameters, which
is an upper bound on the worst delay of a circuit, covering
all process corners. While this method is quite efficient, in
certain cases the computed upper bounds may not be tight
and it does not incorporate a practical way of identifying the
critical paths and corners. Addressing these issues, [5] pro-
posed an efficient algorithm for computing the exact critical
path of a given circuit, as well as their associated process pa-
rameter settings (corners). This approach has a worst-case
exponential run-time, yet it performs fairly well in practice.

Process variations are classified as either inter-die or intra-
die. Inter-die variations occur between dies. For example,
metal width may vary between ICs produced in the same
wafer, in different wafers, or in different runs. Common
sources of inter-die variations are fluctuations in global pro-
cess parameters, such as temperature. Intra-die variations
occur within the same die. For example, two transistors
within the same die may exhibit distinct gate lengths. Intra-
die variations are mostly due to non-idealities in the fabri-
cation equipment, such as CMP and optical proximity ef-
fects. While both types of variation have a systematic and a
random component, only the former can be modeled, given
enough knowledge of the fabrication process.

This paper evaluates the complexity of performing PSTA,
while using delay models that account for both inter-die and
intra-die variations [1]. Additionally, it proposes novel tech-
niques to enable efficient PSTA of such models.

This paper is organized as follows. Section 2 details the
parametric delay model to be used throughout the paper.
Section 3 briefly reviews three PSTA algorithms that will
subsequently be evaluated for the analysis of intra-die delay
models. Section 4 discusses techniques for improving the
performance of PSTA algorithms, when dealing with intra-
die delay models. Finally, Sections 5 and 6 present experi-
mental results and concluding remarks, respectively.

2. PARAMETRIC DELAY MODEL
This section details a parametric delay model, that ac-

counts for both inter-die and intra-die variations, which is
closely related to the ones proposed in [1] and [3].

2.1 Delays as Affine Functions of Parameters
A parametric delay model [7] is assumed, where delays are

described by affine functions of process and operational pa-
rameter variations, corresponding to a first-order lineariza-
tion of every delay, d, around a nominal point, λ0, in a pa-
rameter space of size p. Assuming ∆λ = λ − λ0, we obtain

d(∆λ) = d0 +

p
∑

i=1

di∆λi (1)

where d0 is the nominal value of d and di is the sensitivity
to parameter λi, i = 1, 2, . . . , p, at the nominal point λ0.

When delays are in the form of Eqn. (1), arrival times are
known to be convex [2], implying that the smallest/largest
delay or arrival time is obtained by setting each parameter to
one of its extreme values. Assuming ∆λi ∈

[

∆λmin
i ,∆λmax

i

]

,
the maximum delay value is given by

max
∆λ

[d(∆λ)] = d(∆λ
∗) = d0 +

p
∑

i=1

di∆λ
∗
i (2)

where the maximizing parameter variation assignment is

∆λ
∗
i =

{

∆λmin
i if di ≤ 0

∆λmax
i if di > 0

, i = 1, 2, ..., p (3)

The min can be computed by symmetry.

2.2 Intra-die Delay Model
The number of parameters of inter-die delay models is

usually small, as each parameter is used to model an effect
that occurs uniformly across the entire die. However, intra-
die variations exhibit a strong spatial correlation, and ac-
curately modeling them would require complex higher-order
models, hard to incorporate into existing timing verification
flows. An approach [1, 3] to deal with this problem is to
discretize the die area into several regions, and assign a pa-
rameter to each region. The delays of the circuit elements
located within a given region are assumed to vary linearly
with the parameters assigned to that region. By appropri-
ately setting parameter ranges and sensitivities, it is there-
fore possible to approximate a complex global non-linear
model by combining several local linear models, at the ex-
pense of a much larger number of parameters. The objective
of this work is to evaluate the capability of existing PSTA
approaches to deal with such large models.

This work considers three types of parameter variations:
inter-die, global intra-die and local intra-die. Inter-die vari-
ations are modeled by a single parameter, for the entire die
area. Modeling global and local intra-die variations requires
the discretization of the die area into several regions [1].
For the sake of simplicity, we will assume that the grids
for global and local intra-die variations split the die area in
rg × rg and rl × rl regions of equal size, respectively, and
that rg is a multiple of rl and rg << rl.

Since we do not have the data necessary to build a real
intra-die model, we will extrapolate from an inter-die model,
for which data is readily available. This is not a problem in
our case because, while intra-die delay data is not real, the
complexity (size) of the model should be close to that of
real instances. Therefore, we will split each original inter-

die parameter, ∆λi, into an inter-die component, ∆̂λi, a

global intra-die component ∆̂λ
′

i,g(x,y) and a local intra-die

component, ∆̂λ
′′

i,l(x,y). We will consider that the new param-
eters will assume the same range of variation as the original
parameter. The sensitivities of the new parameters will be
computed by weighting the original sensitivity with constant
coefficients α, β, and γ, such that α+β+γ = 1. The coeffi-
cients will determine the relevance that will be given to each
type of variation. The delay of a circuit element located at
position (x, y) will thus be given by,

d̂(x, y) = d0+

p
∑

i=1

di

[

α∆̂λi + β∆̂λ
′

i,g(x,y) + γ∆̂λ
′′

i,l(x,y)

]

(4)

The parameters to be considered for each element depend
on its position, and therefore 1 ≤ g ≤ rg and 1 ≤ l ≤ rl
indicate the region of global and local variations where the
element is located. Hence, we will have a different parameter
for each original parameter and for each region. Having p
original parameters and rg × rg plus rl × rl regions, we will
end up with a total of p× (1 + rg × rg + rl × rl) parameters
in the extrapolated model.

3. PARAMETRIC STA
In this section we review three algorithmic approaches for

performing PSTA, which will be evaluated in Section 5.

3.1 Statistical Static Timing Analysis
The PSTA method that produced the most impact was

proposed in [7], and performs what is known as SSTA. In this
method, all timing quantities are expressed as a canonical
formula, similar to Eqn. (1), but parameters are considered
to assume gaussian distributions and possibly be correlated.
Through a linear-time traversal of the circuit graph, all tim-
ing quantities (arrival times, slacks, etc) are computed, by
performing sum/max operations between canonical formu-
las. The max operation is computed by matching the mean
and variance of the output formula with the estimated mean
and variance of the max of the input formulas [4]. Since the
max of two gaussian distributions is not a gaussian distribu-
tion, there is an error associated with this operation. While
this method is efficient and, in general, produces fairly accu-
rate estimates, it does not report critical paths and corners,
which is essential in circuit optimization.

3.2 Hyperplane Bounding
Another approach, proposed in [6], computes an upper

bound on the worst delay of a circuit, in the form of Eqn. (1),
covering all process corners. As in [7], the affine arrival time
functions, designated by hyperplanes, are pushed through
the timing graph, in a linear-time traversal, and when nec-
essary a conservative approximation to the max between two
input hyperplanes is computed. Such approximation, desig-
nated by output hyperplane, is an upper bound on the max
of both input hyperplanes, valid for every corner. The com-
puted output hyperplane is guaranteed to be a tight bound
at the worst corner among the two input hyperplanes. Given
the delay hyperplanes for the primary outputs, it is trivial
to compute their worst value, using Eqns. (2) and (3), and
therefore obtain an upper bound on the delay of the circuit.
Since the computed max hyperplane is only guaranteed to
be tight at the worst corner, among the two input hyper-
planes, if such corner varies frequently across the circuit,
large bounding errors can be accumulated and the estimates
at the primary outputs may not be tight. Additionally, it
is not possible to reliably infer the worst-delay corner/path
from the computed upper bound hyperplane.

3.3 Automated WDC Computation
Consider a combinational block with n inputs and m out-

puts. When delays are given by Eqn. (1), any input/ouput
delay di,j(∆λ) can be accurately represented by a piecewise-
affine function [5]. The worst-delay corner (WDC) problem,
is concerned with computing an assignment, ∆λ∗, to the
parameter variation vector ∆λ, that produces the worst de-
lay, di,j(∆λ), from any input i = 1, . . . , n to any output
j = 1, . . . ,m. Assuming the worst delay to be the largest
one, then the WDC problem can be formulated as

max
∆λ

{

max
j=1,...,m

[

max
i=1,...,n

di,j(∆λ)

]}

(5)

The simplest algorithm for computing the WDC consists
of calculating the affine delay function for each path and
subsequently, using Eqns. (2) and (3), compute the corner
that produces the worst delay, over all paths. Since this pro-
cedure requires all paths to be analyzed, and their number
can grow exponentially with the number of vertices, it can
become overly expensive, even for moderately sized circuits.

In order to avoid enumerating all the paths, [5] proposes
the use of branch-and-bound techniques to prune the timing
graph, thus significantly reducing the number of paths that
require detailed analysis. Considering a primary output at
a time, the method proposed in [5] performs an explicit or
implicit analysis of all the input/output paths, ending at

d o u t
v

active

PO
fanin

cone trail
PIs

current vertex

d i n
v

tra
il

trail

v
d i n

z

u

z

d 〈u
,v 〉

d i n
u

d 〈z ,v 〉

Figure 1: Illustration of delay estimates.

that primary output, designated as the active primary out-
put. The timing graph is traversed in a backward fashion,
starting at the active primary output, going through the
internal vertices, and eventually ending at the primary in-
puts (if no pruning is performed). The vertex being visited
in a given step is designated by current vertex. The path
taken to reach that vertex from the active primary output
is designated by trail. The worst delay, d∗, found among the
complete paths already analyzed is continuously updated,
as well as the corresponding corner, ∆λ∗. For each current
vertex of the timing graph, v, the algorithm relies on three
parametric delay estimates, illustrated in Figure 1: dinv is an
upper bound on the delay from any primary input to ver-
tex v (e.g. in the fanin cone of v), and can be calculated
beforehand through a forward levelized analysis of the tim-
ing graph; doutv is the delay of the trail; dpathv = dinv + doutv ,
which represents an upper bound on the delay of any com-
plete path going through v, that contains the trail. The
fanin cone of v is pruned when the following condition holds

max
∆λ

[dpathv (∆λ)] ≤ d
∗ (6)

In this case the delay of any complete path going through v
and containing the trail can never be larger than the worst
delay, already computed for some other complete path, d∗,
therefore it is useless to further explore the fanin cone of v,
as the worst delay, d∗, cannot be improved by such action.
When the current vertex is a primary input, the trail is
an input/output path, and dpathv = doutv . In this case, if
max∆λ[d

path
v (∆λ)] > d∗, then both d∗ and ∆λ∗ are updated.

The procedure terminates when every path of the circuit is
either explicitly visited or pruned. Upon termination, d∗

is the worst delay and ∆λ∗ is the worst-delay corner. The
worst-delay path can also be returned if the corresponding
trail is stored on every update of d∗ and ∆λ∗.

4. INTRA-DIE VARIATIONS AND PSTA
This section discusses techniques for efficiently performing

PSTA on instances of the parametric delay model described
in Section 2, which are adequate for modeling intra-die vari-
ations. Such models can contain a large number of parame-
ters, and therefore may not be handled by most straightfor-
ward implementations of the PSTA algorithms available.

4.1 Model Structure
The delay model discussed in Section 2.2, can lead to a

large number of parameters. However, given their spatial
distribution across the die area, only a few of them will im-
pact the delay of any given circuit element. Therefore, a
no-nonsense improvement is the utilization of sparse data
structures, since in any given affine delay formula most of
the sensitivities will be 0. In general, this will only slightly
improve performance, but it will make the problem manage-
able in terms of memory footprint.

The delay formulas of closely located elements are likely to
share several parameters, as each parameter is allocated to a
given die region. Moreover, it is likely that circuit elements
that are close in the die may also be close in the netlist
(i.e. within a few logic levels), since placement tools tend to
place strongly connected elements close to each other, as a
by-product of optimizing wire length and interconnect delay.

PIs

active window of ∆λ j

no longer need to
carry ∆λ in dj out

POs

Figure 2: Illustration of local bounding.

Experimental evidence confirms this speculation since, for
several benchmark circuits generated by commercial CAD
tools, we have observed that the elements in the same region
of the layout were isolated in a few clusters of the netlist.
This means that the parameters that model specific regions
of the die area will also be confined to a specific range of
logic levels in the netlist.

4.2 Local Bounding
As observed, parameters allocated to particular regions of

the die will, most likely, only exist within a limited window
of logic levels in the circuit netlist, which we will designate
by active window of the parameter. The computation of
such window, for each parameter, can be performed by a
forward/backward levelized traversal of the circuit graph.
In each level, all the affine delay formulas associated with
the elements in that level are analyzed and if, in any of such
formulas a new parameter is detected, the active window of
that parameter is marked as starting/stopping in that level.

For propagating canonical delay formulas [7] or hyper-
planes [6], knowing the active window of each parameter
is not useful, as we are interested in obtaining an explicit
approximated formula for the delay at each primary output.
This means that all the parameters must be carried across
the circuit, until a primary output is reached.

When our objective is to compute the worst-delay path or
corner [5], then knowing the active window of each param-
eter can be quite useful. Recalling the algorithm reviewed
in Section 3, we can easily conclude that carrying back a
parameter in dout is only necessary if it is possible that any
given din, that we will find further back, will also contain
that same parameter. The information on whether that will
happen is given by the the active window of the parameter,
defined earlier. When we are outside of the active window
of a parameter we can simply eliminate it from the formula,
because we know it will no longer be relevant (see Figure 2).
That elimination must be done by bounding, i.e. by adding
to the nominal value the sensitivity to the parameter mul-
tiplied by the value obtained from Eqn. (3). Therefore, the
elimination of a parameter ∆λj from a given delay dout(∆λ)
produces an upper bound on dout(∆λ). Formally,

d
out(∆λ) ≤ (d0 + dj∆λ

∗
j) +

p
∑

i=1,i6=j

di∆λi (7)

This procedure can enable great savings, since it can signifi-
cantly reduce the size of the formulas to be carried across the
circuit graph, particularly when the number of parameters
is large and the size of the active windows is small.

4.3 Improving Bounds in WDC Computation
As discussed in Section 3, unlike the algorithm proposed

in [5], the algorithm proposed in [6], does not provide a
method for computing the worst-delay path and corner. How-
ever, it does provide a guaranteed upper bound on the delay,
which is tight in most cases. Therefore, we propose to use
such algorithm to compute the delay upper bound estimates,
din, in the algorithm proposed in [5]. By having tight upper
bounds to start with in [5], we would expect more pruning
to be achieved and, consequently, running time to decrease.

5. EXPERIMENTAL RESULTS

5.1 Experimental Setting
The benchmark circuits were synthesized and mapped to

the Nangate OCL 45nm technology. As inter-die process pa-
rameters, we have considered the widths and thicknesses of
the 10 metal routing layers, resulting in a total of 20 param-
eters. Variational delay computation was subsequently per-
formed, and the resulting affine delay formulas were anno-
tated in the corresponding timing graphs. Table 1 presents
a brief characterization of the resulting benchmark circuits,
where ”#PI” and ”#PO” columns report the number of pri-
mary inputs and outputs, ”#Logic” and ”#Net” columns
report the number of combinational cells and the number
of nets, and ”#Vertex” and ”#Edge” report the number of
vertices and edges in the corresponding timing graph.

Intra-die effects have been modeled as described in Sec-
tion 2.2, assuming α = 0.5, β = 0.25, γ = 0.25, rg = 32 and
rl = 512, resulting in a total of 5263380 parameters.

All the results presented in this section were obtained in
a machine with an Intel Core 2 Duo @ 3GHz and 4GB of
RAM. For all the runs a single processor was used. All
the algorithms were implemented in C++ using sparse data
structures to represent affine delays.

5.2 WDC Computation
Table 2 presents results for WDC [5], reviewed in Sec-

tion 3, and improved versions of this algorithm. Columns
”#P” and ”CPU” report the the average size (i.e. number
of non-zero elements) of the dout formula and the CPU time
in seconds, respectively. Column ”[5]” reports the results
for the original algorithm. Column ”[5]+[6]” reports the re-
sults when the algorithm proposed in [6] is used to perform
the initial upper bound computation, as discussed in Sec-
tion 4. Column ”[5]+LB” reports the results when the local
bounding technique, proposed in Section 4, is employed. Fi-
nally, column ”[5]+[6]+LB” reports the results combining all
previous techniques. All the algorithms produced the exact
same results, since none of the proposed techniques intro-
duces any error. Clearly, computing the initial upper bound
using the algorithm proposed in [6] yields enormous sav-
ings in WDC[5]. The local bounding technique also seems
to be quite effective in reducing the number of parameters
that need to be carried across the circuit, as observed by
the average size of the dout formula. However, due to its
overhead it is only noticeable for larger circuits like C6288.
We foresee that local bounding may be extremely useful for
handling very large instances.

5.3 Comparison of PSTA Algorithms
Table 3 compares the PSTA algorithms reviewed in Sec-

tion 3. All the PSTA algorithms are able to analyze the
benchmark circuits in a fairly small amount of time. There-
fore, we foresee their application to the analysis of larger
industrial instances, considering intra-die variations.

6. CONCLUSIONS
In this paper we evaluate the capability of existing PSTA

algorithms to handle intra-die delay models. We conclude
that, even though the number of parameters in such models
can be extremely large, existing PSTA algorithms are able
to adequately handle them. Additionally, we propose two
techniques built on top of [5]. One of such techniques, con-
sists in using the estimates computed by [6] to aid [5] in the
computation of the worst-delay path and corner, which is
not directly provided by [7] or [6] and is of great interest
in design validation and optimization. This technique en-
ables significant savings in terms of run-time. Finally, we
also propose a local bounding technique, that relies on the
fact that in intra-die models variables are clustered between

Design #PI #PO #Logic #Net #Vertex #Edge

C432 36 7 88 124 356 457
C499 41 32 170 211 595 736
C880 60 26 169 232 697 910
C1355 41 32 170 211 595 737
C1908 33 25 202 235 708 921
C2670 157 64 278 511 1204 1474
C3540 55 22 469 781 2551 3429
C5315 178 123 597 781 2551 3429
C6288 32 32 1005 1470 3556 5006

Table 1: Benchmark characterization.

Design
[5] [5]+[6] [5]+LB [5]+[6]+LB

#P CPU #P CPU #P CPU #P CPU

C432 325 0.34 334 0.10 126 0.33 128 0.08
C499 140 0.51 181 0.04 61 0.52 61 0.06
C880 333 0.37 342 0.09 145 0.37 147 0.10
C1355 131 0.59 180 0.04 61 0.61 62 0.07
C1908 308 0.74 340 0.09 112 0.72 113 0.08
C2670 218 0.33 222 0.08 89 0.36 89 0.10
C3540 411 3.17 501 0.25 158 3.03 170 0.22
C5315 211 1.01 210 0.17 112 1.04 104 0.19
C6288 780 139.46 916 2.96 180 112.54 217 1.02

Table 2: WDC with improved versions.

Design Canonical[7] Hyperplanes[6] WDC[5]+[6]+LB

C432 <0.01 0.01 0.08
C499 <0.01 0.02 0.07
C880 0.25 0.03 0.10
C1355 0.19 0.02 0.07
C1908 0.27 0.02 0.08
C2670 0.26 0.04 0.11
C3540 0.72 0.10 0.22
C5315 0.49 0.11 0.19
C6288 2.92 0.13 1.02

Table 3: CPU time for PSTA algorithms.

particular logic levels. This technique is also particularly ef-
fective in reducing the size of delay formulas carried across
the circuit. Even though its impact in terms of run-time was
only moderate, we expect it to be more effective for larger
instances than the ones available in our experiments.

7. REFERENCES
[1] A. Agarwal, D. Blaauw, and V. Zolotov. Statistical

Timing Analysis for Intra-Die Process Variations with
Spatial Correlations. In Proceedings of ICCAD, pages
900–907, San Jose, CA, November 2003.

[2] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

[3] H. Chang and S. Sapatnekar. Statistical Timing
Analysis Under Spatial Correlations. IEEE
Transactions on CAD, 24:1467–1482, September 2005.

[4] C. E. Clark. The Greatest Finite Set of Random
Variables. Operations Research, 9:85–91, 1961.

[5] L. G. e Silva, J. Phillips, and L. M. Silveira. Effective
Corner-Based Techniques for Variation-Aware IC
Timing Verification. IEEE Transactions on CAD,
29:157–162, January 2010.

[6] S. Onaissi and F. N. Najm. A Linear-Time Approach
for Static Timing Analysis Covering All Process
Corners. IEEE Transactions on CAD, 27:1291–1304,
July 2008.

[7] C. Visweswariah, K. Ravindran, K. Kalafala, S. G.
Walker, S. Narayan, D. K. Beece, J. Piaget,
N. Venkateswaran, and J. G. Hemmett. First-Order
Incremental Block-Based Statistical Timing Analysis.
IEEE Transactions on CAD, 25(10):2170–2180,
October 2006.

