
2170 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 10, OCTOBER 2006

First-Order Incremental Block-Based
Statistical Timing Analysis

Chandu Visweswariah, Fellow, IEEE, Kaushik Ravindran, Student Member, IEEE,
Kerim Kalafala, Steven G. Walker, Sambasivan Narayan, Daniel K. Beece,

Jeff Piaget, Natesan Venkateswaran, and Jeffrey G. Hemmett

Abstract—Variability in digital integrated circuits makes timing
verification an extremely challenging task. In this paper, a canoni-
cal first-order delay model that takes into account both correlated
and independent randomness is proposed. A novel linear-time
block-based statistical timing algorithm is employed to propagate
timing quantities like arrival times and required arrival times
through the timing graph in this canonical form. At the end of
the statistical timing, the sensitivity of all timing quantities to each
of the sources of variation is available. Excessive sensitivities can
then be targeted by manual or automatic optimization methods
to improve the robustness of the design. This paper also reports
the first incremental statistical timer in the literature, which is
suitable for use in the inner loop of physical synthesis or other
optimization programs. The third novel contribution of this paper
is the computation of local and global criticality probabilities.
For a very small cost in computer time, the probability of each
edge or node of the timing graph being critical is computed.
Numerical results are presented on industrial application-specified
integrated circuit (ASIC) chips with over two million logic gates,
and statistical timing results are compared to exhaustive corner
analysis on a chip design whose hardware showed early mode
timing violations.

Index Terms—Criticality probability, incremental timing, sta-
tistical static timing, variability.

I. INTRODUCTION

THE TIMING characteristics of gates and wires that make
up a digital integrated circuit show many types of vari-

ability. There can be variability due to manufacturing, due to
environmental factors such as Vdd and temperature, and due to
device fatigue phenomena such as electromigration, hot elec-
tron effects, and negative bias temperature instability (NBTI).
The variability makes it extremely difficult to verify the timing
of a design before committing it to manufacturing. Nominally
subcritical paths or timing points may become critical in some
regions of the space of variations due to excessive sensitivity to

Manuscript received June 16, 2004; revised October 27, 2004, January 31,
2005, and June 24, 2005. This paper was recommended by Associate Editor
D. Blaauw.

C. Visweswariah, S. G. Walker, and D. K. Beece are with the IBM Thomas
J. Watson Research Center, Yorktown Heights, NY 10598 USA.

K. Ravindran was with the IBM Thomas J. Watson Research Center, York-
town Heights, NY 10598 USA. He is now with the Department of Electrical
Engineering and Computer Science, University of California, Berkeley, CA
94720 USA.

K. Kalafala, J. Piaget, and N. Venkateswaran are with IBM Microelectronics,
Hopewell Junction, NY 12533 USA.

S. Narayan and J. G. Hemmett are with IBM Microelectronics, Essex
Junction, VT 05452 USA.

Digital Object Identifier 10.1109/TCAD.2005.862751

one or more sources of variation. The goal of robust design, to
first order, is to minimize such sensitivities.

Traditional static timing methodology is corner based or case
based, e.g., best case, worst case, and nominal. Unfortunately,
such a methodology may require an exponential number of tim-
ing runs as the number of independent and significant sources
of variation increases. Further, as described in [1], the analysis
may be both pessimistic and risky at the same time. At corners
that are timed, worst case assumptions are made, which are pes-
simistic; whereas, since it is intractable to analyze all possible
corners, the missing corners may lead to failures detected after
the manufacturing of the chip. Statistical timing analysis is a
solution to these problems.

Statistical timing algorithms fall into two broad classes. The
first is path-based algorithms wherein a selected set of paths
is submitted to the statistical timer for detailed analysis. This
set of methods can be thought of as “depth-first” traversal of
the timing graph. In [2], the maximum of a set of path delays is
computed, but correlations between the path delays are ignored.
In [3], some theoretical results are derived on bounds on the
maximum of a set of path delays under certain restrictions.
In [4], these assumptions are relaxed, and correlations both
due to dependence on global sources of variation and due to
reconvergent fan-out (or path sharing) are taken into account.

Path-based statistical timing is accurate and has the ability to
realistically capture correlations, but suffers from other weak-
nesses. First, it is not clear how to select paths for the detailed
analysis since one of the paths that is omitted may be critical in
some part of the process space. Second, path-based statistical
timing often does not provide the diagnostics necessary to
improve the robustness of the design. Third, path-based timing
does not lend itself to incremental processing, whereby the call-
ing program makes a change to the circuit and the timer answers
the timing query incrementally and efficiently [5]. Finally, path-
based algorithms are good at taking into account global corre-
lations but do not handle independent randomness in individual
delays. Doping effects and gate oxide imperfections are usually
modeled as uncorrelated random phenomena. In fact, few, if
any, statistical timing attempts in the literature include support
for both correlated and independent randomness.

The statistical timer described in this paper belongs to the
second class of statistical timers, namely block-based statistical
timers. This set of methods traverses the timing graph in a lev-
elized “breadth-first” manner. In [6], probability distributions
are assumed to be trains of discrete impulses, which are propa-
gated through the timing graph. However, correlations both due

0278-0070/$20.00 © 2006 IEEE

VISWESWARIAH et al.: FIRST-ORDER INCREMENTAL BLOCK-BASED STATISTICAL TIMING ANALYSIS 2171

to global dependencies on the sources of variation and due to
path sharing are ignored, as is the case with [7]. In this same
general framework, [8] describes how correlations due to re-
convergent fan-out can be taken into account, but not depen-
dence on global sources of variation. In [9], an approximate
block-based statistical timing analysis algorithm is described
to reduce pessimism in worst case static timing analysis. The
concept of parameterized delay models is proposed. Recently,
[10] and [11] focused on handling spatial correlations due
to intradie variability. While the timer in this paper shares
some key similarities with previous efforts (such as the use
of a general canonical delay model), these also suffer from
some weaknesses. First, they do not provide diagnostics that
can be used by a human designer or synthesis program to
make the circuit more robust. Second, there is no report of
any incremental statistical timing approach in the literature.
Third, with the exception of [11], they do not provide for
a general enough timing model to accommodate correlation
due to dependence on common global sources of variation,
independent randomness, and correlation due to path sharing or
reconvergent fan-out. This paper describes a statistical timing
algorithm that possesses the following strengths.

1) A canonical first-order delay model is employed for all
timing quantities. The model allows for both global corre-
lations and independent randomness (spatially correlated
sources of variability are currently handled by means of
derating factors, and their statistical treatment will be
a subject of future work). Thus, timing results such as
arrival times and slacks are also available in this canonical
form, thereby providing first-order sensitivities to each
of the sources of variation. These diagnostics can be
used to locate excessive sensitivity to sources of variation
and to target robust circuit designs by reducing these
sensitivities.

2) The statistical timing algorithm is approximate but has
linear complexity in the size of the circuit and the number
of global sources of variation. The speed of the algorithm
and its block-based nature allow the tool to time very
large circuits and incrementally respond to timing queries
after changes to a circuit are made. To the best of the
authors’ knowledge, this is the first incremental statistical
timer in the literature or industry.

3) The algorithm computes, with a very small computer time
overhead, local and global criticality probabilities, which
are useful diagnostics in improving the performance and
robustness of a design.

II. CANONICAL DELAY MODEL

All gate and wire delays, arrival times, required arrival times,
slacks, and slews (rise/fall times) are expressed in the standard
or canonical first-order form as

a0 +
n

∑

i=1

ai∆Xi + an+1∆Ra (1)

where a0 is the mean or nominal value, ∆Xi, i = 1, 2, . . . , n,
represent the variation of n global sources of variation Xi,

i = 1, 2, . . . , n, from their nominal values, ai, i = 1, 2, . . . , n,
give the sensitivities to each of the global sources of variation,
∆Ra is the variation of an independent random variable Ra

from its mean value and, an+1 is the sensitivity of the timing
quantity to Ra. By scaling the sensitivity coefficients, we can
assume that Xi and Ra are unit normal or Gaussian distribu-
tions N(0, 1). Not all timing quantities depend on all global
sources of variation; in fact, [10] and [11] suggest methods
of modeling across-chip linewidth variation (ACLV) by having
delays of gates and wires in physically different regions of the
chip depend on different sets of random variables. In chips with
voltage islands, the delay of an individual gate will depend only
on the variability of the power supply of the island in which it
is physically located.

III. CONCEPT OF TIGHTNESS PROBABILITY

Given any two random variables X and Y , the tightness
probability TX of X is the probability that it is larger than
(or dominates) Y . Given n random variables, the tightness
probability of each is the probability that it is larger than all
the others. Tightness probability is called binding probability in
[4] and [12]. The tightness probability of Y , TY is (1 − TX).
In the following, we show how to compute the max of two
timing quantities in canonical form and how to determine their
tightness probabilities. Given two timing quantities

A = a0 +
n

∑

i=1

ai∆Xi + an+1∆Ra (2)

and

B = b0 +
n

∑

i=1

bi∆Xi + bn+1∆Rb (3)

their 2 × 2 covariance matrix can be written as

cov(A,B)

=
[

a1 a2 · · · an an+1 0
b1 b2 · · · bn 0 bn+1

]

[V]

















a1 b1

a2 b2
...

...
an bn

an+1 0
0 bn+1

















(4)

where V is the covariance matrix of the sources of variation.
Assuming that the Xi are independent random variables for the
purposes of illustration, V is the unity matrix, and, thus

cov(A,B) =









n+1
∑

i=1
a2

i

n
∑

i=1
aibi

n
∑

i=1
aibi

n+1
∑

i=1
b2
i









=
[

σ2
A ρσAσB

ρσAσB σ2
B

]

.

(5)

By comparing the terms in (5), σA, σB , and the correlation
coefficient ρ can be computed in linear time. Now, we seek

2172 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 10, OCTOBER 2006

to determine the distribution of max(A,B) and the tightness
probabilities of A and B. We appeal to [13] and [14] for analytic
expressions to solve this problem. Define

φ(x) ≡ 1√
2π

exp
(

−x2

2

)

(6)

Φ(y) ≡
y

∫

−∞

φ(x) dx (7)

θ ≡
(

σ2
A + σ2

B − 2ρσAσB

)
1
2 . (8)

Then, the probability that A is larger than B is

TA =
∞

∫

−∞

1
σA

φ

(

x − a0

σA

)

Φ





(

x−b0
σB

)

− ρ
(

x−a0
σA

)

√

1 − ρ2



 dx

=Φ
(

a0 − b0

θ

)

. (9)

The mean and variance of max(A,B) can also be analytically
expressed as

E [max(A,B)] = a0TA + b0(1 − TA) + θφ

[

a0 − b0

θ

]

var[max(A,B)] =
(

σ2
A + a2

0

)

TA +
(

σ2
B + b2

0

)

(1 − TA)

+ (a0 + b0)θφ
(

a0 − b0

θ

)

− {E [max(A,B)]}2 . (10)

Thus, the tightness probabilities, expected value, and variance
of max(A,B) can be computed analytically and efficiently.
Similar formulas can be developed for min(A,B). The CPU
time of this operation increases only linearly with the number
of sources of variation.

Tightness probabilities have an interpretation in the space
of the sources of variation. If one random variable has a
0.3 tightness probability, then in 30% of the weighted volume of
the process space, it is larger than the other variable, and in the
other 70%, the other variable is larger. The weighting factor is
the joint probability density function (JPDF) of the underlying
sources of variation.

IV. BLOCK-BASED STATISTICAL TIMING: KEY IDEA

To apply these ideas to static timing, we need probabilistic
equivalents of the “max,” “min,” “add,” and “subtract” opera-
tions. The difficult part of block-based statistical timing is to
reexpress the result of a min or max operation in canonical
form for further correlated propagation in the timing graph. The
concept of tightness probability helps us in this difficult step.
The intuition behind this step is explained below in reference
to a snippet of the timing graph shown in Fig. 1, assuming late
mode computations for illustration purposes.

Let C = c0 +
∑n

i=1 ci∆Xi + cn+1∆Rc be the late-mode
arrival time at node C, D = d0 +

∑n
i=1 di∆Xi + dn+1∆Rd

Fig. 1. Part of timing graph.

be the late-mode arrival time at node D, and the late-mode
delays of the two edges of the timing graph be dCG = e0 +
∑n

i=1 ei∆Xi + en+1∆Re and dDG = f0 +
∑n

i=1 fi∆Xi +
fn+1∆Rf . We would like to compute the late-mode arrival time
at timing point G which is

G = max

[{

c0 +
n

∑

i=1

ci∆Xi + cn+1∆Rc

+ e0 +
n

∑

i=1

ei∆Xi + en+1∆Re

}

{

d0 +
n

∑

i=1

di∆Xi + dn+1∆Rd

+ f0 +
n

∑

i=1

fi∆Xi + fn+1∆Rf

}]

= max

[{

(c0 + e0) +
n

∑

i=1

(ci + ei)∆Xi

+
(

√

c2
n+1 + e2

n+1

)

∆Ra

}

{

(d0 + f0) +
n

∑

i=1

(di + fi)∆Xi

+
(

√

d2
n+1 + f2

n+1

)

∆Rb

}]

= max

[{

a0 +
n

∑

i=1

ai∆Xi + an+1∆Ra

}

{

b0 +
n

∑

i=1

bi∆Xi + bn+1∆Rb

}]

(11)

where the coefficients of A and B (the two quantities whose
max we seek to compute) are computed from the equations
above. Thus, independent randomness is treated in a root of the
sum of the squares (RSS) fashion, which reduces the spread of
delay of a long path consisting of many stages.

Using the formulas of the previous section, we seek to ex-
press the max of the two potential arrival times (A and B) back
into canonical form for further correlated propagation through
the timing graph. From (10), we know the mean and variance
of G. In traditional static timing, G would take the value of the
larger of A and B, and for all downstream purposes, the charac-
teristics of the dominant potential arrival time that determined

VISWESWARIAH et al.: FIRST-ORDER INCREMENTAL BLOCK-BASED STATISTICAL TIMING ANALYSIS 2173

the arrival time G are preserved, and the other potential arrival
time is ignored. This is like having a tightness probability of
100% and 0%. In the probabilistic domain, the characteristics
of G are determined from A and B in the proportion of their
tightness probabilities. Thus, if the probabilities were 0.75 and
0.25, the sensitivities of A and B would be linearly combined
in a 3:1 ratio to obtain the sensitivities of G. Mathematically

gi = TAai + (1 − TA)bi, i = 1, 2, . . . , n (12)

where TA is the tightness probability of A.
The mean of the distribution of max(A,B) is preserved

when converting it to canonical form. The only remaining
quantity to be computed is the independently random part of the
result. This is done by matching the variance of the canonical
form to the variance computed analytically from (10). Thus, the
first two moments of the real distribution are always matched in
the canonical form.

Interestingly, the coefficients computed in this manner pre-
serve the correct covariance to the global sources of variation
as derived in [13] and are similar to the coefficients computed
in [10]. According to the theorem from [13], the covariance
between G = max(A,B) and any random variable Y can be
expressed in terms of covariance between A and Y and B and
Y as

cov(G,Y) = cov(A, Y)TA + cov(B, Y)(1 − TA). (13)

Choose Y = ∆Xi, one of the global sources of variation.
By observing that cov(A,∆Xi) = ai and cov(B,∆Xi) = bi,
we obtain

cov(G,∆Xi) = aiTA + bi(1 − TA). (14)

Now, by applying the assumption that G is normally distributed,
we get gi = aiTA + bi(1 − TA), confirming the previous intu-
ition. It should be noted that the covariance to the independent
sources of variation ∆Ra and ∆Rb is not preserved in our
method.

The max of two Gaussians is not a Gaussian, but we reex-
press it in the canonical Gaussian form and incur an accuracy
penalty for doing so. However, this step allows us to keep alive
and propagate correlations due to dependence on the global
sources of variation, which is absolutely key to performing
timing in a realistic fashion. Monte Carlo results will be shown
in the results section to assess the accuracy of this method.

When more than two edges of the graph converge at a node,
the max or min operation is conducted one pair at a time,
just as with deterministic quantities. The tightness probabilities
are treated as conditional probabilities and postprocessed to
compute the final tightness probability of each arc incident on
the node whose arrival time is being computed. For example,
suppose there are three arcs P , Q, and R, incident at a node.
Suppose the tightness probabilities when maxing P and Q are
0.6 and 0.4, respectively. The max of these two quantities is
then maxed with R, and suppose the tightness probabilities are
0.8 and 0.2, respectively. Then, the final tightness probabil-
ities are TP = 0.6 × 0.8 = 0.48, TQ = 0.4 × 0.8 = 0.32, and

TR = 0.2. As more equally critical signals are maxed, accuracy
degrades slightly, since the asymmetry in the resulting proba-
bility distribution increases, making it harder to approximate in
canonical form.

Slews (rise/fall times) are propagated in much the same
manner. If the policy is to propagate the worst slew, then a
separate tightness probability is computed for the slews and
applied to represent the bigger slew in canonical form. If
the policy is to propagate the latest arriving slew, then the
same arrival tightness probabilities are applied to combine the
incoming slews to obtain the output slew.

In this manner, by replacing the “plus,” “minus,” “max,”
and “min” operations with probabilistic equivalents, and by
reexpressing the result in a canonical form after each operation,
regular static timing can be carried out by a standard forward
and backward propagation through the timing graph [15]. Early
and late mode, separate rise and fall delays, sequential circuits,
and timing tests are, therefore, easily accommodated just as in
traditional timing analysis.

V. CRITICALITY COMPUTATION

The methods presented in the previous section enable sta-
tistical timing analysis, during which the concept of tightness
probability is leveraged to propagate arrival and required arrival
times in a parametric canonical form. In this section, the use
of tightness probabilities in computing criticality probabilities
[16] is presented. One of the important outcomes of determin-
istic timing is the ability to find the most critical path. In the
statistical domain, the concept of the most critical path is prob-
abilistic. The criticality probability of a path is the probability
that the path is critical; the criticality probability of an edge is
the probability that the edge lies along a critical path; and the
criticality probability of a node is the probability that a critical
path passes through that node. Computing these probabilities
will obviously have important benefits in enumerating critical
paths, enabling robust optimization and generating test vectors
for at-speed test.

The method of computing criticality probabilities in this sec-
tion assumes independence between the various tightness prob-
abilities in a timing graph. While we believe this is a reasonable
assumption in practice, it is nonetheless a theoretical limitation
of the approach.

A. Forward Propagation

The ideas behind criticality computations are described by
means of an example. Consider the combinational circuit of
Fig. 2. In this example, separate rising and falling delays and
slew effects are ignored for simplicity, but the ideas can be
extended in a straightforward manner. Likewise, sequential cir-
cuits pose no special problem. The example assumes late-mode
timing, but early-mode timing follows the same reasoning.

The timing graph of the circuit is shown in Fig. 3. During the
forward propagation phase of timing analysis, each edge of the
timing graph is annotated with an arrival tightness probability
(ATP), which is the probability that the edge determines the
arrival time of its output node. The ATPs in this example have

2174 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 10, OCTOBER 2006

Fig. 2. Sample circuit.

Fig. 3. Timing graph of sample circuit.

been chosen arbitrarily and are shown at the tail of each edge
of the timing graph. Once the primary outputs are reached,
a virtual output edge is added from each primary output to
a sink node, shown as edges G and H in Fig. 3. Each such
edge is considered to have a delay equal to the negative of
the asserted required arrival time at the corresponding primary
output. In the presence of timing tests (such as setup, hold, or
clock pulsewidth tests), a virtual edge is added to the sink node
whose delay is the negative of the computed statistical required
arrival time. Then the standard forward propagation procedure
is continued to compute the “arrival time” of the sink of the
graph, and the ATPs of the virtual output edges. In this case,
for illustration purposes, the ATP of each of the virtual output
edges is chosen to be 0.5.
Property 1: The sum of the ATPs of all edges incident on

any node of the timing graph is 1.0.
Property 2: The criticality of a path is the product of the

ATPs of all edges along the path. For path 2B5E6GS to be
critical, for example, edge B has to determine the arrival time of
node 5 (probability = 0.5), edge E has to determine the arrival
time of node 6 (probability = 0.6), and edge G has to determine
the arrival time of node S (probability = 0.5), for a total prob-
ability of 0.15, assuming independence between these events.
Property 3: The sum of the criticality of all paths in a timing

graph is 1.0.

Fig. 4. Backward traversal of timing graph.

B. Backward Propagation

Fig. 4 shows the criticality calculations during the backward
propagation phase of timing analysis. During the backward
propagation, we will compute the global criticality of each edge
and each node of the timing graph, and the required arrival
tightness probability (RATP) of each edge of the timing graph,
which is the probability that the edge determines the required
arrival time of its source node.
Property 4: The sink node has a node criticality probability

of 1.0. This property is obvious, since all paths must pass
through the sink node. The sum of the ATPs of the virtual output
edges is, therefore, also 1.0.

Starting with the sink node S, the backward propagation first
considers edges G and H. They each have a 0.5 edge criticality,
since they each determine the arrival time of S with 0.5 proba-
bility. The criticality of nodes 6 and 7 are, likewise, 0.5 each.
Property 5: The criticality of an edge is the product of its

ATP and the criticality probability of its sink node. Clearly,
an edge is globally critical only to the extent the sink node is
critical and it determines the arrival time of that sink node.
Property 6: The criticality of a node in the timing graph is

the sum of the criticality of all edges leaving that node. Using
the above two properties, the criticalities of edges and nodes are
easily computed during a levelized backward traversal of the
timing graph and are shown in Fig. 4. The criticality computa-
tions can piggy-back on top of the usual required arrival time
calculations. Note that the criticality of edge A, for example,
is the product of the criticality of node 6 (0.5) and the ATP of
edge A (0.4). The criticality of node 5, for example, is the sum
of the edge criticalities of edges E and F.
Corollary 6.1: The criticality of any node in the timing graph

is the sum of the path criticalities of all paths in its fan-out cone.
For example, node 5 has two paths in its fan-out cone, path
5E6GS with a path criticality of 0.3 and path 5F7HS with a path
criticality of 0.5, totaling to a node criticality of 0.8 for node 5.
Property 7: The sum of the node criticalities of all the

primary outputs is 1.0. For general sequential circuits, this prop-
erty would apply to all slack-determining endpoints (primary
output and timing test points).

As the backward propagation progresses, RATPs are com-
puted and annotated on to the timing graph. These probabilities
are shown close to the source node of each edge in Fig. 5.

VISWESWARIAH et al.: FIRST-ORDER INCREMENTAL BLOCK-BASED STATISTICAL TIMING ANALYSIS 2175

Fig. 5. Source node of timing graph.

Property 8 (Dual of Property 1): The sum of the RATPs of
all edges originating at any node of the timing graph is 1.0.
At a node such as 5, where there are multiple fan-out edges,
the RATPs will be in the proportion of the edge criticality
probabilities of the downstream edges. When the primary inputs
are reached during backward traversal, a new node of the timing
graph called the source node is postulated, with virtual input
edges from the source node to each of the primary inputs,
shown as edges I, J, K, and L in Fig. 5. Each virtual input
edge is considered to have a delay equal to the arrival time of
the corresponding primary input, and the required arrival time
of the source node is computed. During this computation, the
RATPs of the virtual edges are also determined.
Property 9: The ATP of each of the virtual input edges is 1.0.
Property 10 (Dual of Property 4): The criticality of the

source node is 1.0. This property is obvious, since every path
passes through the source node.
Property 11 (Dual of Property 7): The sum of the node

criticalities of all the primary inputs is 1.0.
Property 12 (Dual of Property 9): The sum of the edge

criticalities of the virtual input edges is 1.0 as is the sum of
their RATPs.
Property 13 (Dual of Property 2): The criticality of any

path is the product of the RATP of all edges of the path.
Thus, the criticality of path SoJ2B5E6GS is 0.4 × 1.0 × 3/8 ×
1.0 = 0.15.
Property 14: The criticality of an edge is the sum of the

criticality of all paths through that edge.
Property 15: The product of the ATPs along any path of the

graph is equal to the product of the RATPs.
Property 16: The sum of the edge criticalities of any cutset

of the timing graph that separates the source from the sink
node is 1.0. In other words, any cut through the graph that leaves
the source node on one side and the sink node on the other will
cut edges whose criticality probabilities sum to 1.0. This must
be the case since every critical path will have to pass through
exactly one edge of the cutset.

It is important to note that the edge and node criticalities
can be computed on a global basis, or on a per-endpoint basis,
where an endpoint is a slack-determining node of the graph
(a primary output or either end of a timing test segment). The
application will dictate which type of computation is more
efficient and suitable.

Fig. 6. Incremental timing analysis.

C. Path Enumeration

Enumeration of paths in order of criticality probability is
useful in a number of different contexts, such as producing re-
ports, providing diagnostics to the user or a synthesis program,
listing paths for test purposes, listing paths for common path
pessimism removal (CPPR) purposes [17], and enumerating
paths for analysis by a path-based statistical timer [4]. One
straightforward manner of enumerating paths is by means of
a breadth-first visiting of the nodes of an augmented graph as
shown in Fig. 5, while following the unvisited node with the
highest criticality probability at each juncture. A running total
of the criticality probability of the listed paths is maintained,
and the path enumeration stops when the set of critical paths
has been covered with a certain confidence.

During the path enumeration, the following properties
are useful.
Property 17: The ATP of an edge is an upper bound on the

criticality of any path that passes through that edge.
Property 18: The RATP of an edge is an upper bound on the

criticality of any path that passes through that edge.
Property 19: The criticality probability of an edge is an

upper bound on the criticality of any path that passes through
that edge.
Property 20: The criticality probability of a node is an

upper bound on the criticality of any path that passes through
that node.

VI. INCREMENTAL STATISTICAL TIMING

Optimization or physical synthesis programs often call an
incremental timer millions of times in their inner loop. To
suit this purpose, a statistical timer needs to incrementally and
efficiently answer timing queries after one or more changes to
the circuit has been made.

Consider the situation shown in Fig. 6. Assume a single
change has been made to the circuit at the location shown.
The change could be the addition of a buffer, the resizing of a
gate, the removal of a latch, and so on. Assume that the calling
program queries the timer for the arrival time at the “Location
of AT query” point. Clearly, only the arrival times in the
yellow cone of logic change (on black-and-white hardcopies,
the lightest grey region). Further, only arrival time changes in
the fan-in cone of the query point can have an effect on the

2176 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 10, OCTOBER 2006

query. The intersection of these regions of logic is shown in
green (or the darker grey region). Theoretically, by purely topo-
logical reasoning, the portion of the circuit that must be retimed
to answer this query can be limited to the intersection of these
two cones of logic. This kind of limiting is called level limiting
and is accomplished by storing arrival time (AT), required
arrival time (RAT), and AT–RAT levels for each gate [5]. In
practice, all arrival times in the fan-out cone of the change
point and to the left of the query point (i.e., up to the vertical
dashed line shown in Fig. 6) are updated. The levelization
and limiting procedures are identical for the statistical timing
situation, and the implementation can easily ride on top of an
existing deterministic incremental capability.

In addition to level limiting, the amount of recomputation
can be further reduced by dominance limiting. Consider the
NAND gate shown in Fig. 6. One input of the NAND gate is from
the “changed” cone of logic and the other from an unchanged
region. If the arrival time at the output of the NAND gate is
unchanged, because it was determined both before and after
the change by the side input, then the fan-out cone of the
NAND gate (shown in dark black in Fig. 6) can potentially
be skipped in answering the query. This type of limiting is
called dominance limiting. In our statistical timer, the notion of
“change” is treated probabilistically by examining the tightness
probabilities. If the ATP of the side input is sufficiently close
to 1.0 both before and after the change, then the arrival time
of the output of the NAND gate need not be recomputed, and
its fan-out cone can potentially be skipped until some other
input of that fan-out cone is known to have materially changed.
Similar concepts are applicable during backward propagation
of required arrival times.

Of course, there are several complications that must be faced
in a real application such as latches, multiple clock phases and
phase changes, and the dynamic adaptation of data structures
to such changes. These details are omitted due to lack of
space, but our implementation takes into account all of these
considerations.

VII. IMPLEMENTATION

The above ideas have been implemented in a prototype called
EinsStat. EinsStat is implemented on top of the static timing
analysis program EinsTimer in C++ with Tcl scripting under
Nutshell. Multiple clock phases, phase renaming, rule tests
(such as setup and hold tests), automatic tests (such as clock
gating, clock pulsewidth, and clock inactive tests), loop cut
checks, same-mode constraints (comparing late versus late or
early versus early, instead of the usual late/early comparison),
arbitrary timing assertions, timing adjusts anywhere in the tim-
ing graph, and clock overrides are supported as in EinsTimer.
The timer works permanently in incremental mode [18], even if
a complete timing report is requested.

Each timing assertion, gate delay, wire delay, and timing test
guard time must be modeled in canonical form, i.e., with a
mean part, a dependence on global sources of variation and
an independent random portion. Backward compatibility with
deterministic timing is preserved by setting the mean value of
an adjust or assertion to the deterministic value, and the ran-

domness to zero or to a user-specified proportional variability.
The EinsStat implementation allows each gate and each wire
to have its own customized variability model, provided the
model can be expressed in the canonical form. Furthermore, the
EinsStat implementation utilizes a general-purpose three-tier
sensitivity modeling approach, whereby delay dependencies
to underlying sources of variation can be obtained either by:
1) analytic means (i.e., appealing to either technology models
or an underlying simulator); 2) finite differencing of corner-
based delays; or 3) using user-specified global assertions (e.g.,
EinsStat supports Tcl commands to express a situation in
which, for example, “all normal Vt gates have a 1% indepen-
dent randomness and a 4% correlated variability, and similarly
all low Vt gates have a 2% independent randomness and 5%
correlated variability; and, furthermore, the two sets of varia-
tions mistrack with respect to each other”). To enable efficient
memory use, each source of variation may be categorized
as either “sparse” (maintained in a linked-list data structure,
avoiding the need to explicitly store zero sensitivity values)
or “dense” (in a compact array structure, using fixed variable
indices, explicitly storing zero sensitivity values). As an exam-
ple, lower levels of metal that are used frequently throughout a
design are preferably represented densely, while less frequently
used higher levels of metal are better off being treated in a
sparse manner.

EinsStat supports a multitude of process variables, including
individual metal layers, N-type field effect transistor/P-type
field effect transistor (NFET/PFET) mistracking, mistracking
between different Vt device families, and product-reliability
factors. For initial testing purposes, three global sources of
variation were studied. The first is gate versus wire delays. Each
of these sets of delays can have an independent and correlated
variability, and a mistrack coefficient. In the case of gate versus
wire delays, mistrack implies that when gates get faster, wires
get slower, and vice versa, and in general expresses correla-
tions between the two sets of delays. The second supported
global source of variation is rise versus fall delays of gates (to
model N/P mistrack due to manufacturing variations or fatigue
effects). Again, each of these can have a random and correlated
part and a mistrack coefficient. The third supported source of
variation is meant similarly to study mistrack between normal
Vt and low Vt gates. In the benchmark results presented in
the next section, sensitivities to these three global sources of
variation were provided in a blanket fashion as a percentage of
the nominal delay.

VIII. NUMERICAL RESULTS

EinsStat was first run on industrial application-specific in-
tegrated circuit (ASIC) chips of various sizes with zero ran-
dom variability and no global sources of variation. The arrival
time, required arrival time, and slack were compared between
EinsTimer and EinsStat at every node of the circuit, for every
clock phase, both rising and falling, and for both early mode
and late mode. This was a good test to detect certain kinds
of software bugs in the EinsStat implementation, since the
two sets of results must be identical in the absence of any
variability.

VISWESWARIAH et al.: FIRST-ORDER INCREMENTAL BLOCK-BASED STATISTICAL TIMING ANALYSIS 2177

TABLE I
CPU AND MEMORY RESULTS

A set of industrial ASIC designs was timed with three global
sources of variation as well as independent randomness built
into every edge of the timing graph. The benchmark results are
shown in Table I, in which the chips are code named A, B,
etc., to preserve confidentiality. The column “Propagate seg-
ments” represents the number of edges in the timing graph
with unique source–sink pairs of nodes. The “Load” column
lists the CPU time to load the netlist, timing models, and
assertions. The “EinsTimer + EinsStat” column is the CPU
time of the deterministic base timer, while the “EinsStat”
column shows the CPU time taken when the statistical timer
runs alongside (and in addition to) the deterministic timer.
All CPU times were measured on an IBM Risc/System 6000
model 43P-S85 on a single processor. All timing runs included
forward propagation of early and late arrival times and reverse
propagation of early and late required arrival times. Similarly,
the memory consumption to load each design, assertions and
delay models (Base), run deterministic timing (EinsTimer),
and statistical timing alongside (and in addition to) determin-
istic timing (EinsTimer + EinsStat) are shown in subsequent
columns of Table I. The CPU and memory overhead of sta-
tistical timing are very reasonable, considering the wealth of
additional data being generated. In the small test case A, mem-
ory consumption was dominated by the delay models, so the
overhead due to statistical timing was dwarfed. In test case E,
the larger overhead was due to nodes in the timing graph having
extremely high incidence due to silicon-on-chip (SoC) timing
macromodels.

The statistical experiments were performed both with
and without criticality computations, and the CPU time and
memory overhead were observed to be nearly identical (within
1%), lending credence to the efficiency of the criticality
computations.

Test chip “A” (3042 logic gates) was used to demonstrate the
importance of global correlations. The critical path in this chip
is a long combinational path passing through about 60 stages
of logic, with a nominal delay of 23.06 ns, including wire delay.
With 5% correlated variability (i.e., assuming all delays move
in concert with respect to a source of variability) on every gate
and wire delay, the longest path delay is 23.01 ns with a σ of
0.9 ns. With 5% independent variability (i.e., assuming each
circuit delay may vary independently) on every gate and wire
delay, the longest path delay is 23.62 ns with a σ of 0.13 ns.
Clearly, with more independent randomness, there is more
cancellation of variability along a long path, yielding a tighter
distribution but with a more pessimistic mean. The correlated
case produces a more optimistic mean path delay but with a

Fig. 7. EinsStat versus Monte Carlo analysis case “Monte Carlo 1.”

much bigger spread. EinsStat allows the modeling of these
extreme situations and anything in-between.

The primary goal of EinsStat is to produce timing results
in a parameterized form and, therefore, to give the designer
information regarding the robustness of the design. However,
EinsStat produces these timing results as random variables,
and the correctness of the mean and spread of these random
variables can be verified by Monte Carlo analysis. To render
the analysis tractable, EinsStat makes a number of assumptions
that prevent it from obtaining the exact result. Inaccuracy creeps
in every time the probability distribution resulting from a max
or min operation is reexpressed in canonical form. Specifically,
the max or min of two Gaussians is not Gaussian, but EinsStat
forces it back into a Gaussian form. The extent of these inaccu-
racies is revealed by Monte Carlo analysis.

In order to validate the timing results obtained from EinsStat,
a comparison of EinsStat with Monte Carlo simulation on four
small- to medium-sized benchmarks was performed. For each
case, one representative slack, that of the nominally critical
endpoint, was selected for comparison purposes. Figs. 7–10
show the slack distribution of both EinsStat and Monte Carlo
analysis for the four test cases. It can be seen from these figures
that EinsStat predicts the mean value, spread, and tails with
reasonable accuracy.

The runtime comparison of the EinsStat runs with that
of Monte Carlo analysis appears in Table II. The runs were
performed on the same computer. From Table II, it can be seen

2178 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 10, OCTOBER 2006

Fig. 8. EinsStat versus Monte Carlo analysis case “Monte Carlo 2.”

Fig. 9. EinsStat versus Monte Carlo analysis case “Monte Carlo 3.”

that EinsStat is significantly faster than both sequential and
parallel (utilizing up to 45 processors) Monte Carlo analysis.

Early on in the verification process, it became obvious that
the runtimes required for serial Monte Carlo would quickly be-
come prohibitive. Therefore, significant development effort was
invested to create a high-performance Monte Carlo capability.
This tool uses a client/server approach to perform parallel
timing runs on different host machines, controlled by a central
Monte Carlo process, with all data transfer occurring via trans-
mission control protocol (TCP). While this effort made Monte
Carlo verification a viable option on the larger designs, note that
runtimes are still several magnitudes of order larger than those
of EinsStat (see column 6 of Table II).

A repowering experiment on chip “A” was used to evaluate
incremental operation of EinsStat. For each of 493 gates with
negative slack, the gate power level (size) was modified, and
EinsStat was queried for the new slack on each pin of the
modified gate. Incremental EinsStat was six times faster than

Fig. 10. EinsStat versus Monte Carlo analysis case “Monte Carlo 4.”

TABLE II
MONTE CARLO VERSUS EinsStat COMPARISON

nonincremental EinsStat with identical results. For large de-
signs and for different types of changes and queries, we expect
the runtime improvement obtained by incremental processing
to be quite dramatic.

An EinsStat analysis of an industrial ASIC design whose
hardware was known to have hold violations was performed
to consider the effects of back-end-of-the-line variability on
circuit performance. This design utilized seven wiring planes,
each of which was modeled by an independent random variable
to represent metal variability. The results of this analysis were
compared to a traditional exhaustive corner-based study (i.e., to
determine the combination of fast/slow metal layer assignments
that produces the worst possible slack). As indicated in Fig. 11,
a statistical treatment of parameter variation results in a 3σ early
mode slack of −162 ps representing a pessimism reduction of
63 ps over the traditional exhaustive corner-based analysis.

IX. FUTURE WORK AND CONCLUSION

This paper presents a novel incremental statistical timing
algorithm that propagates first-order sensitivities to global
sources of variation through a timing graph. Each edge of
the timing graph is modeled by a canonical delay model that
permits global dependence as well as independent randomness.
The timing results are presented in a parametric form, which
can help a designer or optimization program target robustness in
the design. A novel theoretical framework for computing local
and global criticality probabilities is presented, thus providing
detailed timing diagnostics at a very small cost in runtime.

VISWESWARIAH et al.: FIRST-ORDER INCREMENTAL BLOCK-BASED STATISTICAL TIMING ANALYSIS 2179

Fig. 11. EinsStat result on industrial ASIC design for early mode slacks.

The following avenues of future work suggest themselves.
The assumption of linear dependence of delay on each source of
variation is valid only for small variations from nominal behav-
ior. Extending the theory to handle general nonlinear models
and asymmetric distributions would be a big step forward.
Second, the impact of variability of input slews and output loads
on the delay of timing graph edges can be chain ruled into the
canonical delay model as suggested by [9]. Third, the criticality
computations in this paper assume independence between the
criticality probabilities of any two paths, an assumption, but not
quite correct. Extending the theory to remove dependence on
this assumption is a challenging task that we hope to address in
the future. Finally, extending EinsStat to account for spatially
correlated variability is another challenging task that we hope
to address in future work.

ACKNOWLEDGMENT

The authors would like to thank J. D. Hayes, P. A. Habitz,
J. Narasimhan, M. R. Guthaus, D. S. Kung, D. J. Hathaway, V.
B. Rao, A. J. Suess, and J. P. Soreff for their useful discussions
and contributions.

REFERENCES

[1] C. Visweswariah, “Death, taxes and failing chips,” in Proc. Design
Automation Conf., Anaheim, CA, Jun. 2003, pp. 343–347.

[2] A. Gattiker, S. Nassif, R. Dinakar, and C. Long, “Timing yield estimation
from static timing analysis,” in Proc. IEEE Int. Symp. Quality Electronic
Design, San Jose, CA, 2001, pp. 437–442.

[3] M. Orshansky and K. Keutzer, “A general probabilistic framework for
worst case timing analysis,” in Proc. Design Automation Conf., New
Orleans, LA, Jun. 2002, pp. 556–561.

[4] J. A. G. Jess, K. Kalafala, S. R. Naidu, R. H. J. M. Otten, and
C. Visweswariah, “Statistical timing for parametric yield prediction of
digital integrated circuits,” in Proc. Design Automation Conf., Anaheim,
CA, Jun. 2003, pp. 932–937.

[5] R. P. Abato, A. D. Drumm, D. J. Hathaway, and L. P. P. P. van Ginneken,
“Incremental timing analysis,” U.S. Patent 5 508 937, Apr. 16, 1996.

[6] J.-J. Liou, K.-T. Cheng, S. Kundu, and A. Krstic, “Fast statistical timing
analysis by probabilistic event propagation,” in Proc. Design Automation
Conf., Las Vegas, NV, Jun. 2001, pp. 661–666.

[7] M. R. C. M. Berkelaar, “Statistical delay calculation: A linear time
method,” in Proc. ACM/IEEE Workshop Timing Issues Specification and
Synthesis Digital Systems (TAU), Austin, TX, Dec. 1997, pp. 15–24.

[8] A. B. Agarwal, D. Blaauw, V. Zolotov, and S. Vrudhula, “Computation
and refinement of statistical bounds on circuit delay,” in Proc. Design
Automation Conf., Anaheim, CA, Jun. 2003, pp. 348–353.

[9] L. Scheffer, “Explicit computation of performance as a function of process
variation,” in Proc. ACM/IEEE Workshop Timing Issues Specification
Synthesis Digital Systems (TAU), Monterey, CA, Dec. 2002, pp. 1–8.

[10] H. Chang and S. S. Sapatnekar, “Statistical timing analysis considering
spatial correlations using a single PERT-like traversal,” in Proc. IEEE Int.
Conf. Computer-Aided Design, San Jose, CA, Nov. 2003, pp. 621–625.

[11] A. Agarwal, D. Blaauw, and V. Zolotov, “Statistical timing analysis for
intra-die process variations with spatial correlations,” in Proc. IEEE Int.
Conf. Computer-Aided Design, San Jose, CA, Nov. 2003, pp. 900–907.

[12] J. Jess, “DFM in synthesis,” IBM Thomas J. Watson Research Center,
Yorktown Heights, NY, Dec. 2001. Res. Rep.

[13] C. E. Clark, “The greatest of a finite set of random variables,” Oper. Res.,
vol. 9, no. 2, pp. 145–162, Mar./Apr. 1961.

[14] M. Cain, “The moment-generating function of the minimum of bivari-
ate normal random variables,” Amer. Stat., vol. 48, no. 2, pp. 124–125,
May 1994.

[15] C. Visweswariah, “System and method for statistical timing analysis of
digital circuits,” Docket YOR9-2003-401, Aug. 2003, filed with the U.S.
Patent office.

[16] ——, “System and method for probabilistic criticality prediction of digital
circuits,” Docket YOR9-2003-402, Aug. 2003, filed with the U.S. Patent
office.

[17] D. J. Hathaway, J. P. Alvarez, and K. P. Belkhale, “Network timing analy-
sis method which eliminates timing variations between signals traversing
a common circuit path,” U.S. Patent 5 636 372, Jun. 3, 1997.

[18] C. Visweswariah, “System and method for incremental statistical timing
analysis of digital circuits,” Docket YOR9-2003-403, Aug. 2003, filed
with the U.S. Patent office.

Chandu Visweswariah (S’82–M’89–SM’96–F’05)
received the B.Tech. degree in electrical engineering
from the Indian Institute of Technology, Chennai,
India, in 1985, and the M.S. and Ph.D. degrees in
computer engineering from Carnegie Mellon Univer-
sity, Pittsburgh, PA, in 1986 and 1989, respectively.

He has been a Research Staff Member at IBM’s
Thomas J. Watson Research Center, Yorktown
Heights, NY since 1990. He presently manages a cir-
cuit and interconnect analysis group. He has devel-
oped various circuit simulation, circuit optimization,

and timing software tools that are in production use in IBM. He is the author
or coauthor of one book and technical papers. He holds U.S. patents with
more pending. His research interests include modeling, analysis, timing,
optimization, and manufacturability of integrated circuits. In 2002, he was
a Visiting Assistant Professor at the Department of Electrical Engineering,
Eindhoven University of Technology, Eindhoven, The Netherlands.

Dr. Visweswariah has won one IBM Corporate Award, two IBM Outstanding
Technical Achievement Awards, and two IBM Best Paper Awards. He has
served on the Technical Program Committee of DAC, ICCAD, ICCD, and
CICC. Two of his papers were selected for the “Best of ICCAD” volume of
40 of the best papers published in 20 years of ICCAD. He won a Best Paper
Award at DAC 2004.

Kaushik Ravindran (S’03) is currently working toward the Ph.D. degree
in electrical engineering from the Department of Electrical Engineering and
Computer Science, University of California, Berkeley, CA.

Kerim Kalafala received the M.Sc. degree in computer and systems engineer-
ing from Rensselaer Polytechnic Institute (RPI), in 1998.

He has worked for IBM/EDA since 1998. He is a Senior Software Engineer
in the IBM Electronic Design Automation Group. He has developed various
timing analysis algorithms that are in use at IBM.

Mr. Kalafala, along with several coauthors, he has received two IBM best
paper awards as well as a best paper award at DAC 2004.

2180 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 10, OCTOBER 2006

Steven G. Walker received the B.S. degree in applied and engineering physics
from Cornell University, Ithaca, NY, in 1983.

He joined the IBM Research Division, Yorktown Heights, NY, in 1989,
where he initially worked on the development of automated GaAs process
characterization and optoelectronic wafer-level test systems. Since 1995, he
has worked on the development of a common design methodology employed
by several S/390 and PowerPC complementary metal–oxide–semiconductor
microprocessor chips. He has concentrated in the areas of static noise and
timing analysis, power analysis, silicon-on-insulator body voltage initialization,
and schematic device-level libraries.

Sambasivan Narayan, photograph and biography not available at the time of
publication.

Daniel K. Beece received the Ph.D. degree in physics from the University of
Illinois, Urbana-Champaign, in 1983.

He has worked in IBM’s Watson Research Division since 1982. He has
worked in several areas in very large scale integration design automation,
including verification and simulation. He is currently working with the System
Design Verification Group.

Jeff Piaget received the B.S. degree in computer engineering from the Univer-
sity of Massachusetts, Amherst, in 1988.

He is currently an Advisory Engineer with the IBM Electronic Design
Automation Group, Hopewell Junction, NY.

Natesan Venkateswaran received the B.Sc. de-
gree in physics from the University of Madras,
India, the M.E. degree in electrical engineering
from the Indian Institute of Science, Bangalore, in
1991, and the Ph.D. degree in computer engineering
from the University of Cincinnati, Cincinnati, OH,
in 1997.

He has since been a member of the Electronic
Design Automation Group in the IBM Server and
Technology Group, Hopewell Junction, NY. He has
been involved with development of placement and

floor planning tools in IBM. His current focus is on researching/developing
statistical timing analysis tools.

Jeffrey G. Hemmett received the B.S. and M.Sc. degrees in mechanical engi-
neering and the Ph.D. degree in engineering with focus on systems modeling
and analysis from the University of New Hampshire, Durham, in 1992, 1994,
and 2001, respectively.

He spent two years developing computer-aided design tools at Ford Motor
Company. In 2000, he joined the Electronic Design and Automation group at
IBM, Essex Junction, VT, where he initially contributed to the development of
fast transient simulation and formal sensitivity analysis tools before transition-
ing into Monte Carlo development, which led to his current focus in the area of
statistical static timing.

