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Abstract—The Elmore delay is an extremely popular timing-
performance metric which is used at all levels of electronic
circuit design automation, particularly for resistor-capacitor (RC)
tree analysis. The widespread usage of this metric is mainly
attributable to it being a delay measure that is a simple analytical
function of the circuit parameters. The only drawback to this
delay metric is the uncertainty of its accuracy and the restriction
to it being an estimate only for the step response delay.

In this paper, we prove that the Elmore delay measure is an
absolute upper bound on the actual 50% delay of an RC tree
response. Moreover, we prove that this bound holds for input
signals other than steps and that the actual delay asymptotically
approaches the Elmore delay as the input signal rise time in-
creases. A lower bound on the delay is also developed using the
Elmore delay and the second moment of the impulse response.
The utility of this bound is for understanding the accuracy and
the limitations of the Elmore metric as we use it as a performance
metric for design automation.

Index Terms—Delay estimation, Elmore delay (new), probabil-
ity, RC trees (new).

I. INTRODUCTION

RC TREES are commonly used to model digital logic
gates and their associated interconnect paths at various

stages of the design process. During the early phases of design,
simple approximations or delay bounds are often applied
since an exact solution of an approximate circuit model is
superfluous.

The omnipresent Elmore delay [7], or first moment of the
impulse response, is the delay approximation of choice for
resistor-capacitor (RC) trees because of the ease with which it
is calculated. In the original work of 1948, Elmore attempted
to estimate the 50% delay of a monotonic step response by
the mean of the impulse response. Penfield and Rubinstein
[18] proved that RC tree step responses are indeed monotonic
and thereby discovered the popular Elmore delay metric for
analyzing gate and interconnect delays. However, because the
median of the impulse response is the exact 50% delay and
Elmore is approximating the median by the mean, Penfield
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and Rubinstein developed best and worst case bounds on the
step response waveform [18].

These step response bounds were improved in [23] and
later extended to a two-time constant approximation in [4].
Sometime later, higher order moment matching techniques
were developed for resistor, inductor, capacitor (RLC) circuits
[19], of which RC trees are an important subset. Higher
order moments for RC trees can be calculated with excellent
efficiency [22].

But even with the higher order approximations with ac-
curacy comparable to SPICE, the Elmore delay remains a
popular metric merely for its simplicity. It is used during logic
synthesis to estimate wiring delays for approximate Steiner
or spanning tree routes. It is used during performance driven
placement and routing because it is the only delay metric
which is easily measured in terms of net widths and lengths
and so on. The only drawback to this delay metric is the
uncertainty of its accuracy and the restriction to it being an
estimate only for the step response delay.

In this paper we prove that the Elmore delay value is an
absolute upper bound on the 50% delay of an RC tree. This
is done by first proving that RC tree impulse response distri-
butions are guaranteed to be unimodal and positively skewed.
Then, using the classical theory of distribution functions, we
show that the mean of such a distribution will always exceed
the median. Moreover, we demonstrate that this proof applies
not only to the step response, but also to any input forcing
function which has a unimodal derivative, e.g., a saturated
ramp with finite rise time. Finally, with a calculation of the
mean and the variance of the impulse response we specify
a lower bound on the 50% delay. We will show that the
Elmore delay bound is sometimes better, sometimes worse,
than the Penfield–Rubinstein 50% delay bound for the case
of step inputs. In addition, we will show that the exact delay
approaches the Elmore bound as the variance of the input-
signal derivative increases.

II. RC TREES AND THEIR APPROXIMATIONS

A. Interconnect Models

RC trees, such as the one shown in Fig. 1, have been
widely used for modeling the gate and interconnect circuits
like the one shown in Fig. 2. An RC tree is an RC circuit
with capacitors from all nodes to ground, no capacitors be-
tween nonground nodes, and no resistors connected to ground,
making it a natural model for characterizing digital gate and
interconnect delays [18], [21]. For modeling simplicity, the
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Fig. 1. A simple RC tree.

Fig. 2. A CMOS inverter driving a similar inverter through RC interconnect.

Fig. 3. The unit step and the unit impulse response (scaled by1e+09) for
the voltage acrossC5 in Fig. 1.

nonlinear driver in Fig. 2 is linearized as shown in Fig. 1.
A great deal of work has been compiled over the last several
years regarding these linearized gate models [1], [9], [10], [15],
[16], [24]. In this work, however, we will focus on estimating
the delay of the linearized RC tree in Fig. 1.

B. The Elmore Delay

The step response for the node voltage at capacitorof
the RC tree in Fig. 1 is shown in Fig. 3. Also shown in Fig. 3
is the unit impulse response, , at the same node. Since the
step response is the integral of the impulse response (transfer
function), the 50% point delay of the monotonic step response
(nonnegative transfer function) is the timeat which

(1)

Referring to Fig. 4, Elmore proposed to approximateby the
mean of the distribution.

Treating the nonnegative impulse response in Fig. 4 as a
distribution function, the mean of this distribution function is
defined by the first moment of the impulse response. Elmore’s

unit step response delay approximation,, is

(2)

when the area underneath equals unity

(3)

This approximation appears valid for the symmetrical func-
tion in Fig. 4, where the mean is equal to the median.
However, it is somewhat erroneous for the real impulse
response in Fig. 3, which is skewed asymmetrically. It is this
skew, however, which will allow us to bound the delay () by
the mean ( ) in this paper.

C. Calculating the Elmore Delay

The Elmore delay is a convenient metric for RC trees
because it can be calculated so easily and efficiently for a
particular circuit topology. Efficient path tracing algorithms for
calculating the Elmore delay for RC trees have been covered
extensively in the literature [18], [24], so they will not be
discussed in detail here. In summary, one can calculate the
Elmore delay from two traversals of the tree, where
is the number of nodes in the tree. The Elmore value for the
output at node is given by

(4)

where is the resistance of the portion of the (unique) path
between the input and node, that is common with the unique
path between the input and node, and is the capacitance
at node [26]. Higher order moments can be obtained via
path tracing with equal efficiency [19], [22]. The Elmore delay
values at nodes , , and for the circuit in Fig. 1 are
given in column (3) of Table I.

D. First Moment of the Impulse Response

The Elmore delay has also been used as a dominant time
constant approximation. This follows from the transfer func-
tion for a response node of the RC tree expressed as

(5)

where . Expanding (5) about yields as an
infinite series in powers of

(6)

The Laplace transform of is

(7)
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Fig. 4. Elmore’s approximation.

TABLE I
DELAY BOUNDS FOR CIRCUIT IN FIG. 1

Expanding about in (7) yields the following series
in powers of

(8)

From (8) we observe that theth coefficient of the impulse
response is

(9)

These ’s are related to the moments from distribution
theory by the term. That is, the th moment of a
function is defined to be . It was this relation
between moments and transfer function coefficients which led
to Elmore’s original work.

To understand the connection between the first moment
and the dominant pole, we factor the numerator and the
denominator of (5) and show that terms and are the
sum of the reciprocal poles (circuit time constants) and the
sum of the reciprocal zeros, respectively

(10)

If there are no low-frequency zeros, the numerator coefficients,
including , are small and

(11)

If one of the time constants (or poles) is dominant

(12)

then

(13)

This dominant time constant approximation is then used to fit
a single pole approximation

(14)

Solving (14) for the 50% point delay effectively scales the
Elmore delay approximation by , or about 0.7.

We should point out that this dominant time constant delay
prediction can be either pessimistic or optimistic at two
different nodes in the same RC tree. For example, column
(5) of Table I shows the values of at nodes , ,
and for the circuit in Fig. 1. Notice that, when compared
with the actual delay values in column (1), the response at

is optimistically predicted by while that at
is pessimistically predicted. One way to explain this is by the
excessive skew in the distribution for , which is shown
with the step response for this node in Fig. 5, as compared with
the skew for the response at (shown in Fig. 3). It can be
expected that using Mean to approximate themedian
will be vastly different for these two distributions.

It is difficult to know when a single pole dominates the low-
frequency behavior of a circuit. For this reason, Rubinstein and
Penfield established bounds for the step response delay of this
important class of RC circuits.
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Fig. 5. The unit step and the unit impulse response (scaled by4e+09) for
the voltage acrossC1in Fig. 1.

E. Penfield and Rubinstein’s Bounds

Penfield and Rubinstein were the first to use the Elmore
delay to analyze RC trees [18]. Before higher order moment
matching techniques were available, delay bounds were the
only means of estimating the accuracy of the RC tree delay
approximation. The following are the Penfield–Rubinstein
delay waveform bounds for any percentage point on the RC
tree step response waveform

(15)

where

(16)

Calculating these bounds requires calculating two additional
terms in addition to the Elmore delay. All of these terms,
however, are obtained with complexity. The values of

and at the 50% point for our example in Fig. 1 are
given in columns (6) and (7) of Table I. Note that
at the loads, and , and at the driving point,

. Also note the values of as a lower bound on the delay.
In general, one can also calculate more moments for the

RC tree, and generate a two-pole [4] or a-pole [19] ap-

proximation. Higher order moments are obtained with
complexity too. But for certain applications, a single term
delay metric, such as the Elmore expression, is invaluable,
and this paper is towards a better understanding of this
approximation.

III. T HE ELMORE DELAY AS A BOUND

Referring back to Figs. 3 and 5, it is apparent that with
such an asymmetrical distribution for the impulse response,
the mean would not coincide with the median. In this section,
we will show that these asymmetric distributions have a “long
tail” on the right side of the mode, which is roughly the
maximum value point, and a “short tail” on the left side. Such
distributions are said to havepositiveskew. We will also prove
that the impulse response for an RC tree is unimodal and then
use these two properties to prove that

Mode Median Mean (17)

Equation (17) states that the Elmore delay, or the mean of
the impulse response, is truly an upper bound on the median,
or the 50% point delay. We will show that this holds for
any input that has a unimodal derivative and that the mean
becomes a better approximation of the median as the rise time
of the input-signal increases. Further in the section, we will
also provide a lower bound on the 50% delay for an RC tree,
but first a few definitions.

Definition 1: The mode, , of a distribution function is
that value of the variate exhibited by the greatest number of
members of the distribution [11]. If the distribution function
is continuous and differentiable, a unique mode exists only if

is unimodal and is the solution of

(18)

Definition 2: The median of a distribution function is
that value of the variate which divides the total frequency into
two equal halves [11], i.e.,

(19)

Definition 3: Themean of a distribution function about
the point is defined by

(20)

Definition 4: A density function is called unimodal,
if and only if, there exists at least one value such
that is nondecreasing for and nonincreasing for

[20].
Definition 5: Coefficient of skewnessfor a distribution func-

tion is given by , where , and and
are the second and third central moments of the distribution
function, respectively [5].

Lemma 1: The impulse response at any node of an RC
tree is a unimodal and positive function.
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(a)

(b)

Fig. 6. (a) Input node of an RC tree with input admittanceYin(s). (b) Norton
equivalent for the circuit in Fig. 6(a).

Proof: The proof is by induction. For a general RC
circuit as shown in Fig. 6(a), if is a unit impulse input,
from the Norton equivalent circuit shown in Fig. 6(b), the
effect of the unit impulse is to charge the capacitorso that

(21)

Since is an impulse input, for , in
Fig. 6(a). The impulse response at node one is then given
by the voltage at the discharging capacitance after
the initial state has been established by the impulse input.
For a general RC circuit, the poles and zeros of the driving
point admittance, in Fig. 6(a) are simple, interlaced,
and are located on the negative real axis of theplane [25].
Furthermore, the residues at the poles of are real and
negative [25]. In Fig. 6(a), for , the natural response is
given by the poles of [8] and is therefore of the form

(22)

where and are the poles and residues of , re-
spectively, and is a constant to satisfy the initial
condition, , so that . From
KCL, , so that the impulse response
at node one is given by

(23)

Following Definition 4, is unimodal.
Now consider Fig. 7 which shows node and the RC

tree “downstream” from node. For the induction argument,
assume that is unimodal, and

(24)

Fig. 7. AdmittanceYk+1 of an RC tree at an arbitrary nodek + 1.

If is an impulse input at node, then is the
impulse response at node for the tree rooted at node.
This has the same form as in (23) and is unimodal. Thus, the
impulse response at node w.r.t. node one (the driving
point), , is given by

(25)

where is the convolution operator. Since the convolution of
two unimodal positive functions is also a unimodal function
[20], is unimodal. Thus, at any node of an RC
tree is a unimodal function. That is a positive function
has been shown in [23].

Lemma 2: For the impulse response at any node of an
RC tree, the coefficient of skewnessis always nonnegative.

Proof: The proof again follows an induction-based argu-
ment. Following Definition 5, it needs to be shown that for

at any node of an RC tree, and . In this
proof, it is first shown that the coefficient of skewnessis
positive at the first node of an RC tree, and then the additive
property ofcentral momentsover convolution (Appendix B)
is used to motivate the induction argument.

In Fig. 8(a), consider a general RC tree for which the
first three moments of the driving point admittance, at
node one, can be used to synthesize a-model as shown in
Fig. 8(b) [14]. Note that this model exactly matches the first
three moments of the driving point admittance of the original
RC circuit. In terms of the moments of , the -model
parameters are

(26)

where , , are the first three moments
of .

With , the central moments and of the transfer
function at node one can be expressed in terms of the
moments as

and

(27)

It is shown in Appendix A that the moments through
of the transfer function at node one in Fig. 8(a)
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(a)

(b)

Fig. 8. (a) Driving point admittance of an RC tree at the first capacitor node.
(b) A reduced order� model for theY1(s) in (a).

are a function only of the moments through
of the driving point admittance . Therefore, an analysis
of the model in Fig. 8(b) provides the exact values of the
coefficients through of the transfer function

.
For the RC circuit in Fig. 8(b) (Appendix B)

(28)

(29)

where denotes the th moment of the transfer function
at node one. Thus, for the impulse response at node one
in Fig. 8(b), from (28) and (29) and Definition 2, .

Next consider Fig. 9 which shows nodeand its “down-
stream” part of the RC tree. To complete the induction
argument, assume that at node, and for ,
and hence, . If is an impulse, then is
the impulse response at node w.r.t. the input at node.
This has the same form as in Fig. 8(a) for which the above
argument shows that and from (28) and (29).
Now, the impulse response at node w.r.t. node one,

, is given by

(30)

When , the second and third central moments add
under convolution (Appendix B). Thus

(31)

Thus, for , from Definition 5, . Thus, for every
node in an RC tree, thecoefficient of skewness, .

Theorem: For the impulse response at any node in an
RC tree

Mode Median Mean (32)

Fig. 9. AdmittanceYk+1 of an RC tree at an arbitrary nodek + 1.

Proof: For a unimodal “skewed” distribution function,
the mean, median, mode inequality states that these three
quantities occur either in alphabetical order or the reverse
alphabetical order [11], i.e., either MeanMedian Mode or
Mode Median Mean. From Lemmas 1 and 2, we have that
each node in an RC tree has a unimodal distribution function
for which . We now prove, by contradiction, that for an
RC tree we have that Mode Median Mean.

For our contradiction argument, let Mean Median
Mode hold for any node, , in an RC tree. In a symmetrical
distribution, for which the coefficient of skewness,, is exactly
zero, the mean, the median and the mode coincide [11], [13].
Thus a natural measure of skewness for an asymmetrical
distribution is the deviation of themean from the median,
or the meanfrom the mode. Thus

Skew
Mean Median

(33)

where . Thus, at the node, since Mean Median
Mode holds, skew is negative. But, from Lemma 2, we have
that the coefficient of skewness, . Thus, at , either
Skew or we have a contradiction. In the former case,
Mean Median Mode, i.e., the distribution is symmetric,
and the mean and median coincide. And in the latter case,
Mode Median Mean.

Since the choice of the node is arbitrary, the proof is
complete.

We should note at this point that the Elmore delay or
the mean of the impulse response approaches the 50% delay
point at nodes further downstream from the source in an RC
tree. Thus, as one moves away from the source,is a better
approximation of the net delay, as further discussed in Section
IV.

A. A Lower Bound on Delay

Corollary 1: A lower bound on the 50% delay for an RC
tree is given by

(34)

where is the mean and .
Proof: Consider an impulse response , shown in

Fig. 10, with mean at . We define another function
as

(35)

With a simple change in the coordinate such that ,
we have such that its mean is at in the new
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Fig. 10. Impulse responseh(t) at an arbitrary node of an RC tree.

coordinate system. Then, we use the following inequality from
[5, p. 256]

(36)

For , (35) and (36) show that

(37)

Equation (37) states that in the new coordinate system,
is less than the median. Thus, in the original coordinate system,
for we have that Median.

When , since the RC tree system is causal and relaxed
[3] with zero input for , we have Median , and hence

Median. This completes the proof.
Referring back to the example in Fig. 1 and the delay

bounds in Table I, the lower bound at equals ,
whereas at and , is a tighter lower bound than .
However, as observed in Section III, the Elmore delay upper
bound, , becomes a tighter upper bound at the leaf-nodes of
an RC tree as is evident at and in Table I.

B. Approximating the Output Signal Transition Time

Another measure of practical importance for RC circuits,
other than the 50% delay point, is the rise time,, which
may be defined as the time required for the response to increase
from 10%–90% of its final value [7]. A good measure of the
value of for an output response is

(38)

where is the second central moment of the output response.
Elmore also proposes this value, which he calls theradius of
gyration, as a rise time measure for step-responses [7].

IV. GENERAL INPUT SIGNALS

The above shows that the Elmore delay is an upper bound
on the 50% step response delay. In addition, with one more
moment the variance can be calculated to establish a lower
bound on the 50% delay. However, when using the Elmore

delay to estimate RC interconnect delays, the signal coming
out of the digital gate is never a step voltage and is generally
modeled by a saturated ramp. Of course several models
have been developed to characterize the switching gate by
a linear resistor and a voltage step for compatibility with
the Elmore-step-response model [1], [9], [10], [16], [24]
but at the expense of accuracy. One recent work attempts
to model high-speed CMOS gates with linear resistors for
efficiency, but time varying voltage sources to capture the
high-frequency phenomena such as resistance shielding and
effective capacitance [6]. Most timing analyzers characterize
the gate and output signal transition time empirically as a
function of load and then drive the RC tree interconnect
model with a voltage that represents this transition time. For
these reasons we extend this Elmore-based bound to consider
nonzero input signal transition time, or more appropriately, the
variance of the input signal’s derivative.

A. The Elmore Delay Upper Bound

Corollary 2: For an RC circuit with a monotonically in-
creasing, piecewise-smooth input such that is a
unimodal function, Mode Median Mean holds for the
output response at any node.

Proof: The output response at any node of an RC
tree in response to an input is given in the Laplace
domain by

(39)

where is the transfer function of the circuit at that
node. Also, is a piecewise-smooth function and hence
piecewise differentiable. Thus

since

since (40)

where is the Laplace transform operator. Further, from
Appendix B, we have the property that the second and third
central moments add under convolution. Thus

(41)

From Lemma 2, we know that and .
From hypothesis, we also have

(42)

From (41) and (42), therefore, and
. Thus, from Definition 5, , and Median Mean.

Corollary 3: For a finite sized RC circuit with a mono-
tonically increasing piecewise-smooth input such that

is a symmetric function, as the rise time of the input
signal, , the 50% delay of the output response ,
i.e., Median Mean.
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Proof: The output response at any node of an RC
tree in response to an input is given in the Laplace
domain by

(43)

And from (40) and (41)

(44)

From hypothesis, we have that is a symmetric function.
. Also, since

(45)

Also from hypothesis, the circuit is finite sized.
. Thus

as (46)

Since Mean Median, Median Mean.
Thus, as the rise time of the input-signal increases without
bound, the 50% delay for an RC tree approaches the Elmore
delay .

It is noteworthy here that since , i.e., , is
a symmetric function, its mean and median coincide. Further

(47)

where is the mean. Integrating by parts

(48)

where we have used the fact that
and since both and
exponentially as [26]. Thus, (48) says that the area
between the input and the output response equals the Elmore
Delay, [12].

B. Delay Curves

The estimation of the 50% delay by the Elmore delay as
a function of the rise time of the input signal (see Fig. 11),
as stated in Corollary 3, is shown in Fig. 12 for our RC tree
example circuit (in Fig. 1). As the rise time of the input signal
increases, the delay asymptotically approaches the Elmore
Delay value, (from below), as expected.

It was observed in Section III that as one moves away
from the source, (i.e., the mean, ) is a better approx-
imation of the net delay. The proof for Lemma 1 uses the
additive property of the central moments under convolution.
Referring to (31), for any node , , .
Furthermore, using (28) and (29), it is clear that since,

, and decrease as one moves further from the driving

Fig. 11. Input signal�i(t) with rise time,tr, and its derivative,�0

i
(t).

Fig. 12. Delay curves show that as the rise time of the input signal increases,
the delay approachesTD .

Fig. 13. Impulse responses at nodes A (driving point), B (middle node), and
C (leaf node).

point, and form decreasing and hence
convergent sequences. Thus, as nodes farther away from the
source are considered, the values of and start
to converge and hence the skew,, converges. The fact that

is a better approximation of the net delay farther away
from the driving point is illustrated here using a 25-node RC
tree. For three nodes A, B, and C, where A is near the driving
point, B is in the middle of the tree, and C is a leaf-node, the
impulse responses are shown in Fig. 13. The response at node
C is less “asymmetric” than the response at node B, which
shows that the impulse response approaches symmetry away
from the driving point and the Elmore delay becomes a
tighter bound on the 50% delay point.

Table II shows the relative errors ( Delay )/Delay for
different input signal rise times. In Fig. 14, the relative error
decreases as a function of the distance from the driving point
and input signal rise time.
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TABLE II
DELAYS AND RELATIVE ERROR AT NODES A, B, C ALONG A SIGNAL PATH

Fig. 14. Relative error ( Delay� TD)/Delay as function of path resistance
from driving point (i.e., distance from driving point).

V. CONCLUSIONS

The Elmore delay is an extremely popular timing per-
formance metric which is used at all levels of electronic
circuit design automation. We have proven that this delay
measure is an upper bound on the actual 50% delay of an
RC tree response. Moreover, we have proven that this bound
holds for input signals other than steps and that the actual
delay asymptotically approaches the Elmore delay as the input
signal rise time increases. A lower bound on the delay is
also developed as a function of the Elmore delay, which is
the first moment of the impulse response, along with the
second moment of the impulse response. Improved bounds
may be possible with more moments, but moment matching
techniques, such as asymptotic waveform evaluation (AWE),
are preferable when higher order moments are available. The
utility of this bound is for understanding the accuracy and the
limitations of the Elmore metric as we use it as a performance
metric.

APPENDIX A
DRIVING POINT ADMITTANCE IN LEMMA 2

With reference to Fig. 15, the transfer function at node one
is given by

(A1)

Fig. 15. Moments of the transfer functionH1(s) at node one as a function
of the driving point admittanceY1(s) of the RC tree at node one.

If is the th moment of the driving point admittance
of the RC circuit, then can be rewritten as a series

(A2)

Now, for an RC tree since for a dc signal (i.e.,
), and . Now, (A1) can be used to obtain

the th moment of in terms of the moments
of as follows:

(A3)

From (A3), the moments through of the
transfer function are a function only of the moments

through of the driving point admittance
at node one.

APPENDIX B
CENTRAL MOMENTS FOR AN RC CIRCUIT

For the circuit shown in Fig. 8(b), the central moments
and at node one are related to the momentsas follows:

(B1)

(B2)

where is the th moment at node, and

(B3)
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After some algebraic simplifications, (B3) reduces to

(B4)

When , central moments add under convolution.
From (40)

(B5)

from which the moments of can be obtained as
a function of the moments of and . Setting

and , the central moments of
can be simplified to

(B6)
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