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Abstruct- Most research in timing verification has implicitly 
assumed a single vector Jloatins mode computation of delay 
which is an approximation of the multivector transition delay. 
In this paper we examine the transition delay of a circuit and 
demonstrate that the transition delay of a circuit can differ from 
the floating delay of a circuit. We then provide a procedure for 
directly calculating the transition delay of a circuit. The most 
practical benefit of this procedure is the fact that it not only 
results in a delay calculation but outputs a vector sequence that 
may be timing simulated to cemB static timing verification. 

I. INTRODUCTION 
HE LONGEST-PATH DELAY of a circuit is simply the T sum of the cumulative delays of a circuit along the longest 

graphical path. This measure of delay is still used in most 
static timing verifiers but has the deficiency that it does not 
take into account false paths. To remedy this deficiency the 
$outing delay of a circuit may be analyzed. The floating 
delay of a circuit is the delay under a single-vector static 
analysis condition that considers the Boolean behavior of the 
circuit but makes conservative assumptions about the state 
of the circuit before the single vector is applied. A number 
of techniques have been proposed for computing the true 
floating delay of circuit, but a significant step was taken in 
[ 131 where a technique that provided correctness in the light of 
monotone speed-ups was demonstrated. Further improvements 
were made in [5], [7] where techniques that more precisely 
identified the critical path were presented. The transition delay 
of a circuit is the delay under a multivector dynamic-analysis 
condition that makes no assumptions about the state of the 
circuit before the vector sequence is applied. A circuit is 
presented in this paper whose true floating delay is greater 
than its transition delay; thus, the floating analysis condition 
itself has some deficiencies. 

Meeting delay requirements is the most important constraint 
imposed on a circuit. For this reason verifying the timing of a 
circuit before manufacture is one of the most important tasks 
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of a computer-aided design system. Unfortunately to date there 
has been no fully satisfactory approach to this problem. One 
solution to this problem is to simulate the behavior of the 
circuit using an accurate timing simulator. Simulators such as 
SPICE [l]  are able to very accurately model the temporal 
behavior of a circuit. Accurate simulation has two significant 
problems: It is computationaliy expensive and its utility is 
limited by the vector set that is applied. The first problem can 
be addressed by using less accurate but more computationally 
efficient algorithms such as CRYSTAL [14]. Unfortunately, in 
any simulation-based approach the final result is only as good 
as the vector set that is applied. Simulation of all possible 
input stimuli is never an option, and if there is one unsimulated 
input stimulus that could cause the circuit to go slower, then 
the simulation results may lead to the manufacture of a circuit 
that will not run at the required speed. 

An approach that avoids the problem of vector dependency 
is to use static timing verifiers [lo], [14]. In this approach 
the delay of a circuit is determined to be the longest path in 
the circuit. This approach also has two significant problems: 
First, the timing models used in static timing verification are 
typically not as accurate as those in timing simulators such 
as SPICE. Secondly, there may not be any input stimulus 
that activates the longest path in the circuit as determined by 
the static timing verifier. Such paths are called false paths 
[2]. Thus static timing verifiers may be too pessimistic as 
regards the delay of the circuit. A potential solution to this 
problem is to eliminate from consideration those paths that 
are not statically sensitizable; however, it has been shown [3], 
[13] that paths which are not statically sensitizable may still 
contribute to the delay of the circuit. Thus simply eliminating 
these paths from consideration may result in too optimistic a 
notion of the delay of the circuit, and ultimately in a circuit 
that is slower than was required. 

The obvious course of action is then to augment static tim- 
ing analysis with techniques to eliminate from consideration 
only the false paths. This natural step also introduces three 
problems: The first problem is to accurately determine the 
false paths. While the work of [3], [13] and others made 
significant strides in this direction even the recent work of 
[13] cannot be said to correctly identify the paths that were 
responsible for the delay of the circuit.' It was not until the 
work of [5], [7] that the floating delay of a circuit could be 
accurately identified. The second problem is eliminating the 

' Although it could accurately identify the delay of the circuit in the floating 
delay model. 
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false paths in a computationally efficient manner. The work 
of [7], [9] makes this procedure feasible on a wide variety 
of circuits, by considering sets of paths rather than individual 
paths. The third problem is that even with the most complete 
information, such as post-layout wire capacitances, there are 
still many potential inaccuracies in the modeling of the timing 
verifier and it is desirable to do a final timing simulation with 
the most accurate timing models. 

Thus, despite the advances in the area of timing verification, 
any designer who relies heavily on the final performance of a 
circuit is reduced to the time consuming and error-prone task 
of identifying long paths and handwriting simulation vectors 
that will stimulate the paths that are determined to be critical 
by the timing verifier. In this paper we hope to provide a 
comprehensive solution to the problem of timing verifica- 
tion through certified timing verification which incorporates 
transition delay computation. In this approach the vector pair 
resulting from transition delay computation can be used in a 
subsequent timing simulation using a timing simulator with 
more accurate timing models, that take into account layout- 
level parasitic resistances and capacitances. 

Our system, called TrueD, takes as input a combinational 
logic circuit and outputs an accurate floating delay of the cir- 
cuit, as well an accurate transition delay with a corresponding 
set of simulation vectors that will allow certification of the 
results of static timing verification. 

In Section 11, we give the basic definitions and terminology 
used. We motivate the consideration of two-vector transition 
delay in Section 111. In Section IV, we give a spectrum of 
transition delay models, that are applicable in a variety of 
design scenarios. In Section IV-B we point out the differences 
between the floating delay and transition delay of a circuit. 
We describe a technique for computing the transition delay in 
Section V, and results using these techniques are presented in 
Section VI. We describe the methodology of certified timing 
verification in detail in Section VII. 

11. DEFINITIONS AND NOTATION 
In this section we introduce terminology that will allow us 

to discuss timing issues as well for temporal behavior. 
A path in a combinational circuit is an alternating sequence 

of vertices and edges, {go, eo,. . . , g,, e,, g,+l}, where edge 
ei, 0 5 i 5 n, connects the output of vertex g; to an input 
of vertex gi+l. For 1 5 i 5 n, gi is a gate; go is a primary 
input and gn+l is a primary output. Each e; is a net. With 
each vertex g (edge e) we associate a delay d(g)(d(e)). 

The length of a path P = {eo,go,el, . . . ,  e,,g,,e,+l} 
is defined as D ( P )  = Cz"_od(g;) + CTzi d(e;). Ignoring 
sensitization conditions, the delay of a circuit as given strictly 
by the length of the longest path is called the topological or 
graphical delay. 

An event is a transition 0 -+ 1 or 1 -+ 0 at a gate. 
Consider a sequence of events, {rO1 rl, . . . , T,} occurring at 
gates {go, 91,. . . , gn} along a path, such that T;  occurs as a 
result of event ~ i - 1 .  The event r0 is said to propagate along 
the path. 

A controlling value at a gate input is the value that 
determines the value at the output of the gate independent of 

the other inputs. For example, 0 is a controlling value for an 
AND gate. A noncontrolling value at a gate input is the value 
which is not a controlling value for the gate. For example, 1 
is a noncontrolling value for an AND gate. We say a gate g 
has a controlled value if one of its inputs has a controlling 
value; otherwise, we say g has a noncontrolled value. 

Let x = {go, eo,. . . ,g,, en,gn+l} be a path. The inputs 
of g; other than e;-l are referred to as the side-inputs to x. 
If there exists an input vector w such that all the side-inputs 
along x settle to noncontrolling values on w then x is statically 
sensitizable. 

The critical path is the longest sensitizable path in the 
circuit under the stated delay model. If a path is not sensitizable 
under the stated delay model then it is a false path. The precise 
definition of sensitization can vary depending on the mode of 
operation assumed. For our purposes here, we can assume that 
the sensitization of a path implies that an event propagates 
along the path from a primary input to a primary output of 
the circuit. 

111. CIRCUIT HISTORY: How MUCH IS ENOUGH? 
We are interested in determining the delay of a circuit for 

a given delay model, but the real motivation is to determine 
the frequency at which a circuit can be clocked. There are 
a number of possible definitions of transition delay and each 
definition has implications on the issue of clocking frequency. 
A full consideration of these problems is beyond the scope 
of this paper, but in this section we introduce our notion of 
transition delay and show under what conditions it results in 
a valid clock clocking frequency. 

Consider the operation of a synchronous digital circuit being 
clocked at period T. At every clock period, the outputs are 
latched and a new set of inputs presented to the circuit. 
Let us examine the operation of a circuit over the period of 
application of a sequence of input vectors. Let W O  be the vector 
applied at the present clock cycle, w-1 be the vector applied 
at the previous clock cycle and so on. In the floating mode 
of operation, the nodes are not assumed to be ideal capacitors 
and hence their state is unknown till it is set by the current 
vector. Thus, the timing behavior for W O  is independent of 
all previous vectors. In the transition mode of operation, the 
circuit nodes are assumed to be ideal capacitors and retain 
their value set by the previous vectors till the current vector 
forces the voltage to change. Thus the timing response for 
W O  is also a function of w-1 and possibly other previously 
applied vectors. In analyzing the timing response of the circuit, 
we would like to deal with as little history as possible while 
making no compromises on the accuracy. In this direction we 
first propose the following model of measuring the delay in 
the transition mode and subsequently justify it. 

Let us assume that when vectors W O  is applied, all circuit 
nodes have stabilized to their values under 21-1. In this case 
the effect is the same as if w - ~  is given an arbitrary amount 
of time to settle. This mode of operation will be referred to as 
the single stepping transition mode and for the remainder of 
this paper and whenever we refer to transition delay it will be 
relative to this mode of operation. The input transition from 
w-1 to WO will result in some transitions at the circuit nodes. 
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Let S be the time taken for the last transition at any of the 
output nodes for all possible vector changes U-1 to VO. Thus, 
for all r > 6 no transition will ever be observed at any of the 
outputs in the single stepping mode. 

Let us now use this value of r to clock the synchronous 
circuit. At time 0, when vo is applied it is possible that the 
circuit nodes may not have stabilized to their values under 
' u -~ .  (Note that the fact that the outputs have stabilized does 
not imply that all the circuit nodes have stabilized.) A simple 
sufficiency condition for a transition delay 7- to be a valid clock 
period is for the state of the circuit to be the same whether 
1)  vo is applied only an interval of r after v - ~  or 2) WO is 
applied at an arbitrary interval (which is longer than w )  after 
11-1. This is expressed in the following theorem which was 
originally stated in [8]. We provide a detailed proof here. 

Let C be a combinational subcircuit of a 
synchronous digital circuit. Let T be the transition delay of the 
circuit derived using the single stepping mode of operation. Let 
w be the length of the longest graphical path in C. If T > w / 2  
then T is a valid clocking period for C. 

Proojl Let 'U-1 be the vector applied at time -T and let 
vo be the vector applied at time 0. Let e-1 refer to any event 
in the circuit that occurs after time 0 and is caused by 'U-1, 

i.e., any event that is caused by 'U-1 but is still propagating 
at time 0 after 'UO is applied. Each event e-1 has traversed 
at least a distance corresponding to delay T from the primary 
inputs and has at most a distance corresponding to w - r to 
traverse to reach the primary outputs. 

Now let us assume that the application of 710 results in an 
event at the circuit outputs after time r (making r an erroneous 
clock period) and let eo be the last such event. If this is true 
then eo must propagate along a path, 7r ,  of length at least T 

in the circuit. For each gate along 7r, the side inputs do not 
witness any event e-1 after eo has propagated along 7r. To see 
why this must be true, note that after time 0, en propagates 
for at least time r and e-1 can propagate for no more than 
w - r ,  which is strictly less than r when r > w / 2 .  Thus, as 
far as eo is concerned, its propagation along 7r looks exactly 
as the case for the single stepping mode. But, we know that 
for the single stepping mode eo cannot occur after time r at 
the outputs. Thus, eo cannot occur at the circuit outputs after 
time r even when the circuit is no longer operating in single 

U 
When this condition is true, then for events propagating 

along all paths of length at least T ,  each gate will have settled 
to its value under 'U-1 by the time the event gets to that 
gate, which is the same as it would be in the single stepping 
mode. The restriction 7 > w / 2  is not very stringent. Based 
on practical experience this property holds for most circuits. 
This is significant since it enables us to consider only the two 
vectors involved in the change at the inputs in the analysis of 
the timing response of this transition. 

Theorem 3.1: 

stepping mode, but is being clocked with period 7. 

IV. COMPONENT DELAY MODELS 
All simulation techniques as well as timing analyzers make 

some assumptions about the possible variations in the delay of 
various circuit components. To avoid further confusion with 
other uses of the term "delay model" we call these component 

d =aT)- 
Fig. 1. Floating and transition delays differ 

delay models. We now examine some of the models used and 
then specify the domain of this paper in terms of these. 

The most common component delay model for a circuit 
component is one in which the delay is assumed to be a fixed 
number d. This is referred to as the fixed delay model. In 
this model a delay of 2 units on a gate indicates that the gate 
switches instantaneously to a logical 0 or 1 value but that 
the communication of this event to the output of the gate is 
delayed by 2 units. In reality this number is typically an upper 
bound on the expected delay, so in fact the actual delay may 
be any number bounded above by d. This potential speedup 
is incorporated in the monotone speedup model [13], which 
assumes that the delay for each component lies in the range 
LO, d1. 

The bounded delay model is more realistic about how much 
each gate can in fact be sped up. It specifies the delay as a 
range, [d, d"], given by the lower and upper bounds on the 
actual delays. There is some ambiguity in the literature as to 
what the bounded delay model means. It has been interpreted 
as either the switching delay or as the propagation delay. With 
the former interpretation, a gate delay of [2,  41 would imply 
that the gate would take somewhere between 2 and 4 units to 
make the transition between the two logical values. Ternary 
algebras [15] have been used to accommodate the unknown 
value of the gate output (which is neither a 0 or a 1) in 
the interval of uncertainty. If the bounded delay relates to 
the propagation delay then this implies that the gate switches 
instantly, but it is uncertain as to the time in the [2, 41 interval 
at which it will switch. Note that unlike the previous case, 
the gate output is always a 0 or a 1 and ternary algebras 
are not needed. In this paper, we use the propagation delay 
interpretation since we feel it is more realistic with respect to 
current technologies. 
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Fig. 2.  Floating and transition delays differ+ven with monotone speedup. 

To simplify the presentation of this paper we consider 
only the fixed delay model and we restrict the delays in 
circuits to gates. This is still general enough to accommodate 
other delay quantities such as wire delays and pin-to-pin 
delays by introducing buffers with appropriate delays in the 
circuit. While more sophisticated delay parameters such as 
slope delays and separate rise and fall delays are not directly 
accommodated into the “delay lumped at a gate” paradigm, it 
can be shown with little effort that the results in this paper hold 
for even those models. Bounded delays are treated extensively 
in [ l l j .  

A. Instantaneous Glitches 
Suppose that in a circuit simulation a rising event and a 

falling event arrive at precisely the same time at an AND 
gate with delay “2”. In static timing verification, which aims 
at a robust though possibly pessimistic model of delay, it 
is commonly assumed that an “instantaneous glitch” event 
immediately occurs which is then communicated at the output 
of the AND gate after a delay of 2. In this paper our general 
assumption will be that such instantaneous glitches will not 
be able to overcome the inertial delay of a gate. This is more 
realistic given existing technologies. 

B. Differences in the Floating Delay and the Transition Delay 
It is easy to show that the floating and transition delay modes 

can give different results. In Fig. 1 we show a two-level circuit, 
resulting from a prime and irredundant cover, for which the 
transition delay (under fixed gate delays) is different from the 
floating delay. The number inside a gate corresponds to the 
delay of the gate. 

Fig. 1 shows one of the ways that the transition delay of 
a circuit, assuming no monotonic speed-ups and no instanta- 
neous glitches, can differ from the floating delay of a circuit. 
The floating delay of this circuit for a rising transition at the 
output is 4. In this example, on each transition on g1 for 0 + 1 
at least one of the other gates makes a 0 -+ 1 transition sooner. 
For example, let us look at the vector pair (1100,0000). The 
gate g2 glitches to a 1 during the time interval [ 2 ,  31 then the 
gate g3 glitches to a 1 during the time interval [3, 4j  and as 
a result by the time the gate g1 makes a 0 + 1 transition (at 
time 4), the output OR gate is already a 1. 

However, since the work of [ 131 it has been considered to 
be necessary that speed-ups in the circuit should not result 
in increasing the delay of the circuit. In Fig. 1, if the input 
buffershnverters to gates g2 and g3 speed up then the 0 -+ 

1 -+ 0 glitches of g2 and g3 on (1100,0000) settle to 0 before 

g1 makes its 0 -+ 1 transition. As a result the transition delay 
of the circuit becomes equal to the floating delay. 

Because of examples like this it has been conjectured that 
for any combinational circuit there exists a monotone speed- 
up such that the transition delay equals the floating delay; 
however, in Fig. 2 we give a circuit in which the transition 
delay, with or without monotone speedup, is less than the 
floating delay. 

The floating delay of the circuit in Fig. 2 is 5 ,  and the 
associated floating delay vector is ( a  = 1). The transition delay 
of the circuit under the single stepping mode of operation is 
3. We could give a full analysis of the transition delay for 
this circuit, but for our purpose here it suffices to give an 
intuitive argument why the transition delay is strictly less than 
the floating delay even with monotone speedup. 

In single stepping mode, we apply an input vector when 
all circuit nodes are stabilized to their final values, in this 
case signal d and e to logic 1. Consider the case where the 
next input vector generates a rising transition at the input: 
It immediately forces signal d, which in turn forces e, to 
remain at logic 1. If the next input vector generates a falling 
transition, it immediately causes a rising transition at signal 
c which forces e to remain at 1 also. Therefore, no transition 
can be observed at the output in the single stepping mode of 
operation. The above argument remains valid under arbitrary 
monotone speedup of the circuit as will be demonstrated in 
the discussion in Section IV-C. 

Thus, transition delay analysis using the single stepping 
mode returns a delay of 0. However, Theorem 3.1 only 
guarantees the validity of a clock period greater than w / 2  = 3. 
For example with a clock period of 4, less than the floating 
delay of 5 ,  the output of the circuit stays a stable 1. 

It is interesting to note that the path { a ,  d, e }  of length 5 
in Fig. 2 is statically sensitizable. While it has been known 
for some time that static sensitization can be too optimistic 
a condition to determine the delay of a circuit this example 
demonstrates that it can also be too pessimistic. 

Circuits such as those in Figs. 1 and 2 motivate a further 
enquiry into the relationship between transition delay and 
floating delay. 

C. Sources of Difference Between Floating 
and Transition Delay 

In the floating delay mode the delay of a path T is computed 
on a single vector WO. At a gate g, along T ,  that is controlled 
by W O  it is implicitly assumed that if W O  results in a static 
noncontrolling value at a side input e along T ,  then there 
always exists a vector sequence ending in 710 that will result 
in that noncontrolling value on e when an event propagates 
along T due to T I O .  In other words the vector sequence 
causes the noncontrolling value to be available when an event 
occurs along T ,  even if a speed-up is required to deliver that 
noncontrolling value. It will be useful to understand precisely 
why this assumption is not always valid, and why a violation 
of this assumption can result in the transition delay of a circuit 
being less than the floating delay. 

It will be interesting to understand precisely why the tran- 
sition delay of a circuit can differ from the floating delay. For 
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Fig. 3. A multilevel combinational circuit. 

an event travelling down a path to be affected by the delay of 
a gate the event must propagate through the gate. The floating 
delay mode makes conservative assumptions about the initial 
state of a circuit when a vector is applied. Let us assume 
that a path 7r is determined to be responsible for the delay of 
the circuit in the floating delay mode. Let WO be the vector 
that sensitizes T to result in this delay in the floating delay 
mode. Let g be a gate along 7r whose output is a controlled 
value on 210 and let e be a side-input of 7r at g that has a 
statically noncontrolling value on WO. In floating delay analysis 
it is implicitly assumed that there exists a vector 21-1 that will 
result in a noncontrolling value on e when an event propagates 
along T due to v0; however, it may be the case that for any 
vector 21-1, e may be slow to transition to a noncontrolling 
value and thus the event along 7r is blocked at 9. 

Fig. 2 demonstrates this point. The vector W O  = (a = 1) 
statically sensitizes the path { a , d , e }  and thus results in a 
delay of 5 in the floating delay mode. Consider the activity at 
gate d on the input pair W-1 = (a = 0) and WO = (a = 1). 
Gate b settles to a 0 on WO but only after the rising event 
associated with input a has reached the input of gate d. 
Thus the event on the path { a ,  d ,  e} gets stopped at d. If 
the delay of gate b is reduced to 0, through a monotone 
speed-up, then an instantaneous glitch (see Section IV-A) 
occurs at the inputs to d,  but such instantaneous glitches are 
assumed not to change the output of a gate. (We have a more 
complex example for which it is not possible to transmit even 
instantaneous glitches.) Thus, the floating delay assumptions 
are too conservative for this circuit. 

V. SYMBOLIC SIMULATION UNDER FIXED GATE DELAYS 

A. Introduction 
Having motivated transition delay let us now consider its 

computation. In order to compute the delay of a circuit under 
the transition mode, a strategy of symbolically simulating all 
possible input vector pairs, that can be applied to the circuit 
inputs, can be adopted. The possible resulting waveforms at 
each gate are encoded by a set of Boolean functions, one for 
each discrete time point. Each Boolean function is defined 
over the Boolean variables corresponding to the circuit inputs 
for the first and second vectors. We will consider the details 
of symbolic simulation for fixed gate delays in the following 
sections. For a symbolic simulation method for bounded gate 
delays, the reader is referred to [ 1 11. 

In the fixed delay case, a single set of Boolean functions at 
each gate in the circuit suffices to capture all the information 

i l  

e3 X 

e4 
I I I I I I I I Normalized 
I O '  I '  2 '  3 '  4' 5 '  6 '  7 '  8' 9'10' -Tinre 

Fig. 4. 
gates. 

Signal waveforms for the primary inputs and the outputsof the logic 

regarding the transitions occurring at the gate. We will begin 
with an illustrative example. 

B. An Example 
Consider the multilevel combinational circuit shown in 

Fig. 3. 
It has four primary inputs and one output and consists of 

four CMOS gates. (The gate surrounded by the dotted line 
is a complex gate having series-parallel connections only.) 
The circuit has a total of four gates: g1,92,93, and 94, in 
addition to the four primary input nodes. Fig. 4 shows the 
signal transitions at the primary input nodes as well as the 
possible transitions at the internal nodes of the network. The 
time points are in normalized units. The first three inputs, 
z l , i2 ,  and i3, switch simultaneously between time periods 
0 and 1. The fourth input, i4, is a late arriving signal that 
switches between the time points 5 and 6. In this example, the 
delays of both gate g1 and gate 93 are one time unit. Gate 92 
has a delay of two units while Gate 94 has a delay of four 
units. i4 arrives five time units after the other three inputs. 

Also shown in Fig. 4 are the waveforms, ei's, representing 
the signals at the outputs of ith logic gates. Each of the possible 
transitions ei,j represents either a low-to-high or high-to-low 
signal transition between [jIth and [ j  + lIth time points. The 
number of all possible transitions at a gate output is bounded 
by the sum of all possible transitions at the gate inputs. These 
transitions are delayed by the gate's propagation delay. If a 
gate is driven by the primary input signals, then the transitions 
at the gate output will be determined by the transitions of the 
primary input signals. Referring to the example, gate 91 has 
waveform el which contains only one possible transition, el,l, 
between the time points 1 and 2 because the total number of 
transitions at the input of gate g1 at different time points is one. 
The earliest signal event will arrive at the gate output one time 
unit after zl switches because the delay of gate g1 is one time 
unit. Similarly, gate 94 has a total of four possible transitions 
between the time points 5 and 10 because the number of 
transitions at the inputs of gate 94 at distinct time points is 
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b 
Fig. 5 .  An inverter-and circuit. 

four. The earliest transition, originated from gate g3,  arrives 
at the gate output between the time points 5 and 6, since gate 
g4 has a delay of four time units. 

C. Unit-Delay Model 
In this section, we describe how symbolic simulation can 

be used to compute signal transitions in a circuit under the 
unit-delay model. The unit-delay restriction will be relaxed in 
Section V-E. 

Under the unit-delay model, the circuit activity caused by 
applying an input vector pair can be seen as occurring at 
discrete points in time implied by the unit-delay model, and all 
signals are stable between the time points. The central idea in 
our formulation is to describe the stable values of a signal in a 
particular time interval symbolically as a Boolean function of 
input variables over two input vectors (i.e., each implicant of 
f ;  corresponds to an input vector pair which generates a 1 at 
signal f in time interval i). Determining whether a particular 
signal changes from interval i to i + 1 now reduces to checking 
for logical equivalence of the functions in the two intervals. 
As a by-product, the input assignment that causes the two 
functions to differ gives us the input vector pair that generates 
a transition at time point between intervals i and i + 1. 

As a notational convention, we use subscripts to denote the 
time interval a variable is associated with. A special subscript 
“-” is used to denote input variables associated with the first 
vector.2 The time at which the second vector is applied is a 
common reference point 0. So, for an input variable a, all 
ai with i < 0 map to a- and all a; with i >= 0 map to 
ao. Furthermore, for every function f(g, h, . . .) we construct 
a new function f i  (Si-1, hi-1, . . .) for a chosen i .  

For example, consider the network in Fig. 5. For this 
network in the first time interval. 

In the next time interval, 

91 =G 
fl = gobo = z b o  = K b o  

Finally for the last interval, 

f 2  = glbl = aobo  

For this example there are three possible transitions: 
g changes state from time interval 0 to 1, 
f changes state from time interval 0 to 1, 
f changes state from time interval 1 to 2. 

’Note that we assume the single stepping mode of operation. 

The symbolic formulas for these transitions arc, respectively; 

eg,l = go 63 g1 = Kao + a-% 
ef,l = fo e f1 = ~ b - b o  + ~ K b o  
e f , 2  = f1 

- 

f2  = Kaobo + a-Gbo 
Each implicant in ef,2 gives an input vector pair which 
generates a transition of signal f at time 2 (between time 
interval 1 and 2). For example, implicant Kaobo corresponds 
to vector pair ~ ( a ,  b) = (0, X) and ~ ( a ,  b) = (1 , l ) .  

It should be pointed out that our formulation is more 
powerful than a procedure that just determines transitions of a 
signal at a particular time point. For example, finding an input 
vector pair that generates transition of f at both time 1 and 
2 amounts to finding an implicant of ef,lef,z (e.g., Kaob_bo). 
Also, the inputs need not be clocked at the same time. For 
example, if the second value of a is clocked at time t ,  all ai 
with i < t map to a- and all ai with i 2 t map to at. This 
can be done on a per input basis. 

As an efficiency concern, it is not necessary to generate 
function f ;  for all time points. The following lemma gives a 
simple bound on the time points needed for a signal in the 
circuit. 

Lemma 5.1 Let A and 6 be the longest and shortest graph- 
ical delay to a signal f .  The set f o ,  f 6 ,  f6+1, . . . , fa-1, f a ,  is 
sufficient to determine all possible transitions in the circuit. 

The above lemma follows directly from the unit delay 
model. Signal f cannot change until the change in the nearest 
input propagates through, and will stop changing when the 
input furthest away finally arrives. All references to f i  map to 
fa  if i > A and to f o  if i < 6. 

D. Symbolic Event Suppression 
To compute the transition delay of a circuit, it may not 

be necessary during symbolic simulation to store, or even 
generate, all the Boolean functions corresponding to each gate 
and each time point. Typically, one is interested in answering 
the question: “Is the delay of the circuit 2 6”’ In this case, 
we only require the f t ’ s  where t 2 6 - 1 and f is the circuit 
output. We XOR f6-1 with each such ft and check the XOR’ed 
function for satisfiability to see if there is indeed a transition 
at time S. 

Techniques similar to the event suppression techniques 
described in [8] for the efficient simulation of a vector pair 
on a circuit can be used in the symbolic simulation procedure 
as well. For example, given a gate g in the circuit, let wg 
be the length of the longest path from the gate output to the 
circuit output. We only need to compute the gt’s such that 
t + wg 2 6 - 1. The reason for this is simple. If the gate g 
makes a transition at time t o ,  then this transition can appear 
at the circuit output no later than t o  + wg. If t + wg < 6 - 1 
then the transitions corresponding to the function gt fall before 
the interval of interest at the circuit output and need not be 
computed at gate g. 

E. General Delay Model 
A gate with a large fanin may have several times the delay 

of an inverter. If one uses normalized time units, one can 
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always introduce unit-delay buffers at the output of gates in 
a circuit, which have a delay greater than unity, in order to 
model differing delays among logic gates. 

F. Bounded Delay Model 
The symbolic simulation algorithm can be extended to the 

case where the gate delays are variable and bounded within a 
given range. The reader is referred to Section IV of [ 1 1 I for 
details regarding the extended method. 

G. Checking Sutisjubility 
We maintain the various Boolean functions as multilevel 

logic networks during the course of symbolic simulation. The 
size of these networks is not much larger than the circuit 
itself. Alternatively, we could have used reduced, ordered 
Binary Decision Diagram (ROBDD) [4] representations for 
these functions, and propagated ROBDD’s through the circuit. 

Once we have the f s - 1  CB f~ function for the circuit output, 
we can determine if the function is satisfiable by constructing 
a reduced, ordered Binary Decision Diagram for the function, 
or using the satisfiability checking procedure of Larrabee [12]. 
In the case of circuits like multipliers, constructing ROBDD’s 
for the Boolean functions is infeasible, but our method of 
maintaining the Boolean functions as multilevel networks, and 
the use of Larrabees’ satisfiability checking algorithm succeeds 
in computing the transition delay of the circuit (cf. Section VI). 

computation results in the procurement of vector pairs that 
each propagate a transition along a longest true path to the 
output. The set of vector pairs can be used to perform timing 
analysis under more sophisticated delay models, (e.g., using 
s P I c E). 

The techniques described in the previous sections have been 
implemented in the program TrueD-T. The statistics of the 
chosen benchmark circuits are shown in Table I. The first set 
of examples correspond to combinational circuits from the 
ISCAS combinational logic benchmark set. The second set 
correspond to state encoded, optimized and mapped finite state 
machine controllers from MCNC FSM benchmark set. 

Results on applying the fixed delay simulation calculus to 
compute the transition delay of a circuit are given in Table 11. 
We were able to exactly compute the transition delay under 
the fixed unit gate delay model for all the benchmark circuits, 
using the symbolic simulation algorithm described in Section 
V. In the table, val corresponds to the logical value the path 
was sensitized to, 1.d. is the longest path delay, f.d. is the 
floating mode delay, and t.d. is the transition delay. 

Note that for the finite state machine examples the set of 
input vectors in floating delay computation was restricted to 
i@s, with s E S where S is the set of reachable states. 
In transition delay computation, the set of input vector pairs 
( i l @ s l , i 2 @ s 2 )  were applied such that s1 E S with sa being 
determined by the next state logic and i l @ s l .  The combi- 
national logic benchmarks showed no difference between the 
floating delay and the transition delay. In virtually all of the 
combinational circuits, the longest floating mode sensitizable 
path is statically sensitizable, implying that the path is also 
sensitizable under fixed gate delays and the transition mode of 
operation. Differences between floating and transition delay in 

VI. EXPERIMENTAL RESULTS 
In this section, we present preliminary experimental results 

in determining the transition delay of a circuit. Transition delay 
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the finite state machine controller examples were observed due 
to the additional restriction on the applied input vector pairs. 

The fixed delay model may not be realistic for use in 
certified timing verification since there will always be some 
statistical variation in the predicted gate delays. We next 
experimented with the bounded gate delay model, where all 
gates have upper bounds equal to unity, and lower bounds 
equaling zero.3 We have been able to obtain vector pairs that 
validate the floating delay for all the ISCAS-85 benchmark 
circuits under the bounded gate delay model. The results are 
shown in Table 111. 

The CPU times in Tables I1 and I11 are on a SUN-4 
workstation and correspond to the time required for floating 
delay computation using the method of [9] plus transition delay 
computation. The time required for transition delay calculation 
is typically a small fraction of the time required for floating 
delay computation. 

We are currently experimenting with random-logic circuits 
to see if logic optimization affects the transition delay of a 
circuit. 

VII. CERTIFIED TIME VERIFICATION 
In Section IV-B we demonstrated that there can be a 

difference in the floating delay and transition delay of a circuit. 
In Section V we gave a procedure that actually computed 
the transition delay of a circuit assuming fixed delays and 
no monotonic speed-up. This procedure produces a vector 
pair that sensitizes the critical path in the transition delay 
mode. Finally, in Section VI we presented results on applying 
the transition delay computation procedure to a number of 
benchmark examples. As Table I1 indicates, on benchmark 

The monotone speed-up condition. 

circuits the transition delay typically does not differ from the 
floating delay, but we claim that it is still useful to compute the 
transition delay because of the utility of the resulting vector 
set for certifying the delay of the circuit. In this section we 
briefly outline a procedure for certifying the results of static 
timing verification. 

The transition delay procedure works on the question “Is 
there a path with transition delay greater than or equal to 6”’ 
The first step is to identify the upper bound on the delay of 
the circuit. As the transition delay of a circuit is bounded 
above by the true floating delay [5] the natural value for 6 
is the true floating delay. This can efficiently be computed 
using techniques described in [7], [9]. The derived value of 6 
is then passed to the symbolic simulation procedure described 
in Section V, or for computation using bounded delays the 
procedure described in [ 111  may be employed. The nominal 
use of these transition delay computation procedures is to 
retum a single vector sequence which sensitizes an event along 
some path, perhaps only one, of length at least 6. Whichever 
approach is applied let us call the resulting vector sequence V. 

The circuit model, perhaps with speed-ups required by the 
transition delay computation procedure, is then given to the 
timing simulator of choice. The vector sequence V is then 
applied. In general the results of the timing simulation should 
not give delay values that are worse than the results of the 
transition delay calculation. If this happens it means that 
the delays used in the transition delay calculation were not 
pessimistic enough; these should be modified and the delay 
calculation re-run. 

The most complex case is when the timing simulation of 
V reports a delay y that is less than S. If there is sufficient 
confidence in the coverage of the vector set then an aggressive 
designer may opt to clock the circuit at y. Another approach 
is to further investigate the range of possible clocking speeds 
using statistical methods [ l l ] .  The hope here is that the 
statistical analysis procedures will give a quantitative notion 
of what percentage of parts are likely to run at each speed in 
the range between y and 6. 

Using a combination of transition delay computation and 
timing simulation in this way gives a greater predictability to 
the post-manufacture delay of the circuit. 

VIII. CONCLUSION 
In this paper we demonstrated for the first time that the 

transition delay of a circuit can difler from the floating delay 
even in the presence of arbitrary monotonic speed-ups in 
the circuit. This result is used to motivate the derivation 
of a procedure which directly computes the transition delay 
of a circuit. The output of the transition-delay computation 
procedure is a vector sequence which excites an event along 
the longest sensitizable path of the circuit under consideration. 

While this theoretical framework for the analysis of transi- 
tion delay is in itself useful for understanding the relationship 
between static and dynamic delay analysis, we envision the 
most practical application of these results in certzjied timing 
verzjication. In such a scenario the upper bound on circuit 
delay is first derived by means of a floating delay calculation. 
The transition delay of the circuit is then derived using 
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the transition delay calculator, and a vector sequence for 
sensitizing the critical paths of the circuit is produced as a 
by-product of this delay calculation. This vector sequence can 
then be applied using a timing simulator equipped with more 
accurate timing models. Such a procedure promises to give 
the high accuracy of timing simulation with the computational 
efficiency and the comprehensive path coverage of static 
timing verification. 

A. Work in Progress 
A great deal of work remains to be done in order to 

understand completely the relationship between transition and 
floating delay. Even the definition of transition delay requires 
further examination. The common single-stepping definition of 
transition delay together with a simple sufficiency condition 
for a valid clock frequency was presented in Section 111, 
but a full consideration of the relationship between transition 
delay and clocking frequency remains to be done. Encouraging 
progress toward resolving this question with regard to floating 
delay was presented in [6] .  Correct computation of transition 
delay seems to become enmeshed in many technology specific 
issues, such as the instantaneous glitches discussed in Section 
IV-A, and these issues also require further resolution. Further- 
more, while a distinction between floating delay and transition 
delay has been drawn in this paper we presently have no clear 
idea of how fundamental this difference is. We have presented 
circuits in which a difference occurs and we have derived a 
number of circuit properties that give sufficiency conditions 
under which the two delay modes give the same value but we 
have not closed the gap with precise necessary and sufficient 
conditions under which those two delay modes give the 
same value. Finally, while we see the immediate practical 
applications of this work in certified timing verification and 
delay fault testing, we hope that resolution of the issues 
discussed in this section will ultimately eliminate the need of 
timing simulation for synchronous digital circuits altogether. 
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