
1

Hybrid Dot-Product Calculation for Convolutional
Neural Networks in FPGA
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Abstract—Convolutional Neural Networks (CNN) are quite
useful in edge devices for security, surveillance, and many others.
Running CNNs in embedded devices is a design challenge since
these models require high computing power and large memory
storage. Data quantization is an optimization technique applied to
CNN to reduce the computing and memory requirements. The
method reduces the number of bits used to represent weights
and activations, which consequently reduces the size of operands
and of the memory. The method is more effective if hybrid
quantization is considered in which data in different layers
may have different bit widths. This article proposes a new
hardware module to calculate dot-products of CNNs with hybrid
quantization. The module improves the implementation of CNNs
in low density FPGAs, where the same module runs dot-products
of different layers with different data quantizations. We show
implementation results in ZYNQ7020 and compare with state-
of-the-art works. Improvements in area and performance are
achieved with the new proposed module.

Index Terms—Deep learning, Convolutional Neural Net-
work, Embedded computing, Hybrid quantization, Field-
Programmable Gate Array.

I. INTRODUCTION

Many machine learning applications, like image classifi-
cation [1], car driving assistance [2], robotics [3] and game
playing [4] are now based on deep learning. Deep neural
networks is a deep learning method based on artificial neural
networks with multiple layers. Among the several types of
deep neural networks, our focus is on convolutional neural
networks (CNN) which are mainly used for image analysis.

Fully connected feed forward networks can be applied to
image classification. However, the high number of neurons
associated with an image make this solution impractical.
The CNN replaces the fully connected layers of the first
layers by convolutional layers, which reduces the number of
weights and permits increasing the depth of the network. Each
convolutional layer receives a stack of 2D input feature maps
(IFM) an runs a convolution with a 3D filter to generate an
output feature map (OFM). Many filters can be applied to the
same set of IFMs generating as much OFMs.

Many deep-learning applications are migrating from the
cloud to the edge where the computing platform is limited
in performance, memory and energy. For future deployment
of CNN in edge devices, it is important to improve and
optimize CNN models to reduce computing, memory and
energy requirements.

In this paper, we propose an hardware arithmetic module
for hybrid dot-product calculation for CNNs in FPGA, with
an emphasis on low density FPGAs for edge computing. This
module improves the area and performance of dot products
with support for dynamic resize of weights. These are used to
implement a configurable architecture for layer execution of
CNNs.

The paper is organized as follows. Section II provides an
overview of CNNs and their sources of parallelism. In sections
III we describe the state of art on FPGA implementations
of CNNs. Section IV describes the baseline architecture and
section V describes the proposed hybrid architecture. Section
VI shows the results and how they compare to previous works.
Section VII concludes the paper.

II. RELATED WORK

FPGAs are increasingly being used for CNN inference since
they can be reconfigured to adapt to each CNN model offering
good performance and energy efficiency.

Some of the first implementations of large CNN models [5],
[6] consider a general hardware core for convolution that can
execute different convolutional layers with different shapes.
While flexible, the performance efficiency of the solution de-
pends on the size of the convolution window. In [6] the authors
tried to overcome this inefficiency implementing convolutions
as matrix multiplications by rearranging the IFMs. The solu-
tion is more general, but the overhead of memory accesses and
execution times associated with the rearrangement of the IFMs
is large. [7] also adopt an accelerator for matrix multiplication.
The overhead of the conversion of the IFM to a matrix was
eliminated at the cost of using dedicated hardware units to do
the conversion.

A few authors considered low density FPGAs as the target
device. In [9] small CNNs are implemented in a ZYNQ
XC7Z020 with a performance of 13 GOPs with 16 bit fixed-
point data. In [10] the same FPGA is used to implemented big
CNN models, like VGG16, with data represented with 8 bits
achieving performances of 84 GOPs. In [11] a configurable
architecture is proposed to implement large CNN in low
density FPGAs, achieving a peak performance close to 400
GOPs in a ZYNQ XC7Z020 with data represented with 8-
bits.

In this work we consider the architectural approach pro-
posed in [11] that targets low density FPGAs. The architecture
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Fig. 1. Block diagram of the baseline architecture

uses a general configurable hardware module that executes one
layer at a time with 8-bit fixed-point representation of activa-
tions and weights. In this paper, we modify this architecture to
support hybrid quantization with a new configurable module
for hybrid dot-product calculation. The architecture extended
with the new module for hybrid dot-product calculation has
around 2.5× better performance than the baseline architecture
for about the same occupation of FPGA resources.

III. BASELINE ARCHITECTURE FOR CNN

The baseline architecture consists of an array of processing
cores to calculate dot-products and a memory to store OFMs
(see Figure 1).

The execution of both convolutional and fully connected
layers works the same way because we transform the 3D
convolutions in linear dot-products identical to those used in
FC layers, to be explained above.

The architecture executes one layer at a time and is config-
ured with the features of each layer (number of kernels, size of
kernels, size of IFM and size of OFM). The image or the IFMs
of a layer are stored in the feature map memory (FMM) and
the kernels are stored in the kernels memory with each kernel
stored in a different memory. Initially, the image is stored into
the FMM and kernels are stored in the kernels memory. Then,
multiple activations (multiple ports are used to read multiple
activations at the same time) are broadcasted to the cores that
calculate dot-products between a vector of activations and a
vector of weights. The result is sent back to the FMM. Before
being stored in this memory, the activation function (ReLU) is
applied to the result of the convolution to produce an activation
of the OFM. For layers followed by pooling, the activation is
stored in a local memory to wait for the other members of
the pooling window. The process repeats until finishing the
convolution between the image and the kernels. After that, the
next kernels are loaded from memory and the process repeats
until running all kernels of a layer.

IV. HYBRID ARCHITECTURE FOR CNN

The baseline architecture considers a fixed 8-bit width for
both activations and weights. This work modifies the archi-
tecture to support the execution of layers with two different
weight sizes (8 and 2). The size of the activations is still 8-
bits and constant for all layers since the accuracy of a CNN
is more sensible to the size of activations.

Each core of the original architecture receives eight acti-
vations and eight weights of a single kernel in parallel (a
total of 64 bits each). The core of the hybrid architecture
receives also 64 bits of activations and 64 bits of weights,
that is, the dot-product parallelism is still eight since there
are only eight different activations available in each cycle.
However, in a layer whose weights are represented with less
bits, 64 bits of weights can represent more than eight weights.
Using the 64 bits to represent more than eight weights of the
same kernel is useless since there are only eight activations
available. The solution is to use them to represent weights
of different kernels. For example, with 2 bit-weights, we can
represent a total of eight weights of four different kernels in
a total of 64 bits.

The hybrid core proposed in this work is able to calcu-
late dot-products with different data sizes and multiple dot-
products. For example, considering a CNN with some layers
having 8-bit activations and weights, and other layers having
8-bit activations and 2-bit weights. The hybrid core supports
the parallel execution of one dot-product between eight 8-
bit activations and eight 8-bit weights and four dot-products
between eight 8-bit activations and eight 2-bit weights.

The hybrid core proposed in this work supports the execu-
tion of two different activation×weight representations: 8×8
and 8 × 2 (represented as 8:82). The solution for the hybrid
calculation consists on implementing 8×2 dot-products, which
are added as partial products of a multiplication case the layer
requires 8× 8 dot-products.

Let’s consider eight 8-bit activations, A0, A1, ..., A7, that
are read in parallel from the activations memory in each clock
cycle. Weights are read from the kernel memory. For 2-bit
weights, for groups of eight 2-bit weights are read in paral-
lel, W00,W01, ...,W07, W10,W11, ...,W17, W20,W21, ...,W27

and W30,W31, ...,W37. In this case, four dot products, DP0,
DP1, DP2 and DP3 are calculated as:

DPj =

i=7∑
i=0

Ai ×Wji (1)

with four multiply-accumulate units. Each dot-product is
implemented with cascaded MACC units (see Figure 2).

For 8-bit weights the same unit is used to determine the
dot-product, A · W , between the eight activations and eight
8-bit weights, W0,W1, ...,W7. To achieve this, we set Wk =
W3kW2kW1kW0k, where k = 0, 1, 2..., 7 and then add the
four dot products described above as follows:

A ·W = DP3× 26 +DP2× 24 +DP1× 22 +DP0 (2)
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Fig. 2. Architecture of the core for 8- and 2-bit weights

Equation 2 is executed only after calculating the complete
convolution. Therefore, it is implemented outside the core
before each input port of the feature map memory followed
by the ReLU activation function.

Each MACC unit used in the core implements the mul-
tiplication between one activation and one 2-bit weight and
accumulates with the output of the previous MACC. The 2-bit
weights have different meanings depending on the weight size
of the layer. If the weight size is two bits then it represents
numbers ∈ −1, 0, 1. Otherwise, if the weight size is 8 bits,
the 2-bit weights are partials of the 8-bit weight and represent
numbers 0, 1, 2, 3, except for the most significant 2-bit which
represent numbers -1, 0, 1. So, given the 2-bit weights, the
MACC unit selectively adds the previous MACC output with a
multiple of the activation, that is, 0, A, 2A, 3A or -A. Multiples
3A and -A are calculated outside the MACC and selectively
sent to the MAC according to the layer configuration. The
implementation of the MACC is illustrated in figure 3.

With a chain of LUTs and the carry chain we can implement
the MACC unit. Each output bit, Oi+1, is the sum of an input
bit, xi and another bit defined by a function of five variables
i4, i3, i2, i1, i0. This is done with a single level of LUTs [15]
with f given by:

g
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Fig. 3. Architecture of the MACC unit

fi = i4i3i0 + i4i3i1 + i4i3i2

where inputs in are according to the inputs illustrated in figure
2.

V. RESULTS

The extended architecture with the proposed hybrid core
was implemented with Vivado 2017.3 in the ZedBoard with
a ZYNQ XC7Z020 with a working frequency of 200 MHz,
except the HP interfaces to external memory that work at a
frequency of 150 MHz.

We have mapped a trained AlexNet with 8-bit activations
and two different weight configurations. One configuration
uses 8-bit weights for all layers (54,4 % top-1 accuracy).
The other configuration uses 2-bit weights except for the first
and last layers (51,0 % top-1 accuracy). The overall resource
utilization is shown in table I.

TABLE I
AREA OCCUPATION FOR THE BASELINE AND HYBRID ARCHITECTURES

Size #cores batch MACCs/core LUT DSP BRAM
Arq. 8:88 128 4 8 44281 220 132
Arq. 8:82 96 6 32 43052 192 124

We have improved the baseline architecture by increasing
the batch size. The number of cores decreases with the weight
size reduction since the hybrid cores occupy more resources.
However, the number of MACCs per core is higher with the
hybrid cores.

We have mapped AlexNet in the proposed architectures
with hybrid cores and compared the performance of both
architectures (see table II).

TABLE II
AREA OCCUPATION OF THE BASELINE AND HYBRID ARCHITECTURES

Size Conv (ms) FC (ms) images/s GOPs
Arq. 8:88 3.61 3.59 139 201
Arq. 8:82 1.82 1.02 352 510

The architecture with hybrid 2-bit weights (8:82) improves
the image throughput of the baseline architecture by 2.5×. We
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have determined the average processing times of each layer of
the architectures (see figure 4)

The first layer uses always 8-bit weights in all architectures.
Therefore, the baseline architecture runs this layer faster since
it has more cores. The other convolutional layers decrease with
the decrease of weight size, as expected. In the fully connected
layers we observe the big difference between the baseline and
the hybrid architectures caused by the transfer times of weights
from external memory to the weight memories. Only the last
layer has similar execution times. the small difference is due
to the small batch size of the baseline architecture.

VI. CONCLUSIONS

The hybrid architecture proposed in this work support the
execution of layers with different weight sizes. With 25% more
resources per core, the performance of the architecture running
AlexNet increases by about 2.5×.

The architecture was designed to run CNN models in low
cost FPGAs. However, its scalability permits to increase the
number of cores so that the performance can also be improved.

We are now planing to consider two separate modules for
layer execution, so that, for example, convolutional layers can
be optimized independently of fully connected layers..
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Politécnico de Lisboa.

REFERENCES

[1] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-
Fei, “Imagenet large scale visual recognition challenge,” International
Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, Dec 2015.

[2] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in Proceedings
of the 2015 IEEE International Conference on Computer Vision (ICCV),
ser. ICCV ’15. Washington, DC, USA: IEEE Computer Society, 2015,
pp. 2722–2730.

[3] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” J. Mach. Learn. Res., vol. 17, no. 1, pp.
1334–1373, Jan. 2016.

[4] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of go with deep neural networks and tree search,”
Nature, vol. 529, pp. 484–503, 2016.

[5] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu,
S. Song, Y. Wang, and H. Yang, “Going deeper with embedded fpga
platform for convolutional neural network,” in Proceedings of the 2016
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, ser. FPGA ’16. New York, NY, USA: ACM, 2016, pp. 26–35.

[6] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J.-s.
Seo, and Y. Cao, “Throughput-optimized opencl-based fpga accelerator
for large-scale convolutional neural networks,” in Proceedings of the
2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’16. New York, NY, USA: ACM, 2016, pp.
16–25.

[7] Y. Qiao, J. Shen, T. Xiao, Q. Yang, M. Wen, and C. Zhang, “Fpga-
accelerated deep convolutional neural networks for high throughput
and energy efficiency,” Concurrency and Computation: Practice and
Experience, vol. 29, no. 20, pp. e3850–n/a, 2017, e3850 cpe.3850.

[8] Z. Liu, Y. Dou, J. Jiang, J. Xu, S. Li, Y. Zhou, and Y. Xu, “Throughput-
optimized fpga accelerator for deep convolutional neural networks,”
ACM Trans. Reconfigurable Technol. Syst., vol. 10, no. 3, pp. 17:1–
17:23, Jul. 2017.

[9] S. I. Venieris and C. Bouganis, “fpgaconvnet: Mapping regular and
irregular convolutional neural networks on fpgas,” IEEE Transactions
on Neural Networks and Learning Systems, pp. 1–17, 2018.

[10] K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao, S. Han, Y. Wang,
and H. Yang, “Angel-eye: A complete design flow for mapping cnn
onto embedded fpga,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 37, no. 1, pp. 35–47, Jan 2018.
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