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Abstract – Deep Neural Networks (DNNs) have been adopted in 
many systems because of their higher classification accuracy, with 
custom hardware implementations great candidates for high-
speed, accurate inference. While progress in achieving large scale, 
highly accurate DNNs has been made, significant energy and area 
are required due to massive memory accesses and computations. 
Such demands pose a challenge to any DNN implementation, yet 
it is more natural to handle in a custom hardware platform. To 
alleviate the increased demand in storage and energy, quantized 
DNNs constrain their weights (and activations) from floating-
point numbers to only a few discrete levels. Therefore, storage is 
reduced, thereby leading to less memory accesses. In this paper, 
we provide an overview of different types of quantized DNNs, as 
well as the training approaches for them. Among the various 
quantized DNNs, our LightNN (Light Neural Network) approach 
can reduce both memory accesses and computation energy, by 
filling the gap between classic, full-precision and binarized DNNs. 
We provide a detailed comparison between LightNNs, 
conventional DNNs and Binarized Neural Networks (BNNs), with 
MNIST and CIFAR-10 datasets. In contrast to other quantized 
DNNs that trade-off significant amounts of accuracy for lower 
memory requirements, LightNNs can significantly reduce storage, 
energy and area while still maintaining a test error similar to a 
large DNN configuration. Thus, LightNNs provide more options 
for hardware designers to trade-off accuracy and energy.  

I Introduction 
 

Deep neural networks (DNNs) have been widely adopted in 
various real-time classification applications. Speech 
recognition applications use recurrent DNNs to extract 
information from the speech data [29]; facial recognition via 
DNNs can be used for the security of personal properties [30] 
[31]; driver-assistance systems can detect passengers, vehicles 
and barriers using DNNs [32]. In these applications, DNNs 
have been shown to be very effective due to their non-linear 
characteristics, flexible configurations and self-adaptive 
features [1]. In addition, DNNs extract features layer by layer, 
and therefore can learn the pattern of input data from lower-
level features to higher-level and more abstract features. For an 
image, DNNs can extract the dots and edges in the first few 
convolutional layers, and then generalize basic shapes and 
textures in the next layers. In the last few layers, the network 
combines these extracted features with fully-connected layers 
or a global-pooling layer, and produces the final classification 
result. However, this characteristic of DNNs indicates an 
essential requirement, that is, a large number of layers to 
guarantee sufficient accuracy. For example, Google’s AlphaGo 
adopts a 13-layer architecture, with hundreds of filters per layer 
[6]. As another example, Microsoft implements a 152-layer 
DNN for image classification [7].  

The increasing number of neurons and connections in DNNs 
brings pressure to the implementation of DNNs in real-time 
classification applications. Potential implementation platforms 
include CPU, GPU, FPGA and custom hardware (e.g., ASIC). 
Recent research has focused on DNNs implemented directly in 
custom hardware for a variety of reasons stemming from design 
requirements or application characteristics. First, real-time 
classification applications (such as Siri and Google glass [2]) 
have great sensitivity to latency, thereby making custom 
hardware implementations better candidates than conventional 
architectures based on CPUs or GPUs. Second, neural networks 
implemented in custom ASICs require mostly logic with little 
complicated control, lending themselves to lower design effort. 
Third, heterogeneous architectures as a whole appear to be 
more suitable for DNN implementation due to the combined 
benefits of CPU, GPU, FPGA and ASIC-based hardware 
acceleration [3] [4]. In heterogeneous systems, ASICs can 
handle specific tasks that are required frequently, such as 
classification in real-time image recognition, while CPUs and 
GPUs can perform online training. In this paper, we also 
consider the scenario where training is accomplished in 
software, and inference is performed in hardware to ensure 
high-speed for real-time applications. However, due to the 
significant size of hardware DNNs which incurs significant 
energy and power, limits their wide adoption.  

The energy consumption of DNN hardware implementations
mainly comes from two parts – memory accesses and 
computation. A quantized DNN is poised to become a sound 
solution for reducing memory accesses and computation energy. 
Indeed, quantized DNNs constrain the weights (and 
activations) into a set of discretized values. Therefore, instead 
of using 32-bit floating point numbers which include ��� � � 
billion values, one can use much fewer discrete values. 
Therefore, significantly fewer bits are required for each weight, 
thereby reducing the overall memory accesses. For example, 
the LightNN-1 [8] introduced in section V-A only needs four 
bits for each weight. Furthermore, some prior art also quantizes 
the activation values, i.e., the output of each convolutional and 
fully-connected layer. For example, BinaryNet [15] constrains 
both the weights and activations to be either �� or 	�, which 
can be represented using a single bit.  

In addition to memory accesses, quantized DNNs can also 
reduce computation energy consumption. BinaryConnect [19] 
and BinaryNet [15] replace multipliers with an XNOR operator. 
Incremental network quantization [33] and LightNN-1 [8] use 
a shift operator to substitute the multiplier. LightNN-2 [8] 
converts the multiplication to two shifts and one addition. 
These new operators can reduce the energy consumption caused 
by the large number of multiplication operations in DNNs. 
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Even for quantization approaches that still use multiplications, 
such as the fixed-point quantization introduced in section II-B, 
relying on fixed-point multiplication and addition can also 
reduce energy consumption compared to the floating point 
operations.  

The rest of this paper is organized as follows. In Section II, 
we give a general view of various DNN quantization 
approaches. Section III introduces various approaches for 
training quantized DNNs. We introduce LightNN as well as its 
training scheme in Section IV. Experiment results are presented 
in Section V, including accuracy, storage, energy and area 
comparisons for conventional DNNs, Binarized Neural 
Networks (BNNs) and LightNNs. Section VI concludes the 
paper.  

II. DNN Quantization 
 
In this section, we first introduce full-precision DNNs and 

then go through different types of DNN quantization methods 
proposed in recent years.  

Usually a Neural Network (NN) with more than four layers 
is denoted as a DNN. Without loss of generality, a 4-layer fully-
connected DNN model is presented in Figure 1. Suppose the 
input data has four features, each of which goes to one input 
neuron. Then, in each hidden layer and the output layer, a linear 
combination of the previous neurons is computed, and an 
activation function is applied to the result, respectively. The 
activation function (examples include sigmoid or ReLU [18]) 
applies a non-linear transformation to the output value. In 
Convolutional Neural Networks (CNNs), the hidden layers 
include convolutional layers, which compute a convolution 
between their input feature maps and the weights kernels. We 
consider online training for DNNs in software, with the 
hardware implementation used for deployment in inference. In 
the training phase with a back-propagation algorithm [18], the 
loss function, such as the 
� -norm or cross-entropy loss, is 
computed using output values and data labels. Then, the loss 
function and intermediates results are used to update the 
weights used for linear combination described above. In the 
deployment (testing or inference) phase of a classification task, 
the output neuron with the largest value indicates the prediction 
result.  

 

 

 
During deployment, the vast majority of computation 

resources are used for the multiplication within DNNs [3]. 
Therefore, by quantizing the weights (and activations), one can 
reduce the energy consumption of the multiplication operations, 
and thereby significantly reduce the overall computation energy. 

In the next sub-sections, we describe and compare several 
quantization approaches.  

A.� Binarized Neural Networks 

Two types of binarized neural networks (BNNs) have been 
proposed by Courbariaux et al. BinaryConnect [19], a type of 
BNN, constrains the weights to �� or 	�, but the inputs and 
intermediate results remain as floating point values. On the 
other hand, a second BNN known as BinaryNet [15], constrains 
both weights and intermediate results (activations) to �� or 
	�, and only the input values are represented as floating point.  

During the inference phase, BinaryNet is different from 
BinaryConnect only in that it uses a binarized activation 
function, thereby having binarized intermediate results. In the 
inference phase, a sign function � �  ���� �  is used as 
the activation function. In the training phase, hard tanh function, 
defined as ����� �  �
����� 	����, is used as a substitute 
for the sign function [15]. The benefit of BinaryNet is that it 
further regularizes the DNN, and replaces each multiplication 
with a simple 1-bit XNOR operation. 

However, among the experiments that demonstrate that 
BNNs produce an accuracy comparable to full-precision DNNs, 
a majority involve very larger network configurations, a result 
repeated in section V-B. This means that BNNs need more 
parameters to maintain accuracy for smaller networks, thereby 
diminishing their projected benefits in storage/computation 
reduction.  

B.� Fixed-point Quantization 

Fixed-point quantization linearly discretizes the weights into
multiple levels. Therefore, BNNs can be considered as fixed-
point quantization using one bit. More generally, Gupta et al. 
replace the floating-point weights and activations with a fixed-
point representation [QI, QF], where QI and QF are the integer 
and fractional part, respectively [11]. They constrained the 
number of bits for QI and QF into IL and FL, where IL and FL 
are both integers. Therefore, the weights and activations can 
have ������  value levels, which are linearly aligned in the 
range �	��� !� 	��� ! 	 � ��" . In addition, in the training 
phase, the gradients of the weights are constrained to fixed-
point values. Their experiments using the MNIST and CIFAR-
10 datasets show that the test error of fixed-point DNNs with 
#$ � %$  �&  is close to floating-point implementations, as 
long as %$ is sufficiently large and stochastic rounding is 
adopted.  

To explore the methodology of fixed-point quantization, Lin 
et al. proposed a framework to convert a pre-trained full-
precision DNN into a fixed-point DNN based on signal-to-
quantization-noise-ratio (SQNR) [34]. This framework 
includes three steps. First, a large set of typical inputs is 
provided as input to the DNN, and the activations per layer is 
recorded. Then, the statistics of weights, biases, and activations 
per layer are collected. Observing weights and activations 
approximately follow a Gaussian distribution, they focus on the 
mean and standard deviation. Finally, they used these statistics 
to determine each layer’s %$ that can maximize SQNR.  

Extensive experiments for fixed-point quantization are 
conducted by Zhou et al. [35]. They tried one-, two-, three-, 
four-, eight- and 32-bit fixed point quantization for the weights, 
activations, and gradients on Street View House Number 
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Figure 1. Model of a 4-layer DNN. 
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(SVHN) [9] and ImageNet datasets [5]. The resulting accuracy 
demonstrates a clear reduction with decrease in bit-width, 
especially the bit-width of activations and gradients.  

C. Adaptive Quantization

Different from fixed-point quantization, adaptive 
quantization does not have to use pre-set fixed-point values. 
Instead, it selects the quantized values based on the 
weight/activation distribution. Furthermore, adaptive 
quantization allows the quantized levels to be aligned randomly, 
while fixed-point quantization relies on equidistant quantized 
levels.  

Zhu et al. trained DNNs with ternary quantization [37], 
where the weights are quantized into three levels, 	45 , � 
and 46. The quantization procedure repeats four steps. First, 
the full-precision weights are divided into three subsets based 
on their values. Next, the three subsets are assigned values 	�, 
� and � from the smallest to the largest. Then, these three 
levels are multiplied by 45 , �  and 46 , respectively. 
Subsequently, the DNN’s loss function is computed and used to 
compute gradients for the parameters. Note that 45 and 46 
are not pre-set values, but are two parameters that are
searched/trained.  

Zhou et al. proposed Incremental Network Quantization 
(INQ) [33], which quantized the weights to be powers of two. 
Therefore, the hardware implementation for the multiplier is 
equivalent to a shift operator. This quantization method is the 
same as the independently developed LightNN-1 approach [8]. 
INQ uses an incremental training approach which involves 
multiple rounds of training, while LightNN-1 trains the network 
only once.  

To compress the DNNs, Han et al. adopted network pruning, 
quantization and Huffman coding approaches [14]. In the 
quantization step, they assigned quantized levels within the
range of the full-precision weights. Random, density-based and 
linear quantization methods are compared. Interestingly, the 
results demonstrate that linear quantization exhibited the best 
accuracy.  

Instead of considering each weight individually, Wu et al. 
split the weight matrices into smaller pieces of vectors, reduced 
the dimensionality of these vectors, and recorded the mapping 
relationship in a codebook [36]. Furthermore, they proposed an 
algorithm to correct the quantization error, for convolutional 
layers and fully-connected layers of a DNN.  

Compared to fixed-point quantization, the advantage of 
adaptive quantization is that it can use fewer bits to encode the 
weights, thereby reducing the storage. However, it requires a 
codebook to record the quantized levels and a decoder to map 
the encoded bits to continuous values [14] [33] [36] [37], 
thereby bringing overhead to inference computation.  

III. Training Quantized DNNs 
 
Quantizing a trained full-precision network without 

retraining can lead to significant accuracy loss [3]. Therefore, 
the quantized DNNs introduced in Section II incorporate the 
quantization in the training, and thus, can compensate the 
quantization error. Generally, the training algorithms for these 
quantized DNNs can be divided into two types, training from 
scratch [11] [15] [19] [35] or training from a trained full-
precision network [14] [33] [34] [36] [37].  

A.� Training from scratch 

Training a quantized DNN from scratch usually follows the 
training scheme in Figure 2 [11] [15] [19] [35]. First, all the 
weights are initialized randomly from a uniform or normal 
distribution. Then, the forward, backward and update steps are 
repeated for many iterations. In the forward step, the weights 
are quantized with the pre-set quantization scheme. Then, the 
intermediate results of the DNN are computed from the lowest 
layer to the highest one. In the backward step, the weight 
gradients are computed using the loss function value and all the 
quantized weights and (quantized) activations. After that, the 
weights before quantization are updated with the computed 
gradients. This training scheme is equivalent to the 
conventional backpropagation algorithm except the 
quantization operation in the forward pass.  

 

 

 

B.� Training from a trained full-precision DNN 

With a pre-trained full precision DNN, one can also retrain 
this DNN and involve quantization in the retraining. Zhu et al. 
[37] started from a full-precision network. Then, they quantized 
and retrained the DNN following a similar scheme as Figure 2. 
Zhou et al. [33] also started with a full-precision DNN, but 
incrementally quantized a subset of the weights. The quantized 
weights are frozen for the next iterations, while the remaining 
floating-point weights continue with this procedure.  

Compared with the training-from-scratch scheme, starting 
from a trained model probably requires fewer iterations since 
quantizing a trained network even without retraining already 
has a lower loss function value than the randomly initialized 
network [15]. However, if no trained model is available, the 
overall training time will include both training the full-
precision DNN and its retraining. In terms of accuracy, 
retraining from a trained model may be more prone to arrive at 
a local optimum. However, recent studies show that local 
optimum does not lead to low accuracy [16].   

C.� DNN robustness 

Quantization maps the weights (and activations) from a huge 
space into a much smaller one, but does not harm the accuracy 
with a good training approach and a suitable quantization type. 
This phenomenon stems from the robustness of DNNs. First, 
small weight distortion (e.g., random Gaussian noise) does not 
lead to poor accuracy [12]. Second, training or retraining with 
quantization adaptively changes the weights to compensate for 
the quantization error. Third, most of the activation functions 
have a saturation area [18]. If an activation locates at this area, 
then it is insensitive to small changes of its associated weight.  

From a theoretical view, we can explain this robustness with 
the analysis provided by Choromanska et al. [13]. They claim 
that there exists a nice band in the DNN’s loss surface. Within 
this band, there are many local minima of high quality in terms 
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Figure 2. Training quantized DNNs from scratch. 
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of test error. Therefore, as long as the quantization does not lead 
the weight vector out of this band, the loss function will 
probably achieve a low value with retraining.  

IV. LightNN: A Cost-Effective, Highly Accurate 
Quantization Approach 

LightNN is another quantization approach that aims to 
reduce both memory accesses and computation energy 
consumption in DNN’s hardware implementation. Its 
quantization uses a 7-ones approximation introduced below. 

A.� K-ones approximation 

In binary representations, any parameter 8 can be written 
as a sum of powers of two 8  �����8� � ��59 � �5: ���

�5;� , where 7  is the number of 1s in 8 ’s binary 
representation. A multiplication of two values 8  and �  is 
equivalent to several shifts and additions:  
8 � �  �����8� � �59 � �5: ��� �5; � � 
//////////// ���� 8 � � � �! � � � �� ��� � � �< //��� 
where “ � � �! ” means left-shifting �  by �!  bits. For 
negative values of �!, right-shifts are used instead. Assuming 
�! = �� = � = �< , smaller �  values correspond to a less 
significant part of the result 8 � �. Furthermore, logical shift 
units are more energy efficient than multipliers. Therefore, the 
computation energy consumption can be reduced by converting 
multiplications to approximate versions using a limited number 
of shifts (and adds). LightNNs change the computation logic of 
each neuron. A > -ones approximation drops the least 
significant powers of two in equation (1) such that the resulting 
value has at most � ones in its binary representation. Figure 3 
illustrates a basic example that utilizes a neuron with two inputs. 
Two weights 8!  and 8�  are both converted to a 2-ones 
approximation: 8! � �

599 � �59: , 8� � �
5:9 � �5:: . 

Therefore, a multiplication 8 � � is changed to two shifts and 
one addition. Moreover, when >  �, the equivalent multiplier 
unit is only a shift. 
 

 

 

B.� Stochastic rounding 

To ensure higher accuracy, LightNNs rely on a stochastic 
rounding scheme [11]. As opposed to a rounding-to-nearest 
scheme, the stochastic rounding scheme finds both the nearest 
higher value /8?  and the nearest lower value 8@ , and 
stochastically rounds 	 to one of them based on a probability 

distribution: 
8 

8?�/////////////8
 �
//�

8@�//////8
 �
//� 	 �
, 

where �  A AB

AC AB
. Intuitively, stochastic rounding ensures that 

the expected error introduced by the rounding scheme is zero.  

C.� Activation quantization 

LightNNs also use a binarized activation function as 
described in Section II-A. The advantages of doing so are 
twofold. First, the multiplication of a weight and an input of a 
neuron will be limited to D� multiplied by a power of two if 
the weights are constrained to >-ones approximations where 
>  � . This leads to an increased likelihood of achieving 
energy reduction within a hardware implementation. Second, 
binarized activations also inherently perform a regularization, 
beneficial to eliminating overfitting for large DNN 
configurations. 

D.� LightNN training 

We train LightNN following the scheme shown in Figure 2. 
As shown in Algorithm 1, during each training epoch, the 
forward pass constrains the weights, and provides intermediate 
results and loss function. Then, the backward pass computes the 
derivatives of the loss function over the parameters. After that, 
the parameters are updated based on the derivatives. It is worth 
noting that weight constraint occurs only in the forward pass. 
When updating the weights, we use 8E ! 	 F

G@

GAH
 instead of 

8I 	 F
G@

GAH
, where 8E ! is the real-value weights after � 	 � 

iterations, 8I is the constrained 8E !, F is the learning rate, 
and � is the loss function. Therefore, the weights are always 
accumulated in a floating point form. As stated by Courbariaux 
et al. [19], the reason to maintain high resolution for the weights 
is that the noise needs to be averaged out by the stochastic 
gradient contributions accumulated in each weight. 

 
Algorithm 1. LightNN Training Epoch 
Input: Training dataset �J� K�, where J is input and K is label; 
parameters after the �L 	 M�-th iteration: NL M  (weights) and 
OL M (biases); DNN forward computation function P�J�N� O�; 
Q value used for Q-ones approximation RSSTUJQ���; learning 
rate V. 
Output: Updated weights NL and biases OL 
For each mini-batch of �J� K�, do 

1. Constrain weights: NW  RSSTUJQ�NL M�
2.� Forward: compute intermediate results and loss 

function X with P � , NW, OL M, and mini-batch of J 
3.� Backward: compute derivatives YX

YNW
 and YX

YOLZM
 

4.� Update parameters: NL  NL M 	 V
YX

YNW
, and  OL 

OL M 	 V
YX

YOLZM
 

End For 
 
After a LightNN is trained, the last step is to perform the >-

ones approximation for all weights. Then, the constrained 
weights are used for testing.
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Figure 3. (a) A conventional neuron and, (b) LightNN neuron 
implemented using a 2-ones approximation.   
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V. Experiments 
 

In this section, we compare conventional DNNs, LightNNs, 
and BNNs in terms of accuracy, storage, energy consumption 
and area. We also present a guideline for selecting models for 
hardware implementations to meet the needs of different 
applications.  

A.� Set-up 

Experiment set-up including model and dataset selection, 
DNN configurations, training detail and hardware 
implementation is introduced in this subsection.  

Software training. We compare LightNNs with 
conventional DNNs and BNNs, since BNNs are the most 
hardware-friendly one among various quantization approaches 
introduced in section II-D. Seven models are compared – 
conventional DNN, LightNN-2, LightNN-1, BinaryConnect, 
LightNN-2-bin, LightNN-1-bin, and BinaryNet. Table 1 
describes their main characteristics. ReLU activation function 
is adopted in the first four models, while the last three models 
use the hard tanh function for training and the sign function for 
testing.  

 

 

 

 
We experiment on both small and large DNN configurations 

on MNIST and CIFAR-10 datasets. Both multi-layer 
perceptrons (MLPs) and convolutional neural networks (CNNs) 
are adopted. We selected five configurations as shown in Table 
2. 3-hidden for MNIST and 6-conv for CIFAR-10 are two large 
configurations used by Courbariaux et al. [15] [19]. 2-conv for 
MNIST and 3-conv for CIFAR-10 are two smaller 
configurations borrowed from Caffe examples [20]. 1-hidden 
for MNSIT is a small network adopted by prior research [10].  

In the training phase, we follow the algorithm described in 
Section IV. Batch normalization and dropout techniques are 
adopted to accelerate training and avoid overfitting, 
respectively. MNIST and CIFAR-10 are used for experiment, 
since Hubara et al. provide BNN results on these two datasets 
[15]. The MNIST dataset contains 70,000 gray-scale hand-
written images, while CIFAR-10 contains 60,000 colored 
images for animals or vehicles. The dataset is divided into 
training set, validation set, and test set. The validation set is 
used for selecting the best epoch. The same number of total 
training epochs is applied to all models and the test error of the 
epoch with the lowest validation error is reported. These 
models are trained on Theano platform [21]. We use existing 
open source models [22] to train conventional DNN, 
BinaryConnect and BinaryNet. Finally, hinge loss function and 
ADAM learning rule are used to train all seven models [23]. 

Hardware inference. We design pipelined implementations 
with one stage per neuron, for all seven models under 
consideration. The weights and inputs are initially stored in the 
memory, and fetched to the pipeline stage logic to compute the 
output for all neurons in that layer; intermediate results are 
written back. A 65nm commercial standard library is adopted. 
The logic computations circuit of one neuron is composed using 
Synopsys DesignWare commercial IP [24] (e.g., floating point 
multiplication and addition). The Synopsys Design Compiler 
[25] is used to generate the gate-level netlist and measure the 
circuit area. The power consumption of one neuron circuit is 
calculated using Synopsys Primetime [26]. Cacti [27] is used to 
obtain the power of memory accesses and registers. The overall 
workflow is shown in Figure 4. While prior work describes 
approaches to optimize the CNN hardware implementation 
(such as data reuse) [28], we keep all the models implemented 
an unoptimized fashion because our main objective is to 
compare how constraining weights impacts both computation 
and memory access energy. The size of the register files is 
chosen to accommodate the data size required for the 
computation of the largest neuron. 

 

B.� Accuracy 

Table 3 summarizes the test error for all configurations and 
datasets. For most configurations (except a few), the accuracy 

Synopsys 
Designware

Verilog
Synopsys Design

Compiler

Block-level circuits Synopsys 
Primetime

Gate-level netlist

Logic energy 

Logic area

Cacti
Register area
Memory and register energy 

Energy Area

Model Weights Activation 
function

Intermediate 
results Inputs

Conventional 
DNN floating ReLU floating floating

LightNN-2 ������ � ���	 
�

���� � ����� ��
ReLU floating floating

LightNN-1 ������ � ���� � � � ReLU floating floating
BinaryConnect +1 or -1 ReLU floating floating

LightNN-2-bin ������ � ���	 
�

���� � ����� ��
Sign +1 or -1 floating

LightNN-1-bin ������ � ���� � � � Sign +1 or -1 floating
BinaryNet +1 or -1 Sign +1 or -1 floating

Dataset Configuration Detail

MNIST
1-hidden One hidden layer with 100 neurons

2-conv Two convolution layers and two fully-connected layers
3-hidden Three hidden layers each with 4096 neurons

CIFAR-10
3-conv Three convolution layers and one fully-connected layer
6-conv Six convolution layers and three fully-connected layers

MNIST CIFAR-10
1-hidden 2-conv 3-hidden 3-conv 6-conv

Number of parameters 79,510 431,080 36,818,954 82,208 39,191,690

Test error 

Conventional 1.72% 0.86% 0.75% 21.16% 10.94%

LightNN-2 1.86% 1.29% 0.83% 24.62% 8.84%

LightNN-1 2.09% 2.31% 0.89% 26.11% 8.79%

BinaryConnect 4.10% 4.63% 1.29% 43.22% 9.90%

LightNN-2-bin 2.94% 1.67% 0.89% 32.58% 10.12%

LightNN-1-bin 3.10% 1.86% 0.94% 36.56% 9.05%

BinaryNet 6.79% 3.16% 0.96% 73.82% 11.40%

Figure 4. Workflow of energy and area measurement.   

Table 1. Constraints on seven models. 

Table 2. Five configurations for two datasets. 
Table 3. Test error and the number of parameters for all models. 
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decreases from: conventional, LightNN-2, LightNN-1, 
LightNN-2-bin, LightNN-1-bin, BinaryConnect, BinaryNet. 
This is because when we constrain the weights and activations, 
the model suffers from varying levels of accuracy loss. 
Interestingly, we note that for CIFAR-10 6-conv configuration, 
the conventional DNN performs no better than other models. 
This shows the regularization effect of weight constraints. 
When the DNN is relatively large, it tends to overfit and behave 
poorly on the testing set. In this case, weight constraints serve 
as a regularization method to avoid overfitting [19]. 

C.� Storage 

Figure 5 compares the weight storage requirements for 
different models. Since the constraint on activations does not 
affect weight storage, we only show four models. While it has 
been shown that limited bit precision can also lead to good 
accuracy [11], we retain the 32-bit representation for the 
conventional DNN as baseline. Therefore, a weight in 
conventional DNNs has four bytes, while in BinaryConnect and 
BinaryNet, it has only one bit. To store a weight 8  D� [, 
LightNN-1 and LightNN-1-bin need four bits: one bit for 
�����8�  and another three bits for �\� . LightNN-2 and 
LightNN-2-bin need seven bits for a weight 8  D�� [9 �
� [:�: one bit for �����8�, three bits for �\!� and three bits 
for �\��. For easier hardware implementation, one byte is used 
for a weight of LightNN-2 or LightNN-2-bin. Storage affects 
the number of memory accesses, and is thereby essential to 
energy consumption, which is shown in Section V-D.  

 

D.� Energy and Area 

Before we compare the energy and area consumption for a 
layer or network, the parameters for each multiplier or 
equivalent multiply unit in all models under consideration are 
explored first. For BinaryConnect and BinaryNet, a multiply 
unit is simply an XNOR gate [15]. For LightNN-1 and 
LightNN-1-bin, it is a shift unit. Since operands (e.g., 
unbinarized weights, activations and inputs) are represented as 
single-precision float-point., the shift operation is equivalent to 
an integer addition for the exponent. LightNN-2 and LightNN-
2-bin both rely on two shifts and an add operation. The adder 
required by LightNN-2 is floating point, while LightNN-2-bin 
only needs an integer adder to perform fixed point addition. The 
area and power are reported in Figure 6.  

Figure 7 shows the comparison of energy consumption for 
all seven models considered. Under the same DNN 
configuration, conventional DNNs and BinaryNet are always 
the most and least energy-consuming model, respectively. 

Furthermore, LightNN-2 is more energy-consuming than 
LightNN-1 and LightNN-2-bin, both of which consume more 
energy than LightNN-1-bin. When comparing LightNN-1 and 
LightNN-2-bin, the former has fewer bits for each weight, and 
therefore consumes less energy for each memory access, while 
the latter has more energy-efficient logic. The results in Figure 
4 show that LightNN-1 has higher energy consumption than 
LightNN-2-bin in all configurations except MNIST 1-hidden. 
The same comparison holds for the BinaryConnect and 
LightNN-1-bin, where BinaryConnect has more energy-
consuming logic circuitry (e.g., floating point adder) while 
LightNN-1-bin has larger weight storage. Although BinaryNet 
always has the lowest energy consumption under the same 
configuration, its high accuracy only occurs when the 
configuration is very large. For example, conventional DNN 
with 2-conv can surpass BinaryNet with 3-hidden in terms of 
both accuracy and energy consumption. 

 

 

 

 

 
Figure 8 reports the energy composition for each model. 

Specifically, the various components of energy are averaged 
across different configurations and datasets. For the 
conventional DNNs with floating point circuitry, the most 
energy-consuming part is the computational portions, while the 
majority of energy in LightNN-2-bin, LightNN-1-bin and 
BinaryNet is consumed by memory accesses, though the 
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Figure 5. Storage (for weights) required by different models under 
varying datasets and configurations. 

Figure 6. Area and power of an equivalent multiply unit across all 
models. 

Figure 7. Comparison of energy consumption of different models 
under varying datasets/configurations. Energy consumption is 

measured for inferring a single image. 

Figure 8. Energy breakdown for all models, averaged across 
different datasets and configurations. 
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absolute values are still smaller than that of conventional DNNs. 
We also break down the logic energy into leakage, switch and 
internal energy, where the switch energy is caused by switched 
load capacitance, and the internal energy is due to internal 
device switching. The leakage, switch and internal energy take 
31.6%, 35.2% and 33.2% respectively, averaged on all models 
and configurations. 

We also compare the area of the seven models under varying 
configurations in Figure 9. Note that the reported area includes 
both logic circuits and register files. Also note that the DNN 
inference is implemented in a pipeline fashion, and the logic is 
set to handle the largest neuron count in each configuration. 
Since more computation modules indicate larger area, but fewer 
memory fetches, the absolute values for the area encompass the 
energy consumption reported in Figure 7. However, the 
comparison of different models within a configuration is still 
meaningful since they use the same (largest) neuron count. The 
models follow a consistent order (from larger area to smaller): 
Conventional DNNs, LightNN-2, LightNN-1, BinaryConnect, 
LightNN-2-bin, LightNN-1-bin, and BinaryNet.  

 

 
 

 
(a) 

 
(b) 

 

E.� Pareto Optimality 
A comparison of different models and configurations are 

presented in Figure 10. Only the red triangles are the Pareto-
optimal ones in terms of accuracy and energy. From the figure, 
we can observe that there is not a model that surpasses all other 
models in terms of both accuracy and energy. However, with 
constraints on accuracy or energy, some models are more 
preferable than others. Suppose one will implement DNN for 
MNIST on hardware with the constraint that energy 
consumption per inference is below 200nJ. In this case, the 
LightNN-2 model with 2-conv configuration is selected, since 
it has the highest accuracy. 

F.� Non-pipeline implementation 
To further explore how LightNNs perform in a non-pipeline 

implementation, we implement the DNNs for five benchmarks 
from the UCI machine learning repository [17]: abalone, 
banknote-authentication, transfusion, sinknonsink, and 
balance-scale. They are chosen because of their small DNN 
configurations, making direct implementations of each DNN 
practical. (Note that these networks have only three layers, but 
we still refer to them as DNNs to avoid confusion.) The size of 
the datasets varies from 600 (balance) to 200,000 (sinknonsink), 
thus ensuring a large range. Instead of computing each neuron 
at one stage, the non-pipeline implementation builds the whole 
DNNs for each dataset. Moreover, to confirm that LightNNs are 
compatible with the use of limited bit precision for inputs and 
intermediate results [11], we use both 32-bit and 12-bit 
implementations. Similar to section V-D, the NNs are 
implemented using Synopsys Designware commercial IP [24]. 

 

 
Figure 11 shows the accuracy for the testing phase for the 

five benchmarks. Each DNN is trained with 2-ones stochastic 
approximation. For each benchmark, the accuracy of the 12-bit 
and 32-bit configurations are shown for both the conventional 
DNN and LightNN. From an accuracy standpoint, LightNNs 
lose only 0.66% and 0.40% accuracy when compared to 
conventional DNNs for 32- and 12-bit implementations, 
respectively. Furthermore, the accuracy results for 32- and 12-
bit data confirm that the additional error incurred by limiting 
numerical precision is quite small [11]. Finally, the small 
accuracy differences between 32-bit and 12-bit LightNNs prove 
that they have high tolerance for limited precision, thereby 
showing their compatibility with prior work [11]. 

Twelve-bit conventional DNNs and LightNNs for the five 
benchmarks are implemented, and three types of energy 
consumption are measured: leakage, internal energy (caused 
when the transistor is turned on), and switch energy (caused by 
toggle), which are all plotted in Figure 12. Estimates of circuit 
area are also compared in Figure 13. Note that the energy and 
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Figure 11. Test accuracy of conventional DNNs and 
LightNNs with 32-bit and 12-bit implementation.  
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area are reported only for the logic. The use of LightNNs 
reduces total energy by 38.8% on average. Both leakage and 
dynamic (including internal and switch) energy are reduced, 
benefiting from the more energy efficient logic implementation. 
More precisely, the area of a 12-bit multiplier is reduced by 
61.6% by the use of the LightNN multiplier. As a result, fewer 
transistors are required by LightNNs, leading to less leakage 
and dynamic energy consumption.  

 
 

 
 

VI. Summary and Conclusions 
Deep neural networks on hardware have been increasingly 
demanded, due to the speed requirement for real-time 
classification applications and the trend of heterogeneous 
systems. However, the increasing size of DNNs leads to large 
energy consumption and area requirement. One solution for this 
challenge is to quantize DNNs’ weights (and activations) to 
reduce the memory accesses and computation energy. As one 
of the quantization approach, LightNNs modify the 
computation logic of conventional DNNs by making reasonable 
approximations, and replace the multipliers with more energy-
efficient operators involving only one shift or limited shift-and-
add operations. In addition, LightNNs(-bin) also reduce the 
memory accesses for weights (and activations) storage, thereby 
further decreasing the energy consumption. Experiment results 
on conventional DNNs, BNNs and LightNNs show that 
LightNNs can reduce the energy and area while still 
maintaining a good accuracy even with fairly small network 
configurations.  
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