

Quantized Deep Neural Networks for Energy Efficient Hardware-based Inference

Abstract – Deep Neural Networks (DNNs) have been adopted in
many systems because of their higher classification accuracy, with
custom hardware implementations great candidates for high-
speed, accurate inference. While progress in achieving large scale,
highly accurate DNNs has been made, significant energy and area
are required due to massive memory accesses and computations.
Such demands pose a challenge to any DNN implementation, yet
it is more natural to handle in a custom hardware platform. To
alleviate the increased demand in storage and energy, quantized
DNNs constrain their weights (and activations) from floating-
point numbers to only a few discrete levels. Therefore, storage is
reduced, thereby leading to less memory accesses. In this paper,
we provide an overview of different types of quantized DNNs, as
well as the training approaches for them. Among the various
quantized DNNs, our LightNN (Light Neural Network) approach
can reduce both memory accesses and computation energy, by
filling the gap between classic, full-precision and binarized DNNs.
We provide a detailed comparison between LightNNs,
conventional DNNs and Binarized Neural Networks (BNNs), with
MNIST and CIFAR-10 datasets. In contrast to other quantized
DNNs that trade-off significant amounts of accuracy for lower
memory requirements, LightNNs can significantly reduce storage,
energy and area while still maintaining a test error similar to a
large DNN configuration. Thus, LightNNs provide more options
for hardware designers to trade-off accuracy and energy.

I Introduction

Deep neural networks (DNNs) have been widely adopted in
various real-time classification applications. Speech
recognition applications use recurrent DNNs to extract
information from the speech data [29]; facial recognition via
DNNs can be used for the security of personal properties [30]
[31]; driver-assistance systems can detect passengers, vehicles
and barriers using DNNs [32]. In these applications, DNNs
have been shown to be very effective due to their non-linear
characteristics, flexible configurations and self-adaptive
features [1]. In addition, DNNs extract features layer by layer,
and therefore can learn the pattern of input data from lower-
level features to higher-level and more abstract features. For an
image, DNNs can extract the dots and edges in the first few
convolutional layers, and then generalize basic shapes and
textures in the next layers. In the last few layers, the network
combines these extracted features with fully-connected layers
or a global-pooling layer, and produces the final classification
result. However, this characteristic of DNNs indicates an
essential requirement, that is, a large number of layers to
guarantee sufficient accuracy. For example, Google’s AlphaGo
adopts a 13-layer architecture, with hundreds of filters per layer
[6]. As another example, Microsoft implements a 152-layer
DNN for image classification [7].

The increasing number of neurons and connections in DNNs
brings pressure to the implementation of DNNs in real-time
classification applications. Potential implementation platforms
include CPU, GPU, FPGA and custom hardware (e.g., ASIC).
Recent research has focused on DNNs implemented directly in
custom hardware for a variety of reasons stemming from design
requirements or application characteristics. First, real-time
classification applications (such as Siri and Google glass [2])
have great sensitivity to latency, thereby making custom
hardware implementations better candidates than conventional
architectures based on CPUs or GPUs. Second, neural networks
implemented in custom ASICs require mostly logic with little
complicated control, lending themselves to lower design effort.
Third, heterogeneous architectures as a whole appear to be
more suitable for DNN implementation due to the combined
benefits of CPU, GPU, FPGA and ASIC-based hardware
acceleration [3] [4]. In heterogeneous systems, ASICs can
handle specific tasks that are required frequently, such as
classification in real-time image recognition, while CPUs and
GPUs can perform online training. In this paper, we also
consider the scenario where training is accomplished in
software, and inference is performed in hardware to ensure
high-speed for real-time applications. However, due to the
significant size of hardware DNNs which incurs significant
energy and power, limits their wide adoption.

The energy consumption of DNN hardware implementations
mainly comes from two parts – memory accesses and
computation. A quantized DNN is poised to become a sound
solution for reducing memory accesses and computation energy.
Indeed, quantized DNNs constrain the weights (and
activations) into a set of discretized values. Therefore, instead
of using 32-bit floating point numbers which include ��� � �
billion values, one can use much fewer discrete values.
Therefore, significantly fewer bits are required for each weight,
thereby reducing the overall memory accesses. For example,
the LightNN-1 [8] introduced in section V-A only needs four
bits for each weight. Furthermore, some prior art also quantizes
the activation values, i.e., the output of each convolutional and
fully-connected layer. For example, BinaryNet [15] constrains
both the weights and activations to be either �� or 	�, which
can be represented using a single bit.

In addition to memory accesses, quantized DNNs can also
reduce computation energy consumption. BinaryConnect [19]
and BinaryNet [15] replace multipliers with an XNOR operator.
Incremental network quantization [33] and LightNN-1 [8] use
a shift operator to substitute the multiplier. LightNN-2 [8]
converts the multiplication to two shifts and one addition.
These new operators can reduce the energy consumption caused
by the large number of multiplication operations in DNNs.

Ruizhou Ding, Zeye Liu, R. D. (Shawn) Blanton, Diana Marculescu

Department of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, PA, U.S.A. 15213
E-mail: {rding, zeyel, rblanton, dianam}@andrew.cmu.edu

978-1-5090-0602-1/18/$31.00 ©2018 IEEE

1A-1

1

Even for quantization approaches that still use multiplications,
such as the fixed-point quantization introduced in section II-B,
relying on fixed-point multiplication and addition can also
reduce energy consumption compared to the floating point
operations.

The rest of this paper is organized as follows. In Section II,
we give a general view of various DNN quantization
approaches. Section III introduces various approaches for
training quantized DNNs. We introduce LightNN as well as its
training scheme in Section IV. Experiment results are presented
in Section V, including accuracy, storage, energy and area
comparisons for conventional DNNs, Binarized Neural
Networks (BNNs) and LightNNs. Section VI concludes the
paper.

II. DNN Quantization

In this section, we first introduce full-precision DNNs and

then go through different types of DNN quantization methods
proposed in recent years.

Usually a Neural Network (NN) with more than four layers
is denoted as a DNN. Without loss of generality, a 4-layer fully-
connected DNN model is presented in Figure 1. Suppose the
input data has four features, each of which goes to one input
neuron. Then, in each hidden layer and the output layer, a linear
combination of the previous neurons is computed, and an
activation function is applied to the result, respectively. The
activation function (examples include sigmoid or ReLU [18])
applies a non-linear transformation to the output value. In
Convolutional Neural Networks (CNNs), the hidden layers
include convolutional layers, which compute a convolution
between their input feature maps and the weights kernels. We
consider online training for DNNs in software, with the
hardware implementation used for deployment in inference. In
the training phase with a back-propagation algorithm [18], the
loss function, such as the
� -norm or cross-entropy loss, is
computed using output values and data labels. Then, the loss
function and intermediates results are used to update the
weights used for linear combination described above. In the
deployment (testing or inference) phase of a classification task,
the output neuron with the largest value indicates the prediction
result.

During deployment, the vast majority of computation

resources are used for the multiplication within DNNs [3].
Therefore, by quantizing the weights (and activations), one can
reduce the energy consumption of the multiplication operations,
and thereby significantly reduce the overall computation energy.

In the next sub-sections, we describe and compare several
quantization approaches.

A.� Binarized Neural Networks

Two types of binarized neural networks (BNNs) have been
proposed by Courbariaux et al. BinaryConnect [19], a type of
BNN, constrains the weights to �� or 	�, but the inputs and
intermediate results remain as floating point values. On the
other hand, a second BNN known as BinaryNet [15], constrains
both weights and intermediate results (activations) to �� or
	�, and only the input values are represented as floating point.

During the inference phase, BinaryNet is different from
BinaryConnect only in that it uses a binarized activation
function, thereby having binarized intermediate results. In the
inference phase, a sign function � � ���� � is used as
the activation function. In the training phase, hard tanh function,
defined as ����� � �
����� 	����, is used as a substitute
for the sign function [15]. The benefit of BinaryNet is that it
further regularizes the DNN, and replaces each multiplication
with a simple 1-bit XNOR operation.

However, among the experiments that demonstrate that
BNNs produce an accuracy comparable to full-precision DNNs,
a majority involve very larger network configurations, a result
repeated in section V-B. This means that BNNs need more
parameters to maintain accuracy for smaller networks, thereby
diminishing their projected benefits in storage/computation
reduction.

B.� Fixed-point Quantization

Fixed-point quantization linearly discretizes the weights into
multiple levels. Therefore, BNNs can be considered as fixed-
point quantization using one bit. More generally, Gupta et al.
replace the floating-point weights and activations with a fixed-
point representation [QI, QF], where QI and QF are the integer
and fractional part, respectively [11]. They constrained the
number of bits for QI and QF into IL and FL, where IL and FL
are both integers. Therefore, the weights and activations can
have ������ value levels, which are linearly aligned in the
range �	��� !� 	��� ! 	 � ��" . In addition, in the training
phase, the gradients of the weights are constrained to fixed-
point values. Their experiments using the MNIST and CIFAR-
10 datasets show that the test error of fixed-point DNNs with
#$ � %$ �& is close to floating-point implementations, as
long as %$ is sufficiently large and stochastic rounding is
adopted.

To explore the methodology of fixed-point quantization, Lin
et al. proposed a framework to convert a pre-trained full-
precision DNN into a fixed-point DNN based on signal-to-
quantization-noise-ratio (SQNR) [34]. This framework
includes three steps. First, a large set of typical inputs is
provided as input to the DNN, and the activations per layer is
recorded. Then, the statistics of weights, biases, and activations
per layer are collected. Observing weights and activations
approximately follow a Gaussian distribution, they focus on the
mean and standard deviation. Finally, they used these statistics
to determine each layer’s %$ that can maximize SQNR.

Extensive experiments for fixed-point quantization are
conducted by Zhou et al. [35]. They tried one-, two-, three-,
four-, eight- and 32-bit fixed point quantization for the weights,
activations, and gradients on Street View House Number

input layer

hidden layer

output layer

�� �' �(�)

*' *(label

hidden layer

Forward: * + ,� �- .

/0��� + ,' *-�

Backward:

*�

1 + ,(�2 *-.

�3 �������	*
	��������	.
	
�������	�
	������	1
	���������	
,� 2 ,'2,(
	���������	�������	
��	������	��������

Figure 1. Model of a 4-layer DNN.

1A-1

2

(SVHN) [9] and ImageNet datasets [5]. The resulting accuracy
demonstrates a clear reduction with decrease in bit-width,
especially the bit-width of activations and gradients.

C. Adaptive Quantization

Different from fixed-point quantization, adaptive
quantization does not have to use pre-set fixed-point values.
Instead, it selects the quantized values based on the
weight/activation distribution. Furthermore, adaptive
quantization allows the quantized levels to be aligned randomly,
while fixed-point quantization relies on equidistant quantized
levels.

Zhu et al. trained DNNs with ternary quantization [37],
where the weights are quantized into three levels, 	45 , �
and 46. The quantization procedure repeats four steps. First,
the full-precision weights are divided into three subsets based
on their values. Next, the three subsets are assigned values 	�,
� and � from the smallest to the largest. Then, these three
levels are multiplied by 45 , � and 46 , respectively.
Subsequently, the DNN’s loss function is computed and used to
compute gradients for the parameters. Note that 45 and 46
are not pre-set values, but are two parameters that are
searched/trained.

Zhou et al. proposed Incremental Network Quantization
(INQ) [33], which quantized the weights to be powers of two.
Therefore, the hardware implementation for the multiplier is
equivalent to a shift operator. This quantization method is the
same as the independently developed LightNN-1 approach [8].
INQ uses an incremental training approach which involves
multiple rounds of training, while LightNN-1 trains the network
only once.

To compress the DNNs, Han et al. adopted network pruning,
quantization and Huffman coding approaches [14]. In the
quantization step, they assigned quantized levels within the
range of the full-precision weights. Random, density-based and
linear quantization methods are compared. Interestingly, the
results demonstrate that linear quantization exhibited the best
accuracy.

Instead of considering each weight individually, Wu et al.
split the weight matrices into smaller pieces of vectors, reduced
the dimensionality of these vectors, and recorded the mapping
relationship in a codebook [36]. Furthermore, they proposed an
algorithm to correct the quantization error, for convolutional
layers and fully-connected layers of a DNN.

Compared to fixed-point quantization, the advantage of
adaptive quantization is that it can use fewer bits to encode the
weights, thereby reducing the storage. However, it requires a
codebook to record the quantized levels and a decoder to map
the encoded bits to continuous values [14] [33] [36] [37],
thereby bringing overhead to inference computation.

III. Training Quantized DNNs

Quantizing a trained full-precision network without

retraining can lead to significant accuracy loss [3]. Therefore,
the quantized DNNs introduced in Section II incorporate the
quantization in the training, and thus, can compensate the
quantization error. Generally, the training algorithms for these
quantized DNNs can be divided into two types, training from
scratch [11] [15] [19] [35] or training from a trained full-
precision network [14] [33] [34] [36] [37].

A.� Training from scratch

Training a quantized DNN from scratch usually follows the
training scheme in Figure 2 [11] [15] [19] [35]. First, all the
weights are initialized randomly from a uniform or normal
distribution. Then, the forward, backward and update steps are
repeated for many iterations. In the forward step, the weights
are quantized with the pre-set quantization scheme. Then, the
intermediate results of the DNN are computed from the lowest
layer to the highest one. In the backward step, the weight
gradients are computed using the loss function value and all the
quantized weights and (quantized) activations. After that, the
weights before quantization are updated with the computed
gradients. This training scheme is equivalent to the
conventional backpropagation algorithm except the
quantization operation in the forward pass.

B.� Training from a trained full-precision DNN

With a pre-trained full precision DNN, one can also retrain
this DNN and involve quantization in the retraining. Zhu et al.
[37] started from a full-precision network. Then, they quantized
and retrained the DNN following a similar scheme as Figure 2.
Zhou et al. [33] also started with a full-precision DNN, but
incrementally quantized a subset of the weights. The quantized
weights are frozen for the next iterations, while the remaining
floating-point weights continue with this procedure.

Compared with the training-from-scratch scheme, starting
from a trained model probably requires fewer iterations since
quantizing a trained network even without retraining already
has a lower loss function value than the randomly initialized
network [15]. However, if no trained model is available, the
overall training time will include both training the full-
precision DNN and its retraining. In terms of accuracy,
retraining from a trained model may be more prone to arrive at
a local optimum. However, recent studies show that local
optimum does not lead to low accuracy [16].

C.� DNN robustness

Quantization maps the weights (and activations) from a huge
space into a much smaller one, but does not harm the accuracy
with a good training approach and a suitable quantization type.
This phenomenon stems from the robustness of DNNs. First,
small weight distortion (e.g., random Gaussian noise) does not
lead to poor accuracy [12]. Second, training or retraining with
quantization adaptively changes the weights to compensate for
the quantization error. Third, most of the activation functions
have a saturation area [18]. If an activation locates at this area,
then it is insensitive to small changes of its associated weight.

From a theoretical view, we can explain this robustness with
the analysis provided by Choromanska et al. [13]. They claim
that there exists a nice band in the DNN’s loss surface. Within
this band, there are many local minima of high quality in terms

������������	�
	����������
���������
�������

�������
�	��������
��������

������� ������

�� + �����	
������
��

���

�� + ��� � �
��

���

���������

Figure 2. Training quantized DNNs from scratch.

1A-1

3

of test error. Therefore, as long as the quantization does not lead
the weight vector out of this band, the loss function will
probably achieve a low value with retraining.

IV. LightNN: A Cost-Effective, Highly Accurate
Quantization Approach

LightNN is another quantization approach that aims to
reduce both memory accesses and computation energy
consumption in DNN’s hardware implementation. Its
quantization uses a 7-ones approximation introduced below.

A.� K-ones approximation

In binary representations, any parameter 8 can be written
as a sum of powers of two 8 �����8� � ��59 � �5: ���

�5;� , where 7 is the number of 1s in 8 ’s binary
representation. A multiplication of two values 8 and � is
equivalent to several shifts and additions:
8 � � �����8� � �59 � �5: ��� �5; � �
//////////// ���� 8 � � � �! � � � �� ��� � � �< //���
where “ � � �! ” means left-shifting � by �! bits. For
negative values of �!, right-shifts are used instead. Assuming
�! = �� = � = �< , smaller � values correspond to a less
significant part of the result 8 � �. Furthermore, logical shift
units are more energy efficient than multipliers. Therefore, the
computation energy consumption can be reduced by converting
multiplications to approximate versions using a limited number
of shifts (and adds). LightNNs change the computation logic of
each neuron. A > -ones approximation drops the least
significant powers of two in equation (1) such that the resulting
value has at most � ones in its binary representation. Figure 3
illustrates a basic example that utilizes a neuron with two inputs.
Two weights 8! and 8� are both converted to a 2-ones
approximation: 8! � �

599 � �59: , 8� � �
5:9 � �5:: .

Therefore, a multiplication 8 � � is changed to two shifts and
one addition. Moreover, when > �, the equivalent multiplier
unit is only a shift.

B.� Stochastic rounding

To ensure higher accuracy, LightNNs rely on a stochastic
rounding scheme [11]. As opposed to a rounding-to-nearest
scheme, the stochastic rounding scheme finds both the nearest
higher value /8? and the nearest lower value 8@ , and
stochastically rounds 	 to one of them based on a probability

distribution:
8

8?�/////////////8
 �
//�

8@�//////8
 �
//� 	 �
,

where � A AB

AC AB
. Intuitively, stochastic rounding ensures that

the expected error introduced by the rounding scheme is zero.

C.� Activation quantization

LightNNs also use a binarized activation function as
described in Section II-A. The advantages of doing so are
twofold. First, the multiplication of a weight and an input of a
neuron will be limited to D� multiplied by a power of two if
the weights are constrained to >-ones approximations where
> � . This leads to an increased likelihood of achieving
energy reduction within a hardware implementation. Second,
binarized activations also inherently perform a regularization,
beneficial to eliminating overfitting for large DNN
configurations.

D.� LightNN training

We train LightNN following the scheme shown in Figure 2.
As shown in Algorithm 1, during each training epoch, the
forward pass constrains the weights, and provides intermediate
results and loss function. Then, the backward pass computes the
derivatives of the loss function over the parameters. After that,
the parameters are updated based on the derivatives. It is worth
noting that weight constraint occurs only in the forward pass.
When updating the weights, we use 8E ! 	 F

G@

GAH
 instead of

8I 	 F
G@

GAH
, where 8E ! is the real-value weights after � 	 �

iterations, 8I is the constrained 8E !, F is the learning rate,
and � is the loss function. Therefore, the weights are always
accumulated in a floating point form. As stated by Courbariaux
et al. [19], the reason to maintain high resolution for the weights
is that the noise needs to be averaged out by the stochastic
gradient contributions accumulated in each weight.

Algorithm 1. LightNN Training Epoch
Input: Training dataset �J� K�, where J is input and K is label;
parameters after the �L 	 M�-th iteration: NL M (weights) and
OL M (biases); DNN forward computation function P�J�N� O�;
Q value used for Q-ones approximation RSSTUJQ���; learning
rate V.
Output: Updated weights NL and biases OL
For each mini-batch of �J� K�, do

1. Constrain weights: NW RSSTUJQ�NL M�
2.� Forward: compute intermediate results and loss

function X with P � , NW, OL M, and mini-batch of J
3.� Backward: compute derivatives YX

YNW
 and YX

YOLZM

4.� Update parameters: NL NL M 	 V
YX

YNW
, and OL

OL M 	 V
YX

YOLZM

End For

After a LightNN is trained, the last step is to perform the >-

ones approximation for all weights. Then, the constrained
weights are used for testing.

� � ������ 	 �
�
�

�� �

�� �

��� �

Conventional neuron

��

���� ����

�

���� ����

	 	

��� �

� � ������ ���� 	 ��� � ��
� 	 ��

� �
�� 	 ��
 � �

��

LightNN neuron (k=2)

��� ���

Figure 3. (a) A conventional neuron and, (b) LightNN neuron
implemented using a 2-ones approximation.

1A-1

4

V. Experiments

In this section, we compare conventional DNNs, LightNNs,
and BNNs in terms of accuracy, storage, energy consumption
and area. We also present a guideline for selecting models for
hardware implementations to meet the needs of different
applications.

A.� Set-up

Experiment set-up including model and dataset selection,
DNN configurations, training detail and hardware
implementation is introduced in this subsection.

Software training. We compare LightNNs with
conventional DNNs and BNNs, since BNNs are the most
hardware-friendly one among various quantization approaches
introduced in section II-D. Seven models are compared –
conventional DNN, LightNN-2, LightNN-1, BinaryConnect,
LightNN-2-bin, LightNN-1-bin, and BinaryNet. Table 1
describes their main characteristics. ReLU activation function
is adopted in the first four models, while the last three models
use the hard tanh function for training and the sign function for
testing.

We experiment on both small and large DNN configurations

on MNIST and CIFAR-10 datasets. Both multi-layer
perceptrons (MLPs) and convolutional neural networks (CNNs)
are adopted. We selected five configurations as shown in Table
2. 3-hidden for MNIST and 6-conv for CIFAR-10 are two large
configurations used by Courbariaux et al. [15] [19]. 2-conv for
MNIST and 3-conv for CIFAR-10 are two smaller
configurations borrowed from Caffe examples [20]. 1-hidden
for MNSIT is a small network adopted by prior research [10].

In the training phase, we follow the algorithm described in
Section IV. Batch normalization and dropout techniques are
adopted to accelerate training and avoid overfitting,
respectively. MNIST and CIFAR-10 are used for experiment,
since Hubara et al. provide BNN results on these two datasets
[15]. The MNIST dataset contains 70,000 gray-scale hand-
written images, while CIFAR-10 contains 60,000 colored
images for animals or vehicles. The dataset is divided into
training set, validation set, and test set. The validation set is
used for selecting the best epoch. The same number of total
training epochs is applied to all models and the test error of the
epoch with the lowest validation error is reported. These
models are trained on Theano platform [21]. We use existing
open source models [22] to train conventional DNN,
BinaryConnect and BinaryNet. Finally, hinge loss function and
ADAM learning rule are used to train all seven models [23].

Hardware inference. We design pipelined implementations
with one stage per neuron, for all seven models under
consideration. The weights and inputs are initially stored in the
memory, and fetched to the pipeline stage logic to compute the
output for all neurons in that layer; intermediate results are
written back. A 65nm commercial standard library is adopted.
The logic computations circuit of one neuron is composed using
Synopsys DesignWare commercial IP [24] (e.g., floating point
multiplication and addition). The Synopsys Design Compiler
[25] is used to generate the gate-level netlist and measure the
circuit area. The power consumption of one neuron circuit is
calculated using Synopsys Primetime [26]. Cacti [27] is used to
obtain the power of memory accesses and registers. The overall
workflow is shown in Figure 4. While prior work describes
approaches to optimize the CNN hardware implementation
(such as data reuse) [28], we keep all the models implemented
an unoptimized fashion because our main objective is to
compare how constraining weights impacts both computation
and memory access energy. The size of the register files is
chosen to accommodate the data size required for the
computation of the largest neuron.

B.� Accuracy

Table 3 summarizes the test error for all configurations and
datasets. For most configurations (except a few), the accuracy

Synopsys
Designware

Verilog
Synopsys Design

Compiler

Block-level circuits Synopsys
Primetime

Gate-level netlist

Logic energy

Logic area

Cacti
Register area
Memory and register energy

Energy Area

Model Weights Activation
function

Intermediate
results Inputs

Conventional
DNN floating ReLU floating floating

LightNN-2 ������ � ���	
�

���� � ����� ��
ReLU floating floating

LightNN-1 ������ � ���� � � � ReLU floating floating
BinaryConnect +1 or -1 ReLU floating floating

LightNN-2-bin ������ � ���	
�

���� � ����� ��
Sign +1 or -1 floating

LightNN-1-bin ������ � ���� � � � Sign +1 or -1 floating
BinaryNet +1 or -1 Sign +1 or -1 floating

Dataset Configuration Detail

MNIST
1-hidden One hidden layer with 100 neurons

2-conv Two convolution layers and two fully-connected layers
3-hidden Three hidden layers each with 4096 neurons

CIFAR-10
3-conv Three convolution layers and one fully-connected layer
6-conv Six convolution layers and three fully-connected layers

MNIST CIFAR-10
1-hidden 2-conv 3-hidden 3-conv 6-conv

Number of parameters 79,510 431,080 36,818,954 82,208 39,191,690

Test error

Conventional 1.72% 0.86% 0.75% 21.16% 10.94%

LightNN-2 1.86% 1.29% 0.83% 24.62% 8.84%

LightNN-1 2.09% 2.31% 0.89% 26.11% 8.79%

BinaryConnect 4.10% 4.63% 1.29% 43.22% 9.90%

LightNN-2-bin 2.94% 1.67% 0.89% 32.58% 10.12%

LightNN-1-bin 3.10% 1.86% 0.94% 36.56% 9.05%

BinaryNet 6.79% 3.16% 0.96% 73.82% 11.40%

Figure 4. Workflow of energy and area measurement.

Table 1. Constraints on seven models.

Table 2. Five configurations for two datasets.
Table 3. Test error and the number of parameters for all models.

1A-1

5

decreases from: conventional, LightNN-2, LightNN-1,
LightNN-2-bin, LightNN-1-bin, BinaryConnect, BinaryNet.
This is because when we constrain the weights and activations,
the model suffers from varying levels of accuracy loss.
Interestingly, we note that for CIFAR-10 6-conv configuration,
the conventional DNN performs no better than other models.
This shows the regularization effect of weight constraints.
When the DNN is relatively large, it tends to overfit and behave
poorly on the testing set. In this case, weight constraints serve
as a regularization method to avoid overfitting [19].

C.� Storage

Figure 5 compares the weight storage requirements for
different models. Since the constraint on activations does not
affect weight storage, we only show four models. While it has
been shown that limited bit precision can also lead to good
accuracy [11], we retain the 32-bit representation for the
conventional DNN as baseline. Therefore, a weight in
conventional DNNs has four bytes, while in BinaryConnect and
BinaryNet, it has only one bit. To store a weight 8 D� [,
LightNN-1 and LightNN-1-bin need four bits: one bit for
�����8� and another three bits for �\� . LightNN-2 and
LightNN-2-bin need seven bits for a weight 8 D�� [9 �
� [:�: one bit for �����8�, three bits for �\!� and three bits
for �\��. For easier hardware implementation, one byte is used
for a weight of LightNN-2 or LightNN-2-bin. Storage affects
the number of memory accesses, and is thereby essential to
energy consumption, which is shown in Section V-D.

D.� Energy and Area

Before we compare the energy and area consumption for a
layer or network, the parameters for each multiplier or
equivalent multiply unit in all models under consideration are
explored first. For BinaryConnect and BinaryNet, a multiply
unit is simply an XNOR gate [15]. For LightNN-1 and
LightNN-1-bin, it is a shift unit. Since operands (e.g.,
unbinarized weights, activations and inputs) are represented as
single-precision float-point., the shift operation is equivalent to
an integer addition for the exponent. LightNN-2 and LightNN-
2-bin both rely on two shifts and an add operation. The adder
required by LightNN-2 is floating point, while LightNN-2-bin
only needs an integer adder to perform fixed point addition. The
area and power are reported in Figure 6.

Figure 7 shows the comparison of energy consumption for
all seven models considered. Under the same DNN
configuration, conventional DNNs and BinaryNet are always
the most and least energy-consuming model, respectively.

Furthermore, LightNN-2 is more energy-consuming than
LightNN-1 and LightNN-2-bin, both of which consume more
energy than LightNN-1-bin. When comparing LightNN-1 and
LightNN-2-bin, the former has fewer bits for each weight, and
therefore consumes less energy for each memory access, while
the latter has more energy-efficient logic. The results in Figure
4 show that LightNN-1 has higher energy consumption than
LightNN-2-bin in all configurations except MNIST 1-hidden.
The same comparison holds for the BinaryConnect and
LightNN-1-bin, where BinaryConnect has more energy-
consuming logic circuitry (e.g., floating point adder) while
LightNN-1-bin has larger weight storage. Although BinaryNet
always has the lowest energy consumption under the same
configuration, its high accuracy only occurs when the
configuration is very large. For example, conventional DNN
with 2-conv can surpass BinaryNet with 3-hidden in terms of
both accuracy and energy consumption.

Figure 8 reports the energy composition for each model.

Specifically, the various components of energy are averaged
across different configurations and datasets. For the
conventional DNNs with floating point circuitry, the most
energy-consuming part is the computational portions, while the
majority of energy in LightNN-2-bin, LightNN-1-bin and
BinaryNet is consumed by memory accesses, though the

MNIST-1-hidden

MNIST-3-conv

MNIST-3-hidden

CIFAR10-3-conv

CIFAR10-6-conv

W
ei

gh
t S

to
ra

ge
 (B

yt
es

)

104

105

106

107

108

109

Conventional
LightNN-2(-bin)
LightNN-1(-bin)
BinaryConnect/BinaryNet

Con
ve

nti
on

al

Lig
htN

N-2

Lig
htN

N-1

Bina
ryC

on
ne

ct

Lig
htN

N-2
-b

in

Lig
htN

N-1
-b

in

Bina
ryN

et

Po
w

er
 o

f o
ne

 m
ul

tip
lie

r (
m

W
)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

Con
ve

nti
on

al

Lig
htN

N-2

Lig
htN

N-1

Bina
ryC

on
ne

ct

Lig
htN

N-2
-b

in

Lig
htN

N-1
-b

in

Bina
ryN

et

Ar
ea

 o
f o

ne
 m

ul
tip

lie
r (
μ

m
 x

 μ
m

)

100

101

102

103

104

105

MNIST-1-hidden

MNIST-3-conv

MNIST-3-hidden

CIFAR10-3-conv

CIFAR10-6-conv

E
ne

rg
y

C
on

su
m

pt
io

n
(n

J)

101

102

103

104

105

Conventional
LightNN-2
LightNN-1
BinaryConnect
LightNN-2-bin
LightNN-1-bin
BinaryNet

Conventional

LightNN-2

LightNN-1

BinaryConnect

LightNN-2-bin

LightNN-1-bin

BinaryNet

E
ne

rg
y

C
om

po
si

tio
n

0

0.2

0.4

0.6

0.8

1

1.2
Logic Memory Clock Register

Figure 5. Storage (for weights) required by different models under
varying datasets and configurations.

Figure 6. Area and power of an equivalent multiply unit across all
models.

Figure 7. Comparison of energy consumption of different models
under varying datasets/configurations. Energy consumption is

measured for inferring a single image.

Figure 8. Energy breakdown for all models, averaged across
different datasets and configurations.

1A-1

6

absolute values are still smaller than that of conventional DNNs.
We also break down the logic energy into leakage, switch and
internal energy, where the switch energy is caused by switched
load capacitance, and the internal energy is due to internal
device switching. The leakage, switch and internal energy take
31.6%, 35.2% and 33.2% respectively, averaged on all models
and configurations.

We also compare the area of the seven models under varying
configurations in Figure 9. Note that the reported area includes
both logic circuits and register files. Also note that the DNN
inference is implemented in a pipeline fashion, and the logic is
set to handle the largest neuron count in each configuration.
Since more computation modules indicate larger area, but fewer
memory fetches, the absolute values for the area encompass the
energy consumption reported in Figure 7. However, the
comparison of different models within a configuration is still
meaningful since they use the same (largest) neuron count. The
models follow a consistent order (from larger area to smaller):
Conventional DNNs, LightNN-2, LightNN-1, BinaryConnect,
LightNN-2-bin, LightNN-1-bin, and BinaryNet.

(a)

(b)

E.� Pareto Optimality
A comparison of different models and configurations are

presented in Figure 10. Only the red triangles are the Pareto-
optimal ones in terms of accuracy and energy. From the figure,
we can observe that there is not a model that surpasses all other
models in terms of both accuracy and energy. However, with
constraints on accuracy or energy, some models are more
preferable than others. Suppose one will implement DNN for
MNIST on hardware with the constraint that energy
consumption per inference is below 200nJ. In this case, the
LightNN-2 model with 2-conv configuration is selected, since
it has the highest accuracy.

F.� Non-pipeline implementation
To further explore how LightNNs perform in a non-pipeline

implementation, we implement the DNNs for five benchmarks
from the UCI machine learning repository [17]: abalone,
banknote-authentication, transfusion, sinknonsink, and
balance-scale. They are chosen because of their small DNN
configurations, making direct implementations of each DNN
practical. (Note that these networks have only three layers, but
we still refer to them as DNNs to avoid confusion.) The size of
the datasets varies from 600 (balance) to 200,000 (sinknonsink),
thus ensuring a large range. Instead of computing each neuron
at one stage, the non-pipeline implementation builds the whole
DNNs for each dataset. Moreover, to confirm that LightNNs are
compatible with the use of limited bit precision for inputs and
intermediate results [11], we use both 32-bit and 12-bit
implementations. Similar to section V-D, the NNs are
implemented using Synopsys Designware commercial IP [24].

Figure 11 shows the accuracy for the testing phase for the

five benchmarks. Each DNN is trained with 2-ones stochastic
approximation. For each benchmark, the accuracy of the 12-bit
and 32-bit configurations are shown for both the conventional
DNN and LightNN. From an accuracy standpoint, LightNNs
lose only 0.66% and 0.40% accuracy when compared to
conventional DNNs for 32- and 12-bit implementations,
respectively. Furthermore, the accuracy results for 32- and 12-
bit data confirm that the additional error incurred by limiting
numerical precision is quite small [11]. Finally, the small
accuracy differences between 32-bit and 12-bit LightNNs prove
that they have high tolerance for limited precision, thereby
showing their compatibility with prior work [11].

Twelve-bit conventional DNNs and LightNNs for the five
benchmarks are implemented, and three types of energy
consumption are measured: leakage, internal energy (caused
when the transistor is turned on), and switch energy (caused by
toggle), which are all plotted in Figure 12. Estimates of circuit
area are also compared in Figure 13. Note that the energy and

MNIST-1-hidden

MNIST-3-conv

MNIST-3-hidden

CIFAR10-3-conv

CIFAR10-6-conv

A
re

a
(μ

m
 x

 μ
m

)

105

106

107

108

109

Conventional
LightNN-2
LightNN-1
BinaryConnect
LightNN-2-bin
LightNN-1-bin
BinaryNet

Test Error (%)
0 1 2 3 4 5 6 7

N
or

m
al

iz
ed

 E
ne

rg
y

10-3

10-2

10-1

100

1

2

3

4

5

6

7

8

9,15

10

11

12

13

14

16

17

18

19

20

21

Test Error (%)
0 10 20 30 40 50 60 70 80

N
or

m
al

iz
ed

 E
ne

rg
y

10-3

10-2

10-1

100

1

2

3

4

5

6

7

8

9

10

11

12

13

14

sinknonsink

transfusion

banknote
balance

abalone

average

Te
st

 E
rro

r (
%

)

0

5

10

15

20

25

30
32-bit Conventional DNNs
32-bit LightNNs
12-bit Conventional DNNs
12-bit LightNNs

Figure 9. Comparison of area of different models under varying
datasets and configurations.

Figure 10. Normalized energy and test error of varying models and
configurations for (a) MNIST and (b) Cifar-10. Red triangles are

Pareto-optimal.

Figure 11. Test accuracy of conventional DNNs and
LightNNs with 32-bit and 12-bit implementation.

1-hidden 2-conv 3-hidden
Conventional DNN � � �

LightNN-2 � 	

LightNN-1 � �

BinaryConnect �� �� ��
LightNN-2-bin �� �� �	
LightNN-1-bin �
 �� ��

BinaryNet � �� ��

3-conv 6-conv
Conventional DNN � �

LightNN-2 � �
LightNN-1 	

BinaryConnect � �
LightNN-2-bin ��
LightNN-1-bin �� ��

BinaryNet �� ��

1A-1

7

area are reported only for the logic. The use of LightNNs
reduces total energy by 38.8% on average. Both leakage and
dynamic (including internal and switch) energy are reduced,
benefiting from the more energy efficient logic implementation.
More precisely, the area of a 12-bit multiplier is reduced by
61.6% by the use of the LightNN multiplier. As a result, fewer
transistors are required by LightNNs, leading to less leakage
and dynamic energy consumption.

VI. Summary and Conclusions
Deep neural networks on hardware have been increasingly
demanded, due to the speed requirement for real-time
classification applications and the trend of heterogeneous
systems. However, the increasing size of DNNs leads to large
energy consumption and area requirement. One solution for this
challenge is to quantize DNNs’ weights (and activations) to
reduce the memory accesses and computation energy. As one
of the quantization approach, LightNNs modify the
computation logic of conventional DNNs by making reasonable
approximations, and replace the multipliers with more energy-
efficient operators involving only one shift or limited shift-and-
add operations. In addition, LightNNs(-bin) also reduce the
memory accesses for weights (and activations) storage, thereby
further decreasing the energy consumption. Experiment results
on conventional DNNs, BNNs and LightNNs show that
LightNNs can reduce the energy and area while still
maintaining a good accuracy even with fairly small network
configurations.

References
[1] G. P. Zhang, “Neural networks for classification: a survey.”

Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on, 30(4), pp. 451-462, 2000.

[2] J. Hauswald et al., “DjiNN and Tonic: DNN as a service and its
implications for future warehouse scale computers.” ACM ISCA,
pp. 27-40, 2015.

[3] Z. Du et al., “Leveraging the error resilience of machine-learning
applications for designing highly energy efficient accelerators.”
ASP-DAC, pp. 201-206, 2014.

[4] A. Yazdanbakhsh et al., “Neural acceleration for GPU throughput
processors.” ACM MICRO, pp. 482-493, 2015.

[5] J. Deng, et al., “Imagenet: A large-scale hierarchical image

database.” IEEE CVPR, pp. 248-255, 2009.
[6] D. Silver et al., “Mastering the game of Go with deep neural

networks and tree search.” Nature, 529(7587), pp. 484-489, 2016.
[7] K. He et al., “Deep Residual Learning for Image Recognition.”

CVPR. arXiv preprint arXiv:1512.03385, 2016.
[8] R. Ding, et al., “LightNN: Filling the Gap between Conventional

Deep Neural Networks and Binarized Networks.” ACM GLSVLSI,
pp. 35-40, 2017.

[9] Y. Netzer, et al., “Reading digits in natural images with
unsupervised feature learning.” NIPS, No. 2, p. 5, 2011.

[10] S. S. Sarwar, et al., "Multiplier-less Artificial Neurons exploiting
error resiliency for energy-efficient neural computing." IEEE
DATE, pp. 145-150, 2016.

[11] S. Gupta et al., “Deep learning with limited numerical precision.”
ICML, JMLR: W&CP volume 37. arXiv preprint
arXiv:1502.02551, 2015.

[12] P. Merolla, P., et al., “Deep neural networks are robust to weight
binarization and other non-linear distortions.” arXiv preprint
arXiv:1606.01981, 2016.

[13] A. Choromanska, et al. “The loss surfaces of multilayer networks.”
AISTATS, pp. 192-204, 2016.

[14] H. Song, et al., "Learning both weights and connections for
efficient neural network." NIPS, pp. 1135-1143, 2015.

[15] I. Hubara, et al., “Binarized Neural Networks.” NIPS. arXiv
preprint arXiv:1602.02505, 2016.

[16] K. Kawaguchi, “Deep learning without poor local minima.” NIPS,
pp. 586-594, 2016.

[17] A. Asuncion et al., “UCI machine learning repository.”, 2007.
http://archive.ics.uci.edu/ml/

[18] Y. LeCun et al., “Deep learning.” Nature, 521(7553), pp.436-444,
2015.

[19] M. Courbariaux, et al., “Binaryconnect: Training deep neural
networks with binary weights during propagations.” NIPS, pp.
3123-3131, 2015.

[20] https://github.com/BVLC/caffe/tree/master/examples
[21] http://deeplearning.net/software/theano
[22] https://github.com/MatthieuCourbariaux/BinaryNet
[23] D. Kingma, et al., “A method for stochastic optimization.” arXiv

preprint arXiv:1412.6980, 2014.
[24] https://www.synopsys.com/designware-ip/soc-infrastructure-

ip/designware-library.html
[25] Synopsys, Inc., Synopsys Design Compiler. Product Version

14.9. 2014.
[26] https://www.synopsys.com/implementation-and-

signoff/signoff/primetime.html
[27] N. Muralimanohar, et al., “Cacti 6.0: A tool to model large

caches.” HP Laboratories, pp. 22–31, 2009.
[28] R. Andri, et al., “YodaNN: An ultra-low power convolutional

neural network accelerator based on binary weights.” IEEE
ISVLSI, pp. 236-241, 2016.

[29] A. Graves, et al., “Speech recognition with deep recurrent neural
networks.” IEEE ICASSP, pp. 6645-6649, 2013.

[30] J. S. Coffin, et al, U.S. Patent No. 5,991,429. Washington, DC:
U.S. Patent and Trademark Office, 1999.

[31] http://anyvision.co/
[32] C. Szegedy, et al., “Deep neural networks for object detection.”

NIPS, pp. 2553-2561, 2013.
[33] A. Zhou, et al., “Incremental network quantization: towards

lossless CNNs with low-precision weights. ICLR, 2017.
[34] D. Lin, et al., “Fixed point quantization of deep convolutional

networks.” ICML, pp. 2849-2858, 2016.
[35] S. Zhou, et al., “DoReFa-Net: Training low bitwidth

convolutional neural networks with low bitwidth gradients.” arXiv
preprint arXiv:1606.06160, 2016.

[36] J. Wu, et al., “Quantized convolutional neural networks for
mobile devices.” CVPR, pp. 4820-4828, 2016.

[37] C. Zhu, et al., “Trained ternary quantization.” arXiv preprint
arXiv:1612.01064, 2016.

0.000

0.005

0.010

0.015

0.020

��
�	

�

	��
��

���	�
� �������	���
� ������	���
�
������������	����
��
�����

sinknonsink

transfusion

banknote
balance

abalone

average

Ar
ea

 (μ
m

 x
 μ

m
)

×105

1

2

3

4

5

6
Conventional DNNs
LightNNs

Figure 12. Energy of 12-bit conventional DNNs.

Figure 13. Area of 12-bit conventional DNNs and LightNNs.

1A-1

8

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

