
A full-parallel digital implementation for pre-trained NNs
Tam& Szab6, Lorinc Antoni, GBbor HorvAth, B61a Fehkr

Technical University of Budapest, Department of Measurement and Information Systems,
H-1521. Budapest, Muegyetem rkp. 9, Bldg. R. 1./113. Hungary,

Tel.: +36 1 463 2057, Fax.: +36 1 463 4112, E-mails: [szabo, antoni, horvath, feher]@miit.brne.hu

Abstract I n m a n y applications the most significant advantages of neural networks come mainly f r o m their
parallel architectures ensuring rather high operation speed. T h e dif icult ies of parallel digital hardware imple-
mentat ion arise mostly f rom the high complexity of the parallel many-multiplier structure. This paper suggests
a n e w bit-serial/parallel neural network implementation method f o r pre-trained networks. The method makes
possible significant hardware cost savings. The proposed approach - which is based on the results of a previ-
ously suggested method for e f i c i en t implementation of digital filters - uses bit-serial distribvted aritlimetic.
T h e ef ic ient implementation of a matrix-vector multiplier is based o n a n optimization algorithm which uti-
lizes the advantages of C S D (Canonic Signed Digit) encoding and bit-level pattern coincidences. T h e resulting
architecture performs full-precision computation and allows high-speed bit-level pipe-line operation. T h e pro-
posed approach seems to be a promising one f o r FPGA and ASIC realization of pre-trained neural networks
and can be integrated into automatic nevral network design environments. However: these irnplerrientation
methods can be useful in m a n y other fields of digital signal processing.

1 Introduction and Motivation
Neural Networks (NNs) mean very attractive solutions for numerous real-world computational problems
of digital signal processing. However, the lack of suitable implementation impedes the spread of NNs iri
everyday systems. There is a very wide scale of attempts using different implementation mediums. The
main research directions are: analog neurochips, digital circuits, mixed signal (pulse-coded or other hybrid
hardware) implementations and some optical devices [l] [2]. Each solution has its strengths and weaknesses.

Both analog and digital implementations have advantages arid disadvantages. A4~ialog irriplerrientations
are quite sensitive to noise and thermal drift, and because of the variance of the parameters only a 5-8 bit
precision can be attained. On the other hand adding, multiplication, non-linear functions etc. are relatively
easy to implement using analog technique and their implementation operates at high speed.

Digital implementations assure arbitrary precision and they are not sensitive to noise and thermal drift.
Nevertheless their operating speed is quite low and their realization is expensive as they need large chip-
surface.

Our goal was to examine digital NN implementation techniques and develop new methods that exploit
the advantages of digital implementations, but allow efficient high speed operation at reasonable hardware
cost. The proposed methods are intended for dedicated (single chip) neurochip designs. However, these
solutions are not only for NNs, but they can be very suitable to implement various digital signal processing
algorithms.

The focal points of this paper are:
to find an efficient digital implementation for fixed NNs,

0 to develop an optimization algorithm for a bit-serial matrix-vector multiplier.

2 Background
There are numerous NN families in the literature. They have different structures, but a common feature
is that they consist of neurons in a layered structure, typically using one or two hidden layers. A layer is
composed of neurons working on the same inputs and generating different outputs. .4 neuron produces a
function of the weighted sum of its inputs (a function over a linear combination of the input). This function
is called activation or squashing function, which is typically some monotone nonlinear function (e.g. sigmoid,
tangent hyperbolic, etc.).

The operation of a neuron can be interpreted as a function over a vector-vector scalar product (MIS0
system), where one of the vectors is composed by the inputs and the other one is the weight vector. If a
whole NN layer is considered then it is a MIMO system where the input and output are also vectors. The
projection between the input and output of an NN can be described as a function of a matrix-vector product:

'This work was supported by the Hungarian Fund for Scientific Research (OTKA) under contract TO21003

0-7695-0619-4/00 $10.00 0 2000 IEEE
49

Y = f (Wx) (1)
where x and y are the input and output vectors, W is the weight matrix of the layer and function f(.)
represents the activation function of the neurons. NNs have two basic operation modes: the learning phase
arid the recall phase. If adaptivity is not required in a system then it is enough to implement a fixed network
working in recall phase (fixed transformation). The elements of W are constant in this case, contrary to the
learning phase where the weights -the matrix W- change.

Here we deal with the implementation of constant matrix - variable vector multiplication for pre-trained
NNs. We shall not deal with the implementation of the activation function in this paper. It is less difficult to
implement the squashing function than the implementation of the matrix-vector multiplier, it can be done
for example with Look-Up Tables (LUT) or a LUT-based interpolation technique.

One of the most essential property of the NNs is their inherent parallelism. Mainly this property is
responsible for their high computational speed, power and fault tolerance. We can define full-parallel imple-
mentation in the following sense: the layer is computed full-parallel if all the products in every neuron are
computed simultaneously. However, as it was mentioned, the implementation of digital parallel multipliers
is very expensive. Usually the technical limits of the realizations do not allow full-parallel implementations
because bit-level parallelism results in many connections that are difficult to implement. Besides multipli-
ers, another bottleneck of the hardware realization of NNs is the high number of connections, because the
implementation of wires consumes large chip surface. Bit-serial communication and computation is a good
candidate to help us to overcome these problems. Bit-serial Computation reduces the number of necessary
arithmetic elements and keeps the number of connections tractable. The reduction -respecting the number
of necessary wires and arithmetic elements- is about one order of magnitude depending on the precision of
the computation. Unfortunately, bit-serial computation decreases the operation speed, too, but we hope
that the proposed full-parallel implementation compensates this speed fall.

We can conclude from the properties described above that in our implementation we should exploit the
inherent parallelism of NNs and that a good candidate to implement the matrix-vector multiplier (where the
matrix is constant and the vector is variable) should be a structure which processes its input vectors parallely
in viewpoint of the elements of the vector, but uses bit-serial data-flow. Certainly, the output vector of the
multiplication (y) is also available simultaneously in bit-serial manner. See Fig. 1.

1 1 0 0 Y,

0 1 0 1 Y2
MATRIX-VECTOR

MULTIPLIER

X I 1 0 0 ... 1

x2 0 1 0 0

Bit-serial inputs Bit-serial outputs

Figure 1: Bit-serial matrix-vector multiplier

1x1 the following section we will present an approach to implement the constant matrix-variable vector
multiplier. The proposed approach decreases the redundancies of the implementation in order to achieve
efficient hardware.

3 The proposed constant matrix, variable vector multiplier archi-
tecture

-4 corripletely new approach has been published in [3] for vector-vector inner product computation used in
digital filter irriplenieritations. This approach does not require the storage of the constant coefficients in the
product but "builds" them into the structure of the multiplier. This technique can be called as a special
type of Distributed .4rithmetic (DA) approach. In this paper we present the generalization of this inner
product arithmetic for matrix-vector products and propose a new optimization algorithm for matrix-vector
multipliers and a new application area for DA, namely the field of NNs. One of our previous papers [4]
deals also with a similar problem but the solution proposed there is less efficient than the current one.

50

It is possible to distinguish bit-serial/parallel and bit-parallel/parallel multipliers. Bit-serial/parallel
multipliers read one operand bit-serially arid the other one bit-parallely, while bit-parallel/parallel units read
both operands parallely. Bit-serial/parallel multipliers can be derived from bit-parallel/parallel multipliers by
the projection of spatial coordinates to time domain scheduling. The resulting bit-serial/parallel multiplier is
composed of one-bit serial adders, delay elements and one-bit multipliers (AND gates). This transformation
can be done in several ways but there is no significant difference between the hardware cost of the resulting
architectures. Our method uses LSB first, bit-serial/parallel arithmetic as a constant coefficient multiplier.
The coefficients are built into the multiplier "netlist".

Here we review the methods we applied to reduce the hardware cost of the implementation. The first
technique that helps us to realize this reduction is Canonic Signed Digit (CSD) encoding [5] . It can be
considered that if the coefficients are constant then it is riot necessary to implement any hardware in the " 0"
digit positions of the constant numbers. The application of CSD encoding exploits this possibility. Besides
this, we created an algorithm to attain bit-level optimization.

3.1 The CSD representation
CSD coding is a convenient method to reduce complexity in DSP hardware [5] . Allowing (0, +1: -1) in the
representation of the coefficients the relative frequency of non-zero elements in CSD representation equals to
B,/3 (against B,/2 in two's coIriplement or binary data), where B, is the number of bits (word length) of this
representation. Nevertheless: usage of f l values does not mean extra hardware cost because +1 means bit-
serial adder while -1 Inearis bit-serial substractor and their hardware costs are the same. This implies that a
constant multiplier can be implemented by less hardware using CSD coding while the dynamic range of the
multiplier also slightly exparids using the same number of bits. (The largest and smallest numbers which can
be represented in a normalized CSD code are -4/3 and 4/3). The CSD representation is unique, i.e. a given
number may be represented in only one way. Let us see an example: -0.4414DEC = 0.0 - 1001000 - 1CSD
that is -2-1 +2-4 - 2-8. Its CSD representation contains three non-zero elements while its two% complement
representation is composed by five ones.

3.2 Bit-level optimization
The first idea was the application of CSD coding, the second one was bit-level reduction. To understand it
let

.. -

us follow this simple example. -4ssume an N * A4 = 2 * 1 dimension matrix-vector product:

If we introduce 2 3 = 2l21 - 2 2 we obtain:
= -2OX2 + 2-223 - 2-423 + pX1 (4)

We can compare the original (corresponding to Eq. 3) and the optimized multiplier (Eq. 4) structure on
Fig. 2. The difference is obvious. Both of them use CSD encoding but the reduced architecture performs the
same operation using less building blocks. The original one contains six arithmetic and five delay elements
while the reduced one needs only five arithmetic and three delay elements.

a o-" b

Figure 2: Bit-serial vector-vector product implementations: a) original, b) reduced

We shall not examine the mathematical formalism of the bit-level optimization algorithm in detail in this
paper. The description of the formalism can be found in [3].

51

3.3 The optimization algorithm of the constant matrix, variable vector multi-
plier

In this section we introduce an optimization algoIithrns which utilize the ideas of sections 3.1 and 3.2 for
bit-serial matrix-vector multipliers. First we introduce some notations. Given a decimal number w ~ , ~ in
[-4/3,4/3]. Its &-bit long CSD representation can be interpreted as a Bc-long vector the elements
of which are the bits of the CSD number h,,j = [h:,,2' h21,j2-1 ... h;;-12-Bc-1] (e.g. if =
-0.875. Bc = 8, = [O. - 10010000]). Similarly. let us denote B, the word length of the input data (x).

Thus. we rewrite the matrix-vector multiplication of Eq. 1 to a seIies of vector-vector products:

N In this equation the partial matrix-vector products, Ck=l 'wi,k%k are actually imer products of the input
vector x and a constant coefficient vector wi. A two-dimensional data structure in which the rows are the
binary representations of the coefficient vector elements with an implicit + sign between the cell-array row
elements can represent a one-dimensional coefficient vector. Eq. 6 shows this.

As we have seen in the previous section identical or contradictory bit patterns have to be found in
these His. It can be seen that longer matching bit patterns result in a higher reduction rate, so we prefer
the reduction step considering the longest bit-pattern. First of all: let us examine how these matchirig bit
patterns can be found in a single Hi if we use CSD encoding.

3.3.1 Identification of matching bit-patterns
During this task we will exploit the feature of CSD encoding that in a CSD number there cannot be non-zero
values on adjacent digits, that means we must search for patterns having non-zero values at the first and
the last position. The shortest pattern of this kind is 3-bit long, for example { l O l } . The identification of
bit-patterns must be carried out between the rows of Hi, after the partial product corresponding to the
bit-pattern can be separated that IrieaIis the introduction of a new variable as we have discussed it in section
3.2. In our research we have focused 011 the identification of the identical bit-patterns only in one Hi, we
have not extended the algorithm to search for patterns in different His. This is because it would significaritly
increase the searching space and the complexity of the optimization algorithm but would not surely yield
better result. However, the reductions are performed between the different His if necessary as we will see
later. It means that our algorithm makes reduction respecting the whole matrix-vector product in every
step.

Thus, we must search for identical bit-patterns between the rows of Hi. When doing this we compare
the rows q, T = 1 . . .N of Hi and store the result in so-called statistical matrices Saps . The statistical matrices
Sip(q, r) contain the largest number of non-zero elements at the same position of coinciding identical (or
contradicting) bit patterns from the q-th and the p-position right-shifted 7'-th rows of the actual Hi matrix
with regard to the sign. The sign of the element of Sip(q, T) will be positive if the sign of the corresponding
bit-pattern is the same, and negative if it is different. The diagonals of Sip are cleared to ignore self-
coincidences.

With the statistical matrices we have determined the number of non-zero values of the corresponding
bit-patterns in each row. In our algorithm, among the bit-patterns the one is chosen in each step which
results the highest gain. From this point of view the algorithm is similar to the gradient-methods as it always
chooses the steepest gradient. It is possible to find the optimal or nearly optimal solution with the Sip(q, T)

statistical matrices and a CAGG () cost-function. The cost-function must consider two other important factors,
as the possible gain depends not only on the number of non-zero elements of the bit-pattern chosen, but:

52

0 on the gain the given bit-pattern results in the whole W x matrix-vector multiplication (that means in

0 on whether we must introduce additional delay units into the structure or not.
all the His)

The delay units mentioned in the second point realize the possible 2O delay (delay by D clock cycles). We
must consider that we may have realized a certain delay for xk already in a preceding step of the optimization,
so we should consider only the A D , difference between the existing and the desired delays. In this case the
cost of the implementation of the needed delay can be described as:

c , (p , k) = 1 + A D k c (7)
where C is a technology-depending parameter that represents the cost-ratio of the implementation of the
additional delay unit(s) and the arithmetic operator (1-bit adder or substractor).

It is not sure that the pattern containing the most non-zero values must be chosen during the optimization.
It can be possible that a pattern containing less non-zero values but involved in more partial products (that
means in more His) is more reasonable to choose as it results more gain, so the C&G() cost-function can
be chosen in many different ways like 8 or 9:

CdGG(P, Y, 1.7 c) = abSmaxp,q,T [szdq , .)I - c D (p , T) , (8)

S d Y , T) > sip(% 1.) - cz, (v: 1.) (9) b v i , s i P (q , T) > o vi ,si P (9 , T) <o 1 CdGG (p , 9: T , c) = abSmazp,q,r

The cost-function Eq. (8) always chooses the longest bit-pattern to separate with no respect how marly times
a shorter pattern occurs. The cost-function Eq. 9 adds separately the number of non-zero values at the same
position of the bit-patterns and after chooses the locally maximum gain that can be obtained.

There is one more important step of the algorithm that must be considered. One must approximate the
number p (the difference between the position of the identical bit-patterns) to know how many S i p s must be
generated. If we consider that in CSD representation the maximurn number of non-zero values in a riurnber
is % we can determine an upper limit to the value of p . According to practical experiences we can say that
the optimal value of p is about p,,, = 2..3.

When the algorithm is running the size of both the statistical matrices Sip and the His changes dy-
namically. However, it can be seen that it is enough to re-compute in each iteration step the rows of the
concerned Hi and the values of the concerned Sip. Like this the complexity of the algorithm will be linearly
proportional with the number of the elements of W.

3.4 Representative examples
The proposed approaches have been validated in this section by some representative examples. For these
examples we assume that the weight distribution of a trained neural network is approximately Gaussian
(see [SI). This is why the elements of the sample coefficient matrices were generated randomly in [-(2Bc--')3
2Bc-1] with zero mean and(a2 = T). (Approximate Gaussian distribution.)

The following table (Table 1) contains some representative results (averages of 5 runs using different
matrices) for coefficient word length B, = 8,12 ,16 , respectively. The number of inputs N and the outputs
M are 5,10 ,20 ,40 . The columns contain the number of adders, substractors and delay units required. The
hardware cost of the trivial realization can be approximated by CTRI = M*N*iBc+l) . The "R %" column
shows hardware requirements in percent compared to trivial representation (1 - e).

We can conclude from these examples that the reduction ratio increases proportionally to the dimensions
(N and M) . This can easily be explained because the more operations are in the matrix-vector product
the more to reduce. However, it is not definitely true because the algorithm can execute different reduction
steps, but it can be considered as a trend.

4 Application proposition
As it has been mentioned, our goal was to develop implementation techniques which are suitable for em-
bedded applications. The proposed application area is the fixed, non-adaptive (single-chip) neural network
implementation. The presented method can be very fast because of the full parallel design and at the same
time can provide quite a large -theoretically arbitrary- commutational precision. Certainly, the parallel ar-
chitecture can be exploited only if the inputs are presented in parallel manner. Such applications are, among

53

40x101 247.0 I 270.6 I 188.0 I 705.6 I 60.81 383.6 I 402.2 I 283.6 I 1069.4 I 58.91 501.4 I 526.2 1 387.4 I 1415.01 58.4

Table 1: Reduction example
others, the image processing tasks (e.g. OCR, Optical Character Recognition, and other pattern and texture
recognition) ~ control applications (MIMO, static and dynamic function approximation).

Beyond the Multiple-Layer Perception (MLP) which is the plausible application area of this matrix-vector
multiplier structure we have suggested another interesting application area in one of our previous paper [7]:
the tasks of the CNN (Cellular NN) -operations with space invariant templates- that can be redefined into
a form which exploits the benefits of the new matrix-vector multiplier structure.

5 Conclusion
We have presented a new implementation approach with significant hardware-reduction to a matrix-vector
multiplier in this paper. In our approach the reduction in the hardware cost is based on CSD coding and
bit-level optimization of the matrix-vector product. The architecture obtained allows high-speed bit-level
pipe-line operation. Our approach is convenient for FPGA arid ASIC realization of pre-trained NNs. The
proposed method can be used in an automatic NN design environment where the input (W) of the matrix-
vector multiplier optimization algorithm comes from an NN simulator and its output is processed by a silicon
compiler. Future research can be carried out on the optimization algorithm as it is possible to find different
methods in the searching of identical bit-patterns.

References
PI

PI

[31

141

151

171

161

Manferd Glesner and Werner Pochmiiller, Neurocomputers, an overview of neural networks in VLSI, Neural
Computing. Chapman & Hall, 1994.
J. G. Delgado-Frias and W. R. Moore, Eds., VLSI for Artificial Intelligence and Neural Networks, Pelnum Press,
1991.
Bkla Fehkr, ”Efficient synthesis of distributed vector multipliers,” Microprocessing and Microprogramming, vol.
38, pp. 345-360, 1993.
Tam& Szab6, Bkla Fehkr, and Gibor Horvith, “Neural network implementation using distributed arithmetic,”
in proceedings of the International Conference on Knowledge- based Electronic Systems, Adelaide, Australia, 1998,

Richard I. Hartly and Keshab K. Parhi, Digit-serial computation, Kluwer Academic Publishers, 1995.
I. Bellido and E. Fiesler, “DO backpropagation trained neural networks have normal weight distributions?,” in
Proceedings of ICANN’93, 1993.
Tam& Szab6, BBla Fehkr, and Gibor Horvith, “Dedicated digital implementation of the CNN universal machine,”
in Proceedings of IEEE International Workshop on Intelligent Signal Processing, 1999, vol. 1, pp. 194-199.

vol. 3, pp. 511-520.

54

