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A Mixed Analog-Digital Arti�cial NeuralNetwork Architecture with On-ChipLearningAlexandre Schmid, Yusuf Leblebici and Daniel MlynekAbstract|This paper presents a novel arti�cial neural net-work architecture with on-chip learning capability. Theissue of straightforward design-ow integration of an au-tonomous unit is addressed with a mixed analog-digital ap-proach, by implementing a charge-based arti�cial neuralnetwork which interacts with digital control and processingunits. We demonstrate the circuit architecture and design-ow approach for the case of a Hamming network perform-ing pixel-pattern recognition.Keywords|Charge-based ANN, mixed-mode ANN hard-ware architecture, ANN integration design-ow.I. IntroductionTHE ABILITY of arti�cial neural networks (ANN) toacquire knowledge of their surrounding environmentand adapt to it, as well as their use of a high degree of com-puting parallelism makes them very e�cient in many ap-plication �elds including process and quality control, con-sumer products, optical character and speech recognition,and complex forecasting tasks among many others [1].Silicon implementation of ANNs as an integrated cir-cuit (IC) [2] aims at providing a �nal product with desir-able low-area, low-power and low-cost properties. Severalpurely analog ICs, most of them belonging to the charge-based or current-based families, have been developed in or-der to meet the criteria of minimal area and fast through-put. Yet the main drawbacks of analog systems includesensitivity to ambient noise and to temperature, as wellas the lack in e�cient automated synthesis methods andtools. On the other hand, purely digital realizations havethe advantage of a limited but well de�ned precision that isgiven by the quanti�cation of all neuron parameters. Onemain characteristic of purely digital realizations is theirstraightforward design-ow; some realizations start from ahigh-level hardware language description such as VHDL, tobe synthesized into a standard-cells based architecture ora FPGA. The extensive reuse of precharacterized modules,may these be VHDL-based descriptions or mask layouts, isyet another possible solution to speeding up the IC devel-opment process.Combining the advantages of both analog and digital re-alizations into a novel mixed-mode architecture is the pur-pose of the implementation described in this paper. We willManuscript received September 19, 1997; revised February 26, 1998and June 18, 1998.The authors are with the Integrated Systems Center, Department ofElectrical Engineering, Swiss Federal Institute of Technology (EPFL),Lausanne, Switzerland. Y. Leblebici is currently with the Depart-ment of Electrical and Computer Engineering, Worcester PolytechnicInstitute, Worcester, MA, 01609.

focus on developing a simple design-ow aiming at the inte-gration of arti�cial neural networks with on-chip learninginto an autonomous and easily recon�gurable integratedcircuit architecture. We will show the silicon integration ofa Hamming network [3] of 20 charge-based neurons, inter-acting with a purely digital unit which the on-chip-learningand circuit control tasks are dedicated to. Section II givesan overview on the architecture of the realized IC. The in-tegrated ANN architecture and operation is described inSection III. The algorithmic aspects of the implementedtraining algorithm are explored in Section IV, and Sec-tion V presents the IC realization.II. The Circuit Architecture and itsDesign-FlowA. The Main Building BlocksThe overall circuit architecture is divided into two mainparts with regard to their operating modes, i.e. analog anddigital. The analog ANN unit executes the neural functionprocessing based on a charge-based circuit structure; it iscomposed of a 20 neuron layer, each with 10-bit vector in-puts. The winner-take-all (WTA) [4] unit is devoted to thetask of selecting one neuron as the winner on the criteria ofbest degree of matching between the stored pixel patternand the current input vector. On the other hand, the er-ror correction unit (OLU), the circuit control (CCU) andclock generator (CGU) units perform purely digital opera-tions (see Fig. 1).
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Fig. 1. Block-diagram of the implemented IC.This mixed analog-digital architecture is consistent withour objectives to construct a exible, straightforward



2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. Y, MONTH 1999design-ow with reusability properties, and also to addressthe issues of e�cient and compact design. The ANN oper-ates in the analog domain and thus inherits most of advan-tages associated with it, especially speed of neural functionexecution and compact design. All the digital parts on theother hand were designed, simulated and then synthesizedfrom a VHDL high-level hardware language description.This design-ow signi�cantly simpli�es such issues as fastprototyping of a new algorithm into an IC, fast integrationof the selected architecture, and easy layout oorplanning.A dedicated multipurpose memory unit (MMU) which hasa scan-path architecture with parallel and serial read/writeability is devoted to the task of loading the initial weightsand observing the new processed weights. This unit is anoperating and test structure that together with others al-low full testability and observability of the IC.B. The Control Signals and Data FlowThe CCU is the master circuit controller; i.e. all otherunits are subordinated to this unit. Its tasks mainly in-clude the synchronization of all processing units amongthemselves and with the circuit supervisor, as well as theinput/output protocol implementation. The control anddataow are represented on Fig. 2. Notice that the ANNand WTA are completely controlled by the CGU that hasthe ability of generating the clock signals �1 through �5,asynchronously from the circuit master clock.
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DONESignal Consequenceld INITS IC initialization sequence. IC in wait mode untilSTARTSTART A new vector is available for processing. One for-ward processing pass is alloweds CGU Makes the CGU produce one cycle of �1 through�1 signal clockss OLU Makes the OLU start one error correction cycleld w Loads the new processed weights into the ANNDONE The launched process has �nished. When in for-ward processing mode : a new result is availableFig. 2. Control signals and dataow between the main blocks.The external dataow consists in presenting a new dataon the START event; and sampling the result on the DONEevent. The internal dataow is simpli�ed; no complexdataow control structure are required as any new vectoris immediately processed by the ANN. This data is lost atthe end of a cycle since no internal framing is available.C. The Circuit EnvironmentThe developed architecture needs to interact with a su-pervisor to download several process control and data sig-

nals in order to allow proper work. This global control sys-tem may either be a dedicated microcontroller in the caseof an embedded microsystem or a piece of control softwaredriving a conventional microprocessor in a computer archi-tecture. This requirement obviously reduces the autonomyof the overall circuit architecture and assumes that it hasto be included in a complete system such as a computerboard. Nevertheless, the ability to modify some algorith-mic parameters and decision criteria in real time signi�-cantly improves the e�ciency of the system.For example, the learning rate parameter � has a signif-icant inuence on the ANN convergence and on its abilityto properly acquire knowledge. As stated in Section IV itsvalue may be downloaded into the IC at any time. A sig-nal indicating whether or not error correction was appliedduring the last cycle is sent to the supervisor in order tokeep the decision of accepting or rejecting the convergencecondition outside the chip. Following the same idea, theselection of the neuron to be trained is also devoted to thesupervisor. The threshold value also has to be producedexternally in the form of an analog voltage V�.All of these features could be easily integrated into a fullyautonomous version of the developed architecture, which,however, would result in loss of exibility due to the im-possibility to modify any parameters.III. The Mixed Analog-Digital ANNArchitecture and OperationA. The ANN Circuit ArchitectureA Hamming network is a two layer feed-forward ANNwith the ability to classify noise corrupted patterns. Itsinternal architecture consists in a �rst layer of neurons per-forming in parallel the Hamming distance of a m-bit digitalinput vector with n previously stored exemplar patterns -this is the quanti�er subnet; the second layer is devoted tothe selection of the winner neuron which is the one withsmallest Hamming distance to the input vector (see Fig. 3)- this is the discriminator subnet. This network performse�cient classi�cation for relatively low complexity, and al-ways converges to one of the previously stored combina-tions.
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A MIXED ANALOG-DIGITAL ARTIFICIAL NEURAL NETWORK ARCHITECTURE WITH ON-CHIP LEARNING 3The number of independent neurons (n) corresponds tothe number of patterns to be sorted out, and the numberof synapses (m) associated with each neuron correspondsto the number of input vector components.For the realization of the Hamming network, we use amodi�ed version of the charge-based circuit architecture�rst presented in [5], which was originally designed with�xed weights. In particular, the circuit architecture wasmodi�ed to allow simple programming of the input weights.Since this paper is primarily focused on the overall systemarchitecture, a detailed analysis of the charge-based quan-ti�er and discriminator subnets is not presented here. Thefundamental circuit architecture of the capacitive Ham-ming network is essentially identical to the �xed-weightclassi�er circuit published earlier, the operation and limita-tions of which were well documented in [5]. It has also beenexperimentally demonstrated earlier that charge-based cir-cuit architectures o�er the advantages of high integrationdensity, high speed and low power dissipation, while sensi-tivity limitations (discriminator o�set) that may stem fromcircuit/device mismatch still allow a relatively large inputvector size [5], [6]. For a detailed description and electricalanalysis of the charge-based capacitive Hamming networkarchitecture, the reader is referred to [5].Each charge-based synapse is composed of four binaryweighted capacitors as well as four memory latches to sup-port programmability of the device. The capacitor valuesassociated with each synapse are chosen as Ci = 2nCu,where n = 0; � � � ; 3 and Cu is unit capacitance. Thus themodi�ed con�gurable circuit architecture of the charge-based Hamming network allows four-bit weight program-ming.B. The ANN Circuit OperationThe circuit operates in two distinctive modes (forwardprocessing mode and training mode) which can be selectedby an external triggering signal. The circuit operates in thefollowing sequence when in forward processing mode (alsocalled recall mode):� Initialization phase: the initial weights (or newlyprocessed weights) are downloaded into the internalsynaptic memory.� Quanti�cation phase: the input vector is applied. De-pending on the programmed weight values, all den-dritic voltages in the ANN structure assume their newlevel.� Discrimination phase: the WTA processes to winnerselection. The result may be sampled when conver-gence of the WTA is reached.The circuit controller ags the availability of a new max-imum likelihood classi�cation result. All these steps repeatevery time a new forward processing pass is required underthe control of the circuit supervisor unit.The circuit has to be trained in order to acquire experi-ence of the patterns to be sorted out. This happens duringthe training mode which is divided into two passes: oneforward pass and one backpropagation pass (error correc-tion pass).

� Forward pass: the training forward pass is identicalto the normal forward processing mode, with the ex-ception that only one neuron is activated at a time(each neuron is trained separately). The neuron to betrained is selected by the supervisor and is activatedthrough a forward processing pass using the trainingpattern, while all other neurons are kept in idle modeto prevent undesired interaction.� Back-propagation pass: given the current input vec-tor, the current processing weights and the binary re-sult of the forward pass, the circuit controller activatesthe OLU, the digital unit which computes the weightvalues the ANN will have in the next cycle, to pro-cess the learning algorithm. The OLU computes thenew weights to be downloaded into the synaptic mem-ory. The circuit controller ags the end of the cycleto the outside, and indicates whether or not error cor-rection was to be applied during the current trainingpass. The circuit supervisor may then decide on thenecessity of a re�ning training pass with the same oranother threshold value, or to train another neuronbecause convergence was satisfactorily achieved.IV. The Learning Algorithm and AlgorithmicConsiderationsHardware implementations of ANNs are typically sub-ject to restrictions in terms of area, power and time whichmay complicate the realization of a chosen learning algo-rithm. The so-called hardware-friendly algorithms [7] areintended to yield a simple hardware realization, yet alsoachieve a high degree of e�ciency despite of limited pre-cision of computation, approximation of the implied func-tions, and perturbing e�ects of quantization.The training algorithm was chosen as a hardware-friendly adaptation (2) of the error correction learning al-gorithm (1) [8].w(n+ 1) = w(n) + �[d(n)� y(n)]x(n) (1)Here w stands for the weight vector, x for the inputvector, d is the expected output and y the actual neuronoutput result, � is the learning rate, n is the time incre-ment. w(n+ 1) = w(n) � � (2)where� = �[d(n)� y(n)]x(n) if xj = 1or� = 0 if xj = 0The use of a WTA unit restricts the input vector x tobe purely binary; thus all of its components belong to thebinary set f0,1g. This fact, together with the hard limitingactivation function in the ANN produces a purely binaryresult to the [d(n) � y(n)]x(n) operation. Hence, the in-uence of the � parameter is enhanced as it remains theonly non-binary parameter to be multiplied with one ofthe logical values f0,1g. Thus the system was designed so



4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. Y, MONTH 1999as to allow the � value to be changed at any time by thesupervisor controller.Prior to the design of the unit, C simulations were run tovalidate the hardware oriented algorithms. A speci�c sim-ulation tool was developed in order to produce a realistichigh-level characterization, which is based on the model ofa neuron that optimally reproduces the analog behavior ofthe real implementation in the integer domain. The simula-tions were run on a network consisting of nine neurons with9-bit vectors to classify. The small size of the network doesnot a�ect in any way the quality of the results; expandingthe network to a larger one would result in a longer delayto reach convergence (in a general case). The training setand simulation parameters can be seen on Fig. 4.
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Fig. 5. Pat. 1 perturbed by noise. All of these patterns werecorrectly classi�ed.

V. Realization of the ANN Integrated CircuitA test chip implementing the developed architecture wasdesigned and realized in AMS (Austria Micro Systems)CMOS 0:8� 2-Poly technology [9], [10]. The layout canbe seen on Fig. 6. The die size is less than 13mm2; thefunctional modules (ANN, WTA, CCU, CGU and OLU)occupy less than 5mm2. The number of pins is 100, sev-eral pins being attributed to additional test structures.The test features were integrated into the design so as tomake each main building element testable independentlyfrom all others. As previously mentioned the multipurposememory unit is fully accessible in read/write mode, whichallows to load the weights to be read by the ANN or theOLU, or download them to check the computation of theOLU. The binary result of the WTA output in forwardprocessing mode (is current presented pattern recognizedas being the one stored in current trained neuron ?) is alsofully accessible in read/write mode, which allows for testa-bility of WTA and control of the OLU in test mode. TheWTA outputs are all connected to output pins which en-sures full testability over the ANN and WTA. The reasonfor observing all the WTA outputs lies in the internal op-eration of the WTA that may produce multiple winner se-lection. The ANN and WTA can be tested independently;in this test mode all the driving clock signal are providedby external means via the CLK DVR unit. Finally one sin-gle neuron with full external access was integrated to allowsensitivity and speed tests.
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Fig. 6. Microphotograph of the realized IC. All operative units oc-cupy an area less than 5mm2; the overall die size is less than13mm2, with a 100 PGA package. Several test structures andtest pins were implemented to allow easy testability of the chip.



A MIXED ANALOG-DIGITAL ARTIFICIAL NEURAL NETWORK ARCHITECTURE WITH ON-CHIP LEARNING 5All of the major modules on chip were tested separatelyto con�rm their functionality. The digital error correc-tion unit (OLU), circuit control unit (CCU), multi-purposememory unit (MMU) and the clock generator unit (CGU)were tested using the HP82000 testing environment andwere found to be fully functional. Measurements were alsoperformed to verify the operation of the analog ANN andWTA modules. The WTA was found to operate correctlyfor all cases with a minimum Hamming distance of twobits or more. Discrimination of a winner neuron was foundto become problematic in cases where the minimum Ham-ming distance is only one bit, which indicates that theunit weight capacitance of 17 fF actually remains belowthe limit value dictated by the process-dependent quanti-�er o�set voltage. Extensive measurements for a completecharacterization of the entire ANN architecture are cur-rently continuing.The main e�ort was not put on developing a high-speedarchitecture. Nevertheless, a speed of 4M inferences persecond is expected in forward processing mode with an ex-ternal control. Internal control processing is limited by theslowest clock signal to be produced by the CGU, by thecircuit master clock and by the control path which makesit di�cult to evaluate. A realistic estimation gives an ex-pected speed of 100K inferences per second with a mastercircuit clock reaching 10MHz and an ANN driving clockreaching 1MHz. VI. ConclusionsWe have demonstrated in this paper the integration of anovel arti�cial neural network architecture. The proposedmixed analog-digital realization is based on an analog ANNblock which interacts with a purely digital learning unit,implementing the error correction learning algorithm, aswell as the circuit control part. The ANN is a Hammingnetwork including a �rst layer of charge-based neurons driv-ing a WTA unit.A test chip containing 20 neurons of 10 synapses each hasbeen designed using a AMS CMOS 0.8 2-poly technology.It has an active area of less than 5mm2 for a die size of13mm2.The general idea in this development was to establish avalid design-ow for a ANN-based integrated circuit to bereusable in some other applications, rather than focus onintegrating a high throughput processing unit.The mixed analog-digital architecture presented in thiswork can be used in applications where the main focusis the on-chip learning ability of the ANN rather than ahigh processing/inference capability. This includes all au-tonomous systems with relatively slow time constant but avery long lifetime. Possible applications may be found inmedical engineering, automotive engineering and consumerproducts. References[1] H. J. Kappen, An overview of neural network applications, Pro-ceedings of the 6th International Congress for Computer Tech-
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