
Digital Neural Network ImplementationsJames B. BurrDepartment of Electrical EngineeringStanford UniversityStanford, Ca. 94305burr@mojave.stanford.eduJanuary 2, 1995AbstractThis chapter gives an overview of existing digital VLSI implementations and dis-cusses techniques for implementing high performance, high capacity digital neural nets.It presents a set of techniques for estimating chip area, performance, and power con-sumption in the early stages of design to facilitate architectural exploration. It showshow technology scaling rules can be included in the estimation process. It presentsa set of basic building blocks useful in implementing digital networks. It then usesthe estimation techniques to predict capacity and performance of a variety of digitalarchitectures. Finally, it discusses implementation strategies for very large networks.1 IntroductionNeural network applications suitable for implementation in VLSI cover a wide spectrum,from dedicated feedforward nets for real time feature detection to general purpose enginesfor exploring learning algorithms. The DARPA Neural Network Study [76] contains a gooddiscussion of the range of applications together with a method of classifying them which weuse in this chapter.The fastest analog neurochips are almost six orders of magnitude faster than an averageworkstation or PC, and three orders of magnitude faster than the fastest supercomputer. Thefastest digital neurochip is about as fast as a supercomputer. Even so, many of the potentialapplications demand far more computational power and synaptic storage capacity than hasbeen implemented so far. As progress is made toward implementation of larger, higherperformance networks, and as technology scales further into the submicron regime, powerdissipation will become a dominant constraint, and e�ective power analysis and optimizationwill be an important aspect of design. 1

There is always a tradeo� in VLSI implementation between performance and exibility.Both are needed in neural nets. Mature applications with well characterized algorithms willcontinue to seek higher performance as learning algorithm research continues to suggest newarchitectures.This chapter discusses both existing implementations and some of the challenges facing fu-ture implementations. Section 2 proposes an informal classi�cation scheme for neurochips.Section 3 describes some of the more recent digital VLSI implementations. A table at theend of section 3 gives a quick overview of implementations to date. Section 4 discusses ar-chitectural tools which can be leveraged in implementing high performance, high capacitynetworks. Section 5 describes some low level basic building blocks useful in digital imple-mentations. Section 6 describes techniques for estimating area, performance, and power of adesired architecture, and shows how technology scaling rules can be included in the estima-tion process. Section 7 discusses techniques for maximizing performance on a constrainedpower budget. Section 8 discusses the impact of technology scaling on future neurochiparchitectures. Section 9 discusses a chip we have been working on at Stanford. Section 10discusses obstacles and opportunities to implementing large digital networks.2 Classifying VLSI implementationsYutaka Akiyama's PhD thesis [4] has a comprehensive section on neurochip classi�cation.Since its publication, the number and variety of neurochips has proliferated. We can groupthese chips into major categories depending on whether they use analog or digital computa-tion, how synaptic storage is implemented, whether they have some form of on-chip learning,and whether they are standalone or are meant to be connected to other chips to implementlarger networks.The most common analog architecture is a fully connected mesh of N2 synaptic processorssupporting N neurons. This architecture can perform feedforward computations at very highrates, typically converging in a few microseconds, and is well suited to Hop�eld nets [39] andassociative memories [26, 25]. For example, ATT's associative memory chip [25] has 256neurons and 65536 synapses. Assuming 10 iterations through the network for convergence,this chip has a feedforward computation rate of around 500 GCPS (billion connections persecond).Another analog architecture used in the Caltech retina chip [71] is a lattice of neural pro-cessors with nearest neighbor connections. This architecture can also compute at very highrates. The chip has 2304 neurons, each connected to 6 neighbors. Assuming convergence ina few microseconds, this chip has a feedforward computation rate of around 10 GCPS.Digital chips tend to be organized as a 1 dimensional systolic array [47, 46, 45]. Theygenerally have lower feedforward computation rates than analog chips; values reported rangefrom 3 MCPS [22] to 1.28 GCPS [28].Analog implementations usually compute the inner product as an analog current sum, butdi�er in how the weights are stored. Techniques reported include resistors [25, 26, 71], CCDs2

[2, 15, 65], capacitors [19, 48, 56], and oating gate EEPROMs [38].Digital implementations use either parallel, bit-serial, or stochastic arithmetic. Some haveone processor for each synapse; most have one processor per neuron or even one processorfor many neurons. Synaptic weights are either stored in shift registers, latches, or memory.Memory storage alternatives include one-, two-, or three-transistor dynamic RAM, or four-or six-transistor static RAM.Most digital implementations so far include some form of on-chip learning; most analogimplementations do not.A few hybrid chips have been reported which combine analog and digital techniques [7, 55,24]. One common approach is to store weights digitally and to compute the inner productas a current sum.Most chips that learn store weights digitally. One notable exception is a purely analogBoltzmann chip [9], which uses its learning algorithm to refresh capacitive weights. Thischip is implemented in 1.0� 2-poly 2-metal CMOS. It has 125 neurons and 10000 capaci-tive synapses. Each synapse implements the Boltzmann weight update rule [34, 1] with 42transistors, and measures 200� � 200�. Network convergence in response to a single inputtakes 5 microseconds, including annealing, which is implemented as a damped oscillation ona reference voltage. Assuming a 50 step anneal schedule, the equivalent digital feedforwardcomputation rate would be about 100 GCPS.3 Existing digital implementations3.1 TI's NETSIMNETSIM [22] was one of the �rst purely digital architectures reported. It consists of two typesof chips: a \solution engine" chip and a \communication handler" chip. Neural computationis done in the solution engine; neural activations are routed through the communicationhandler. The solution engine requires external memory to store weight values. A solutionengine, a communication handler, a local microprocessor, and memory are packaged on asingle NETSIM card. A system consists of a number of NETSIM cards in a 3-D arrayinterfaced to a general purpose computer.The solution engine performs an 8x8 bit multiply-accumulate in 250ns, so the performanceis 4 MCPS.These chips do not appear to have been implemented, but the architectural ideas appear invarious forms in later chips. The idea of pipelined o� chip weights is especially appealingfor very large networks. Also, considerable attention was given in the design to multichipimplementations. 3

3.2 Duranton and Sirat's digital neurochipDuranton and Sirat's proposed chip [18] is a fully digital architecture which stores 16 bitsynaptic weights in an on-chip RAM. The architecture supports on-chip learning, but exportsthe sigmoid function. It uses an interesting bit-serial technique to form the inner product.On each cycle, one bit of each activation is anded with the weights to form a set of partialproducts which are reduced to a single partial product in a tree of adders. Activations are8 bits, so it takes 8 cycles to form xi = �wijxj for a single i. The weights are fetched inparallel out of the RAM, so the RAM access time can be 1/8 the processor cycle time.The performance estimations are given for 1.6 micron CMOS. The paper states that a newxi is computed every 2 �sec. This implies a clock frequency of 25 MHz, and with 32 16-bitsynaptic weights in parallel on every cycle, 800 MCPS. This chip also does not appear tohave been implemented.3.3 Hirai et al's digital neuro-chipYuzo Hirai and colleagues [36] fabricated a digital neurochip using a 1.2 micron CMOS gatearray. The chip implements six neurons and 84 6-bit synapses using a variant of pulse-streamarithmetic (see section 5.7. Rather than use a chopping clock as in [57], or a comparator andpseudo-random number generator as in STONN [78], TInMANN [16], or DNNA [42], Hirai etal supply each neuron a separate, asynchronous clock to reduce pulse collisions. Each neuronrequires 1 msec to evaluate its inputs. This \time constant" depends only on the numberof bits in the synapses and not on the number of synapses. This implies a performance of84 KCPS. Other pulse-stream implementations achieve better performance by allowing thenetwork dynamics to overlap the neural computation.3.4 Ouali and Saucier's Neuro-ASICOuali and Saucier [59] have implemented a single neuron on a chip in 2.0 micron CMOSwhich runs at 20 MHz. The chip is a \cascadable neuron processor" that includes a localmemory for storing synaptic weights and activation function parameters, a multiplier, anadder/subtractor, a controller, and input, output, and state registers for interfacing to amultichip network. The paper does not specify precision or performance, though the chiphas been fabricated as a MOSIS TinyChip [73].3.5 Neural Semiconductor's DNNATomlinson et al [42] have implemented a scalable neural net architecture (DNNA: digitalneural network architecture) based on stochastic pulse trains. They have implemented twochips. The SU3232 contains 1024 synaptic elements arranged in a 32�32 matrix. The NU324

chip implements 32 neurons. A fully connected network with 32N neurons requires N2synapse chips.Each synapse includes a separate stochastic pulse train generator. Each synaptic pulsestream is anded with an activation output stream to produce a synaptic product. Synapticproducts are then wire-or'ed to produce activation input streams.The neural activation function is implemented by anding excitatory and inhibitory activationinput streams. Because the wire-or operation is naturally saturating, no extra sigmoid unitis needed to implement a nonlinear activation function.A two-chip set can implement 32 neurons and 1024 connections. k bit accuracy in theactivations requires 2k cycles. The chips run at 25 MHz, and can process 100K activationsper second at 8 bit resolution. This implies a feedforward computation rate of 100 MCPS,(200MCPS if the excitatory and inhibitory parts of each synapse are counted separately).3.6 North Carolina State's STONNWike et al [78] have proposed a 100K transistor CMOS Hop�eld network (STONN: stochasticneural net) using stochastic logic and bit-level pipelining. They leverage the recurrent natureof Hop�eld nets to overlap the neural computation with network relaxation so that by thekth iteration the neural activation has been computed to a precision of log2(k) bits. DNNAcould do this as well.Unlike the DNNA chip, which generates stochastic samples for N2 weights on every cycle,STONN stores weights in an on-chip shift register and generates stochastic samples of Nweights per cycle. This technique achieves much higher synaptic storage density than theDNNA approach, especially if the shift register weight store is implemented as a RAM.A weight is converted to a pulse stream by comparing it to a sequence of random numbers,using the carry out of the most signi�cant bit of a bit-level pipelined comparator to generatethe pulses. The synaptic pulse stream is "multiplied" by an input activation stream byanding the two streams. At this point, rather than wire-or the modulated input activationsas in DNNA, the modulated input activation increments or decrements a counter containingthe accumulating output activation. The chip has one activation comparator which generatesa single stochastic sample of one of the accumulating output activations each cycle.Weights are 7 bits; comparators are 6 bits, activation accumulators are 10 bits. The weightstore is implemented using a 6-transistor dynamic shift register. The chip has 20 neurons,and 100 7 bit weights per neuron. It is projected to run between 10 and 25 MHz (it has beenlayed out but not fabricated). At 10 MHz, one chip can achieve 200 MCPS; at 25 MHz, 500MCPS.Each iteration only involves one stochastic sample of weights and activations. This typeof optimization network converges over time to a stable state. STONN takes N cycles tocompute the outputs of N neurons. This is the same amount of time required by a parallelimplementation with one processor per neuron. The stochastic nature of the computation is5

much more e�cient. The parallel computation is too exact. That is, one stochastic samplefrom one neuron can be generated each cycle. Parallel algorithms also generate one sampleper cycle, but to higher precision and requiring more hardware.Reduced precision parallel computation can require comparable hardware. The multiplier-accumulator in STONN consists of an and gate, a 6-bit comparator, a random numbergenerator, and a 10-bit up-down counter. The multiplier in the Stanford Boltzmann chip (seesection 9) is a 5-bit full adder (shared Booth encoding reduces 5 partial products to 3) anda 10-bit carry-save accumulator. The 5-bit full adder matches STONN's 6-bit comparator.The accumulator matches STONN's random number generator. The carry-save accumulatormatches STONN's up-down counter.Given bit-level pipelining, STONN should run closer to 100 MHz than 10 MHz in 2.0 micronCMOS, unless power consumption is a problem, implying 5 GCPS. It should also be able toaccommodate around 64 neurons and 32K weights using one-transistor DRAM.3.7 North Carolina State's TInMANNTInMANN (The integer markovian arti�cial neural network) [16] is a stochastic architectureproposed by the STONN group to implement competitive learning using stochastic compu-tation. The system stochastically updates the weights with a probability proportional to theneural input, causing neurons closest to an input vector to move toward it and push othersaway. The algorithm replaces the proportional weight update of the standard Kohonen al-gorithm [44] with a probabilistic update that integrates to the same value over many cycleswithout requiring a multiplier.The authors predict 15 MHz operation, and 145,000 two-dimensional training examples persecond.3.8 Adaptive Solution's X1 (CNAPS)The Adaptive Solutions X1 chip (renamed CNAPS) [28] is a general purpose SIMD multipro-cessor architecture [47, 46, 45] developed for neurocomputing applications. It achieves highperformance (1.6 GCPS inner product, 1.28 GCPS and 300 MCUPS doing backpropagation,12.8 GCPS using 1-bit weights) and can implement a wide variety of learning algorithms, aswell as a wide variety of signal processing algorithms. A single chip has a fairly large synap-tic capacity, storing 2 million 1-bit, 256K 8-bit, or 128K 16-bit weights equally distributedamong 64 processors. Multiple chips can be assembled in various topologies.The chip (see Fig 1) contains 64 processors, a 32 bit instruction bus, an 8 bit global outputbus, an 8 bit global input bus, and a 4 bit inter-processor bus. Each processor includes 4kbytes of weight memory implemented using four-transistor SRAM, a memory base addressunit, 32 16-bit registers, an input unit, an output unit, an 8x16 bit multipier, a 32 bitsaturating adder, and a logic and shift unit. 6

32-bit adder
saturation

logic, shift
tally, jam

 8x16 multiply
16x16 multiply

input output 32 16-bit
registers

mem
base
addr

4K bytes
memory

8 bit output bus

8 bit input bus

32 bit instruction bus

64 processors per chip

25 MHz
64 processors/chip
1.6e9 CPS
1.2e9 BP CPS
0.3e9 BP CUPS
die size: several cm^2

0.8u CMOS
total memory 256K bytes
power < 4 watts/chip
scalable to many chips
learning on chip
saturation arithmetic
bit jamming, virtual zero memoryFigure 1: Adaptive Solutions X1 (CNAPS) architecture

7

The chip is quite large - over 5 cm2. Redundancy is built in to improve yield. Each chip has80 processors, only 64 of which need to work. The X1 is implemented in 0.8 micron CMOS.It is expected to run at 25 MHz, and dissipate about 4 watts, for an energy per connectionof about 2 nJ.The chip requires an external instruction sequencer. In typical con�gurations, a single se-quencer will control a number of chips.The X1 should turn out to be a useful research tool in studying the behavior of learningalgorithms in larger networks.3.9 Waferscale implementationsRa�el et al from MIT Lincoln Labs [63] discuss a possible waferscale network using mul-tiplying digital to analog converters (MDACs) using their Restructurable VLSI (RVLSI)approach to waferscale integration.Yasunaga et al of Hitachi [80, 81] present a completely digital implementation which usesreduced precision parallel arithmetic. It is implemented using a 0.8 micron CMOS waferscalegate array. It has 540 neurons and 64 synapses per neuron. The wafer has 9 bit neuralactivations and 8 bit synaptic weights. Each weight wij is stored as a pair (j; wij) to e�cientlyrepresent sparse networks.The paper reports a \step speed" of 464nsec, which appears to indicate the system clocks at2.15 MHz. A unique j is generated on each step; only those neurons with matching (j; wij)pairs participate in the computation. If all the weights are utilized, 64�576 connections canbe processed in 576 \steps", for a performance of 64 connections per step, or 138 MCPS.3.10 Neurocomputer implementationsThere have been several papers describing implementations of neural nets on massively paral-lel processors or neural coprocessors. We only mention those that have reported performanceby way of comparison with neurochips.Blelloch and Rosenberg [12] discuss mapping backpropagation onto the Connection Machine,reporting 3 MCUPS. Pomerleau et al [61] discuss mapping backpropagation onto the CMUWarp, reporting 17 MCUPS. Watanabe et al [75] discuss backpropagation on the NTTAAP-2, reporting 18 MCUPS.De Groot and Parker [27] describe mapping backpropagation onto the Lawrence LivermoreSPRINT. The machine has 106 synapses, 64 transputers, dissipates 100 watts, and achieves12 MCPS. That's 8�J/connection.3.11 Neural processor capacity and performance summary8

who ref type tech capacity speed power learning scalability(N, S) CPS chip, syn (multichip)Caltech [2] CCD 2� 256, 64K 5e8 - no noChiang [15] CCD 3� 144, 2016 1.44e9 2W, 1.4nJ no noUSC [48] cap 2� CMOS 25, 2525 - - no noMatsushita [56] analog 2.2� BiCMOS 64, 768 7.7e7 - no noETANN [38] analog 1.0� EEPROM 64, 8192 8e9 2W, 250 pJ no noNET32K [24] D,A 0.9� CMOS 1024, 32K 3e11 160mW, 500fJ no yesCLC [5] D,A 1.2� CMOS 32, 1000 1e9 1W,1nJ yes yesMitsubishi [9] analog 1.0u CMOS 125, 10K 1e11 1.5W, 15pJ yes yesJPL [19] analog 2.0� CMOS 32, 1000 1e9 - no noX1 [28] digital 0.8� CMOS 64, 256K 1e9 4W, 4nJ yes yesOuali [59] digital 2.0� CMOS - - - no yesDuranton [18] digital 1.6� CMOS - 8e8 - yes yesHirai [36] digital 1.2� CMOS 6, 84 8.4e4 - no yesDNNA [42] stochastic - 32, 1024 2e8 - no yesSTONN [78] stochastic - 20, 2000 5e8 - no yesTInMANN [16] stochastic 2.0� CMOS 1, ? - - yes yesHitachi [81] digital wsi 0.8� CMOS 540, 34K 1.4e8 - no yesCM1 [12] mpp - - 3e6 - yes -Warp [61] systolic - - 17e6 - yes -AAP-2 [75] array - - 18e6 - yes -SPRINT [27] systolic - -, 1e6 12e6 100W, 8�J yes -neuron - - - 1e11,1e15 1e16 1W, 0.1fJ yes yesTable 1: Summary of existing implementationsTable 1 gives a summary of existing implementations. It is not meant to be exhaustive;it is meant to be a sampling of a wide variety of implementations. Analog, waferscale,neurocomputer, and biological entries are for comparison purposes. The two numbers in thepower column are chip power dissipation and energy per connection.The remainder of this chapter discusses issues related to building digital VLSI neural net-works. Large networks can easily exceed the capabilities of the technology, so it is importantto try to maximize network performance and capacity while minimizing power consumption.One of the messages we will try to convey is that digital systems have certain strengthswhich can be exploited as technology scales down into the submicron regime.4 Architectural weaponsThe performance of digital VLSI systems can be enhanced using a variety of techniques.These are: pipelining, precision, iteration, concurrency, regularity, and locality. Of these,precision may be particularly useful in neural net applications, and iteration may becomemore widespread as technology scales down. 9

4.1 PipeliningNeural networks are well suited to deep pipelining because the latency of an individual unitis not nearly as important as the computation and communication throughput of the system.If a system is too heavily piped, too much area is taken in latches, and the load on the clockis too large, increasing clock skew and reducing the net performance gain.A system clock based on the propagation delay of a 4:2 adder provides a good balancebetween area and perforamnce. This is typically 1/4 of a RISC processor clock period in thesame technology.4.2 PrecisionPrecision can have a signi�cant impact on area, power, and performance. The area ofa multiplier is proportional to the square of the number of bits. A 32 � 32 bit parallelmultiplier is 16 times the area of an 8 � 8 bit multiplier. At 8 or fewer bits, a multiplier isjust an adder. A Booth encoder can cut the number of partial products in half and a 4:2adder can accept up to 4 inputs.Precision should be leveraged where it is available in the system. For example, an N � Nbit multiply generates a 2N bit result. A Hebbian style learning algorithm could computea weight adjustment to higher precision than is available and choose a weight value proba-bilistically. Using "probabilistic update", our Boltzmann machine can learn with as little as2 bits of precision in the weight store.4.3 IterationIteration involves using an area-e�cient arithmetic element and a local high speed clockto compute a single result in several clock cycles. Iteration reduces logic area by timemultiplexing resources at a higher frequency than can be managed globally.The conventional way to achieve high computational throughput is to implement a parallelarithmetic element clocked at the system clock rate. An alternate approach is to generate alocal clock which is at least some multiple of the system clock rate, and then to implementonly a fraction of the arithmetic element.The basic idea behind iteration can be illustrated by the following example. Suppose wewant to build a multiplier which can accept two inputs and output a product on every clockcycle. Using conventional techniques, we would have to use N2 full adders and clock the datathrough the multiplier at the system clock rate. Suppose, however, that we could generatea local clock which was at least twice the frequency of the system clock. We could thenimplement the multiplier in half the area using N2=2 fulladders. Iterative structures tradespace for time.Iteration will become more widespread as technology scales down and local clock rates scale10

up.Mark Santoro implemented a 64X64-bit multiplier using an iterative 16X16-bit array [66,67, 68]. He built the clock driver out of a 4:2 adder so it would be sure to track temperatureand process variations. He achieved 400 MHz operation in 0.8� CMOS.Iterative structures, although highly area e�cient, are likely to be higher power than unrolledstructures. If unrolled, nodes only serve one function. Iteration essentially time multiplexesnodes. If the roles of the two nodes are unrelated, then their states are uncorrelated, andthey may have a higher probability of changing state from iteration to iteration, dumpingextra charge and thereby dissipating more power.4.4 ConcurrencyConcurrency is a widely used technique for increasing performance through parallelism. Thedegree of parallelism will increasingly be limited more by power density than by area. Neuralnetworks are intrinsically highly parallel systems.4.5 RegularityRegularity in an architecture or algorithm permits a greater level of system complexity tobe expressed with less design e�ort. Neural nets are composed of large numbers of similarelements, which should translate directly to VLSI implementation.4.6 LocalityLocal connections are cheaper than global ones. The energy required to transport informa-tion in CMOS VLSI is proportional to the distance the information travels. The availablecommunication bandwidth is inversely proportional to wirelength, since the total availablewirelength per unit area in a given technology is constant.The energy required to switch a node is CV 2, where C is the capacitance of the node andV is the change in voltage. C is proportional to the area of the node, which for �xed widthwires, is proportional to the length of a node.5 Building blocksA number of basic circuits and circuit techniques can be used to advantage in designingdigital neural networks. This section is not intended to be a thorough presentation of digitallogic design, as there are many excellent sources for this [54, 74, 77, 33]. Rather, we assumea familiarity with the basics and seek to highlight speci�c structures which are especiallyuseful in designing digital neural network arithmetic elements, memory, and noise sources.11

fully
static

dynamic

half full

L-DPTL

pseudo
static

tgate

clocked
feedback Figure 2: latches5.1 Logic design stylesThere are many logic design styles to choose from in implementing CMOS circuits. Logicdesign styles achieve di�erent tradeo�s in speed, power, and area. The highest speed logicfamilies also tend to consume the most power. The most compact tend to be slow.Complementary pass-transistor logic (CPL) seems to o�er modest performance, is compact,and low power. Yano et al's multiplier paper [79] has a good explanation of the style as wellas detailed schematics of CPL arithmetic elements.5.2 Latches and clockingLatches play an important role in any digital design, especially if the design is pipelined.The right latch to use depends on the clocking discipline and the desired performance. Someclocking styles are safer than others. We have been using nonoverlapping two-phase clocksin our chips to date, but are using single phase clocking on our Boltmann chip.Most of our designs use either the fully static or pseudo-static latch shown in Figure 2. Thereis a good section on latches in Weste and Eshraghian's book [77].12

cincout

sc

in4 in3 in2 in1

Figure 3: 4:2 adder
cout cin

propL

prop
kill

genL genL = nand(a, b)
kill = nor (a, b)
prop = xor (a, b)
propL = xnor(a, b)Figure 4: unloaded manchester carry chain5.3 4:2 arithmeticCarry propagation is an expensive operation in digital arithmetic. Several families of arith-metic have been developed to reduce the impact of carry propagation. Signed digit [10] andvarious redundant binary methods [29] have been proposed. We like \4:2" arithmetic basedon 4:2 adders [70] because it interfaces cleanly to standard two's complement, and imple-ments an e�cient, compact accumulator [51, 50, 49, 66, 67, 68]. Although 4:2 adders can beimplemented using two full adders, we discovered a \direct logic" implementation [51] (seeFigure 3) that reduces the number of xors in series from four to three, increasing the speedby 33%.5.4 Fast comparatorsUnloaded manchester carry chains make very fast, e�cient comparators. They are generallymuch faster than adders because there are no sum terms to load down the carry chain (seeFigure 4). Comparators are needed in winer-take-all networks.13

write bitline read bitline

read wordline

write wordline

dual port 3T cellsingle port 3T cell

bitline

read wordline

write wordline

single port 2T cell

bitline

read wordline

write wordline

Cs

dual port 2T cell

write bitline read bitline

Cs

read wordline

write wordline

bitline

Cs

wordline

1T cell

Figure 5: dynamic memory cells5.5 MemorySynaptic storage density is an important issue in large scale networks, so memory optimiza-tion is important. One-transistor (1T) dynamic random access memories (DRAMs) have thehighest density. Six-transistor (6T) static memories (SRAMs) consume the least power. Atypical 1T DRAM cell measures 6��11� (66�2) [43]. A typical 4T SRAMmeasures 12��20�(240�2) [3]. Shift registers can often be implemented with either SRAM or DRAM, savingsubstantial amounts of area and power.5.5.1 DRAMDRAM cells must be refreshed due to leakage current [14], and therefore consume morepower than SRAMs. Normally the refresh power is a small fraction of the operating power,but could be signi�cant in very large networks (see Section 10.Figure 5 shows a variety of DRAM circuits. One-transistor (1T) DRAMs are the mostcompact but the most di�cult to sense and control.14

wordline

bit bitL
4T sram, poly pullups

wordline

bit bitL
4T sram, pfet pullups

wordline

bit bitL

6T sram dual ported 6T sram

write wordline

read wordline

write bitline read bitline

weak

Figure 6: static memory cells
15

5.5.2 SRAMFigure 6 shows a variety of SRAM circuits. Commercial SRAMs are normally implementedusing a high resistance poly pullup, and can achieve densities only a factor of 4 worse than1T DRAM.5.5.3 Logic processesThe trench capacitors in DRAMs and high resistance poly pullups in SRAMs are not nor-mally available in standard logic processes. A one-transistor DRAM was fabricated throughMOSIS [23, 73], although the cell was quite large (18:75� � 13:75� (258�2).5.5.4 Multi-level storageSeveral researchers have reported techniques to store multiple levels in a single DRAM cell.The �rst were Heald and Hodges [31] in 1976. More recently, Aoki, Horiguchi, and colleagues[8, 40] reported 16 levels per cell in 1987. More levels might be achievable in neural networkssince errors will always be small. Weight decay could be implemented by under-refreshingthe memory.5.5.5 Sense ampli�ersFigure 7 shows a high performance di�erential dense ampli�er reported in [17], and recom-mended for use with 1T DRAMs. This sense amp has the nice property that the crosscoupledinverters automatically perform a refresh write after read.Figure 8 shows a current mirror sense ampli�er similar to one reported in Aizaki et al [3] in1990.Figure 9 shows a single ended sense amp which can be used with ROMs, 3T DRAMs, andsingle-ended SRAMs.5.6 Noise sourcesNoise plays an important role in many neural network algorithms. Generating a large numberof uncorrelated noise sources is a hard problem. Joshua Alspector and colleagues havedeveloped an area-e�cient technique which they have implemented on their CLS chip [5].They give this subject a thorough treatment in [6].5.7 Stochastic computation 16

Cs

Cs

meq

qpr

qeq

b bL

m1

m2

m3

m4

mdeqdeq

dw1

dw2

mdc1

mdc2

mc

wd

m10

m11

m12

qw

wL sw

sc

sd2

sd1

vh

vl

mh

mlql

qh

b bL

b bL

b bL

io ioL

mio mioL

mpbLmpb

sense amp

dummy cell

memory array

equalization

precharge

Cs

Figure 7: di�erential sense ampli�er17

Cs

Cs

meq

qpr

qeq

mdeqdeq

dw1

dw2

mdc1

mdc2

mc

wd

m10

m11

m12

qw

wL sw

sc

sd2

sd1

b bL

b bL

b bL

mpbLmpb

sense amp

dummy cell

memory array

equalization

precharge

sense m1

m2 m3

m4 m5

m6

m7

cm2

cm1

out
outL

Cs

Figure 8: current mirror sense ampli�er
18

mc

wd

sc

sense amp

memory array

qpr
m1 m2

m3 m4

mp1

b

bL

out

ms ss

mc

wd

sc

sense amp

memory array

qpr
m1 m2

m3 m4

mp1

b

bL

out

ms ss

Figure 9: single ended sense ampli�er
multiplier: c = a x b (~c = ab)

a

b

c

adder: c = a + b (~c = a + b)

a b

c

x1 x2 x3

ni

wi1 wi2 wi3

mulitplier-accumulator: ni = sum(wij xj)Figure 10: stochastic computing elements19

Stochastic computation implements multiplication and addition using probabilities. It isparticularly e�ective when a computation can be spread out over many cycles. This isoften the case in neural network learning, where the network evolves incrementally overmany cycles. Stochastic techniques have been applied successfully to Hop�eld networks [42],competitive learning networks [16], and Boltzmann machines [7, 5].Figure 10 shows the two basic operations: multiplication by ANDing pulse streams (P (AB) =P (A)P (B)), and addition by ORing (P (A + B) = P (A) + P (B) � P (AB)). The P (AB)term in the probabilistic addition limits the available dynamic range of the computation.Although stochastic techniques are very e�cient at implementing local computation, theyare much less e�cient communicating globally because the energy required to transmit datawith a dynamic range of N is proportional to N rather than to log(N) as in standard digitalencoding.Good discussions of stochastic computation can be found in [20, 52, 21].6 Area, performance, and power estimationWe have developed a simple area, performance, and power estimation technique which we useto construct spreadsheets in the early stages of architectural exploration, feasibility analysis,and optimization of a new design. Area is computed by estimating the number of transistorsrequired. Performance is estimated by building an RC timing model of the critical paths intothe spreadsheet. Power is estimated using CV 2f , where f is obtained from the performancesection of the spreadsheet.Area, performance, and power are parametrized by technology. We have a \technologysection" of the spreadsheet where we build in technology scaling rules to compute transistortransconductance and device parasitics.6.1 Area estimationWe use a simple technique to estimate area of chips before we build them. We identifythe major resources on the chip, and estimate the number of transistors for each resource.We then multiply the number of transistors in each case by an area-per-transistor whichdepends on how regular and compact we think we can make the layout. One-transistorDRAM and ROM are about 100�2=xstr. 3T DRAM and 6T SRAM are about 200�2=xstr.Tightly packed, carefully handcrafted logic is also about 200�2=xstr. Loosely packed fullcustom logic is about 300�2=xstr. Standard cells are about 1000�2=xstr.Block routing takes about 30% of the chip area. Standard cell routing takes 60% of the block.The pad frame reduces the die by about 1mm. For example, the largest die available on astandard MOSIS run is 7.9x9.2mm. Of this, 6.9x8.2mm, or 56.58mm2, is available for logicand routing. Of this, 17mm2 is routing, and 40mm2 is logic. In 2 micron CMOS, lambda =1 micron, so there is room for 133,000 transistors at 300�2=xstr20

The number of transistors required to implement a function can vary signi�cantly dependingon the design style. For example, a full adder implemented with gate logic requires about30 transistors. However, it can be implemented in 15 transistors using pass-transistor logic.Which is best depends on desired performance and power dissipation, input drive and outputload.We maintain a list of leafcells, the number of transistors they require, and their area-per-transistor, which we reference in estimating requirements of new designs.We also have a set of \tiling functions" which we use to construct complex blocks. Forexample, an N�M bit multiplier requires roughly NM full adders, whether it is implementedas an array or a tree.This technique is especially well suited to spreadsheet implementation, and is especiallyuseful during the early stages of architectural exploration and feasibility analysis in an area-limited design.6.2 Performance estimationWe estimate performance using a simple RC timing model based on the RSIM simulator [72],in which transistors are calibrated to have an e�ective resistance charging or discharging anode capacitance.We build the following equations into our spreadsheet models to allow the performance esti-mates to scale with technology. The symbology of these equations follows the developmentin Hodges and Jackson [37].Effective resistance of transistorsIlin = k/2(2 * (Vgs-Vt) * Vds - Vds^2) Vds <= Vgs - VtIsat = k/2(Vgs - Vt)^2 Vds >= Vgs - VtIav = integrate(I * dt)/Treff = DV / Iav= const * kkn = un * cox kp = up * cox A/V^2rn = 1/kn/(Vdd - Vt) rp = 1/kp/(Vdd - Vt) ohms/sqRn = rn * l / w Rp = rp * l / w ohmsParasitic capacitancecg = eox / tox farad/m^2cox = cg farad/m^2xj = (2*esi/q/NA*(V-Vt))^.5 meters21

cj = esi / xj farad/m^2cjsw = 3 * cj * xj = 3 * esi farad/mci = eox / hi farad/m^2cisw = ci * ti farad/mPropagation delaytpu = Rp * (Cd + Ci + Cg) sectpd = Rn * (Cd + Ci + Cg) sec6.3 Power estimationThere are three principal components to power dissipation in most CMOS systems:Pdc = V 2=RdcPsc = IscVPac = CV 2fwhere V is the supply voltageC is the total capacitance being switchedf is the clock frequencyRdc is the total static pullup or pulldown resistanceIsc is the short-circuit currentPdc is the power dissipated at DCPsc is the power dissipated due to short-circuit currentPac is the power dissipated by switching capacitance.Pdc can be designed out of a system, except leakage, which is usually on the order of a fewmicrowatts [14, 30], but Psc and Pac cannot. In a CMOS inverter, Isc is the current whichows when both the nfet and pfet are on during switching. Powell and Chau [62] havereported that Psc can account for up to half the total power.We have done some investigations which suggest that the short circuit current can be signif-icant if rise times are long and transistors large, and that in most cases Psc can be reducedto less than 10% of total power by sizing transistors. This implies that short circuit currentcan be more of a problem in gate array or standard cell design, where transistors are �xedsizes or are sized to drive large loads.Consider a single CMOS inverter driving a purely capacitive load. Initially, assume the gateis at 0 volts, so the pfet is on, the nfet is o�, and the output is at 5 volts. Now, switch thegate from 0 to 5 volts. Ideally, the pfet should turn o� instantly, the nfet should turn on and22

-8

-6

-4

-2

0

2

4

6

8

10

12
x10-4

0 1 2 3 4 5 6 7 8

x10-8supply current, A vs time, sec

rt=5ns, w=16u, CL=200fF

Figure 11: short circuit currentdrain the charge o� the output (actually supply electrons to the output) until the outputpotential reaches 0 volts. The work done (or energy consumed) by the inverter is just QVwhere Q is the charge on the output and V is the initial potential di�erence between theoutput and GND. But Q = CV so the work done is CV 2.In practice, the input does not switch instantly, so both the nfet and the pfet are on for ashort time, causing excess current to ow.We measured the short circuit charge for a variety of transistor sizes, rise times, and outputloads using spice [58] on a typical 2 micron CMOS technology from MOSIS.Figure 11 shows the current owing through vdd and gnd supplies as the gate is switched�rst from 0 to 5 volts between 2ns and 7ns, and then from 5 to 0 volts between 40ns and45ns. The short circuit current in each case is the smaller spike; it is the current owingthrough the supply which should be o�. The short circuit charge is the area under the shortcircuit current. In the �gure the short circuit charge is about 15% of the charge initially onthe output, so Psc will be about 15% of Pac.Figure 12 shows short circuit charge as a percentage of output load vs input rise/fall time.Each graph has a pair of curves for each of 5 output loads: 0, 100, 200, 500, and 1000 fF.One curve in each pair is for a rising input, the other for a falling input. The short circuitcharge for a given output load is nearly the same whether the input is rising or falling. Thepair with no output load has the largest short circuit charge.The short circuit charge is negative for fast rise times because the coupling capacitancebetween the gate and the fet drains pulls the output above 5 volts. This deposits additional23

-0.1

0

0.1

0.2

0.3

0.4

0 5 10

scc, % vs r/f, ns; w=6

-0.2

0

0.2

0.4

0.6

0.8

0 5 10

scc, % vs r/f, ns; w=12

-0.5

0

0.5

1

1.5

0 5 10

scc, % vs r/f, ns; w=24

-0.5

0

0.5

1

1.5

0 5 10

scc, % vs r/f, ns; w=48Figure 12: short circuit charge as a percentage of output load vs rise time for di�erent sizedevices
24

charge on the output which must then be removed. So there is an energy cost associatedwith switching an input too fast, and a �nite rise time at which the net short circuit chargeis exactly zero.We want to investigate this phenomenon in more detail, and see if we can modify ourtransistor sizer to take advantage of it. We also want to extend our analysis to complexgates, and other logic design styles.In practice, we estimate power in a variety of ways. In some cases, when we have experienceor know statistically what percentage of the nodes are switching, we use CV 2f . In othercases, we use Powell and Chau's power factor approximation (PFA) technique, which usesthe energy of existing devices to predict new ones. In still other cases, when the devices havean analog behavior, such as sense ampli�ers in memories and reduced voltage swing logic,we use spice to compute current and integrate to �nd charge dumped.We have modi�ed the RSIM timing simulator to accumulate the charge dumped as nodesswitch during simulation. This is easy to do if the simulator is event driven. We comparedRSIM's results on a signal processing chip we fabricated through MOSIS [13] with powermeasurements done on a performance tester and found agreement to within 20%.6.4 Technology scaling rules and examplesTo scale area, performance, and power to a desired technology, we build into our spreadsheetthe parameters of a base technology (2.0 micron CMOS in our case; �0 = 1:0�), computeS = �0=�, and apply the equations in table 2. We leave V , the supply voltage, explicit sowe can compare the impact of \constant voltage" scaling and full scaling. These equationsfollow the development in Hodges and Jackson [37].Table 3 shows how actual 2� numbers would look scaled for a range of technologies. In thetable, R(12:2) is the e�ective resistance of a 12��2� transistor. Cg, Cd, and Ci are nominalgate, di�usion, and wiring capacitances. tgate is the propagation delay of a single gate. t4:2is the propagation delay of a 4:2 adder.Table 4 shows typical spice parameters for di�erent technologies. The \exp" row in the tableshows the exponent which would be supplied to spice. For example, for 2.0�, tox=403e-10.cpa, m1a, and m2a are area capacitance of polysilicon, metal1, and metal2 in farads/meter2.The information for 2.0, 1.6, and 1.2 � technologies was obtained from MOSIS. 16 runs wereaveraged in each technology, and the deck closest to the mean was selected as nominal. The0.8 micron information was obtained from a much smaller dataset.These technologies all run at 5 volts, so S2 performance is predicted by the formulas in Table2. However, Table 4 shows that mobility, uo, is not constant. Comparing 2.0� and 0.8�, uois scaling as 1/S1=2. Now R scales as 1=S=V=uo = 1=S1=2=V and C as 1=S so propagationdelay tp should then scale as 1=S3=2=V .According to Hodges and Jackson, mobility is a function of substrate doping, NA. NAincreases as � decreases. AsNA increases, collisions becomemore likely so mobility decreases.25

param scaling descriptiontech Stox 1=S gate oxidecox S gate capacitanceuo 1 mobilityk S transconductancer 1=S=V resistancexj V 1=2 junction depthcj 1=V 1=2 di�usion capacitancecjsw 1 di�usion sidewall capacitancehi 1=S metal elevationti 1=S metal thicknessci S interconnect area capacitancecisw 1 interconnect sidewall capacitanceR 1=S=V device resistanceC 1=S device capacitancetp 1=S2=V propagation delayI SV 2 currenti S3V 2 current densityp SV 3 power per deviceP S3V 3 chip power dissipationTable 2: Technology scaling
26

tech 2.0 1.6 1.2 1.0 0.8 0.6S 1.0 1.3 1.7 2.0 2.5 3.3S2 1.0 1.7 2.9 4.0 6.3 11.0clk S2 20 34 58 80 125 220 MHzclk S2 80 136 232 320 500 880 MHzR(12:2) 1=S 6.0 4.6 3.5 3.0 2.4 1.8 kohmCg 1=S 20.0 15.4 11.8 10.0 8.0 6.1 �Cd 1=S2 40.0 23.5 13.8 10.0 6.3 3.6 �Ci 1=S 40.0 30.8 23.6 20.0 16.0 12.2 �tgate 1=S2 1.38 0.81 0.48 0.35 0.23 0.13 nsect4:2 1=S2 12.5 7.35 4.31 3.13 1.98 1.14 nsecTable 3: scaling exampletech u0n u0p cgdon cgdop cjswn cjswp xjn xjp nsubn nsubpexp 0 0 -12 -12 -12 -12 -9 -9 +15 +152.0 631 237 298 285 548 334 250 50 5.76 6.241.6 583 186 573 494 588 1841.2 574 181 628 324 423 1590.8 447 101 229 271 200 200 157 138 85.58 79.65tech tox cpa cjn cjp m1a m2aexp -10 -6 -6 -6 -6 -6 tox 1=Scpa S2.0 403 388 130 262 26 19 cjn S3=21.6 250 573 140 432 35 23 cjp S1.2 209 644 293 481 36 24 m1a S0.8 170 794 547 570 79 31 m2a S1=2Table 4: nominal process parameters for di�erent technologies27

tech tpd MHz Vdd MHzconstV scaleV2.00 10.83n 92 51.60 7.58n 132 51.40 6.12n 163 51.20 4.78n 209 51.00 3.57n 280 50.80 2.50n 400 50.60 1.58n 634 3.3 4180.50 1.18n 849 3.3 5600.40 825p 1213 3.3 8010.30 520p 1921 3 11530.25 389p 2572 3 15430.10 90p 11143 2 4457Table 5: 4:2 adder-based clock circuit performanceIf the increase in NA is necessary to prevent breakdown in the presence of higher E �elds inconstant voltage scaling, then presumably NA could be kept constant if V were scaled.Table 5 shows predicted performance of Mark Santoro's self-timed 4:2 adder based clockdriver [68] in various technologies based on both constant V (S3=2) and scaled V (S). Thenumbers are in good agreement with observed performance at 2.0, 1.6, and 0.8� CMOS.Extrapolations below 0.5� are highly speculative. They serve as an upper bound on expectedperformance.Process variations can impact performance signi�cantly. We have found the ratio of \fast-fast" models to \slow-slow" models to be a factor of two in performance, with \typical"models right in the middle. ff=typ = typ=ss = p2ff=ss = 2Performance degrades by a factor of 1.8 from 25degC, 5V to 130degC, 4.5V. Worst caseperformance can therefore be as much as four times slower than best case when process andtemperature variations are combined.7 Design techniques for maximizing performance28

const V scale Vdevices/area S2 S2speed S2 Sops/sec/area S4 S3energy/op 1=S 1=S3power/area S3 1Table 6: Energy scalingFor many problems in signal processing, performance can be maximized by maximizingpipelining and parallelism. This is an excellent technique for small and medium scale sys-tems with generous power budgets. But as systems get very large, the level of parallelismachievable either by pipelining or replication will be limited by power considerations. Table6 suggests that scaled voltage is the way to go for implementing very large networks.In highly pipelined systems, performance is maximized by placing pipe stages so delay is thesame in every stage. This requires good timing analysis and optimization tools.As technology scales, the clock rates achievable by highly pipelined structures will be di�cultto distribute globally. Self-timed iterative circuits can save area by performing high speedlocal computation.8 Technology scaling of VLSI neural networksWe have applied the area and performance estimation techniques described in Section 6to three di�erent inner product processor architectures. The �rst (SP ; see Figure 13) hasone processor per synapse. The second (NP ; see Figure 14) has one processor per neuron,with the synaptic weights stored in memory local to each processor, similar to the AdaptiveSolutions X1 architecture. The third (FP ; see Figure 15) has a �xed number of processorson chip, and o�-chip weights.SP has the lowest synaptic storage density but the highest computational throughput. FPhas the lowest throughput, but the highest synaptic storage density and unlimited capacity.The number of processors which can be placed on a single FP is I/O limited. Assuming 4bit weights, 128 pins would be required to support 32 processors. The I/O constraint can besubstantially alleviated with multichip module (MCM) packaging [41]; this allows far moreexibility in choosing die size and system partitioning.8.1 Technology and performance scaling of inner product pro-cessors 29

* + * + * + * +

* + * + * + * +

* + * + * + * +

* + * + * + * +

Figure 13: SP: one processor per synapse
* + * + * + * +Figure 14: NP: one processor per neuron30

* + * + * + * +

chipFigure 15: FP: o�-chip weights
31

storage (interconnects)

s
p
e
e
d

(
i
n
t
e
r
c
o
n
n
e
c
t
s
/
s
e
c
)

10^3 10^6 10^9

10^3

10^6

10^9

10^12

robot

speech

vision-1
vision-2

sig
proc

leech

worm

fly

cockroach

bee

1
pr
oc
es
so
r/
sy
na
ps
e

1
pr
oc
es
so
r/
ne
ur
on

sun4, 1989

sun4, 1999Cray
HP

ETANN

Hitachi

ATT

2u

1u
1u

2u

Man
10^14, 10^16

off
chi

p w
eig

hts

1u

2u

Delta CM1

WARP1
WARP2

Figure 16: technology and performance scaling
32

storage (interconnects)

s
p
e
e
d

(
i
n
t
e
r
c
o
n
n
e
c
t
s
/
s
e
c
)

10^3 10^6 10^9

10^3

10^6

10^9

10^12

robot

speech

vision-1
vision-2

sig
proc

leech

worm

fly

cockroach

bee

Man
10^14, 10^16

1
pr
oc
es
so
r/
sy
na
ps
e

1
pr
oc
es
so
r/
ne
ur
on

add memory

Su
n4
(?
)

ET
AN
N

of
fc
hi
p
we
ig
ht
s

1 chip

1 wafer

Figure 17: waferscale integration at 1.0�In Figure 16 we plotted the technology scaling trendlines of the SP , NP , and FP ar-chitectures on the DARPA-style capacity-vs-performance graph, along with the DARPAapplication requirements.In Figure 17, we plotted the waferscale integration trendlines of the three architectures. TheFP architecture has two trendlines. Since its weights are o�chip, a waferscale implementationhas the option of replicating memory alone. In this case performance remains constant, butcapacity improves. Interestingly, of the options shown, this one most closely matches therequirements of the DARPA applications.In Figure 18, we derive the architecture from the application and the technology. In avery rough sense, an application can be characterized by its capacity and performance re-quirements. An architecture can be loosely de�ned in terms of the connections servicedby a processor. For example, the SP architecture has one connection per processor. Thetechnology de�nes the available performance. According to Figure 18, the product of theavailable performance and the ratio of the desired capacity and performance determines thearchitecture.Figure 18 suggests that SP is most appropriate for the signal processing application in 2.0micron CMOS, but that NP is more appropriate in 1.0 and 0.6 micron. By comparing chipDRAM capacities in the table (5 bit weights), we see that the FP architecture is best in all33

Applications and architectures

connections/processor =
connections/system

connections/sec/system
connections/sec/procX

(architecture) (application) (technology)

Technology capacity and performance

Tech Clock(S^1.5) 3TDRAM 1TDRAM 3TDRAM 1TDRAM

chip wafer

2.0

1.0

0.6

80 MHz

200 MHz

500 MHz

4.5e3

1.8e5

6.0e5

1.5e5

6.0e6

2.0e7

4.5e5

1.8e7

6.0e7

1.5e3

6.0e4

2.0e5

Application Nprocessors Nchips (wafers)

robot arm

signal proc

speech

vision-1

vision-2

e-4

50

5

500

500

e-2 chips

1 chip

10 chips

10 wafers

1000 wafers

Application
2.0u 1.0u 0.6u

3e3

3e4

1e6

1e8

1e10

3e4

1e10

1e9

1e11

1e11

1e-1

3e-6

1e-3

1e-3

1e-1

8e6

2.4

8e4

8e4

8e6

2e7

600

2e5

2e5

2e7

4e7

1500

5e5

5e5

5e7

robot arm

signal proc

speech

vision-1

vision-2

connections
connections

cps
cps

cpp

Figure 18: algorithms and architectures34

* + * + * + * +

sj, tj Wij W2j Wnj

Figure 19: the Stanford Boltzmann Engineother cases except speech and vision-1 in 0.6 micron, where NP is best.9 The Stanford Boltzmann EngineBoltzmann machines [34, 1, 7, 35, 60] are a special class of neural networks whose learning al-gorithm can be shown to minimize a global energy measure using only local information. Thenetwork contains recurrent connections (feedback), which can result in multiple responses toa single stimulus depending on the time evolution of the neural activations in the presenceof noise.Alspector has shown that both the deterministic (mean �eld) and stochastic variations ofthe Boltzmann learning algorithm can learn NETtalk [69] as well as the backpropagationalgorithm. He says the computational e�ort of mean �eld learning is 3� backprop; stochasticis 100�.Three Boltzmann chips have been implemented to date [7, 9, 5]. Each uses an analog currentsum and adaptive synaptic processors.We are implementing a fully digital Boltzmann engine (see Figure 19) which stores synapticvalues and neural activations in one-transistor dynamic RAM and implements the wijxjproducts with 64 pipelined 5�5-bit multiplier accumulators operating in parallel. We aredesigning for 80 MHz operation, 100 pJ per connection in 2 micron CMOS, and a feedforward35

computation rate of 5 GCPS.During Boltzmann learning, the chip will complete one anneal step every 800 nsec. With 32temperatures in the anneal schedule (we have found that an N neuron network needs aboutN=2 temperatures in the anneal schedule), the chip will process one training vector every 25�sec, and learn to identify it in 100 to 1000 presentations. Because the implementation ispurely digital, previously learned weights can be up- and down-loaded between the chip anda host.Our simulations indicate 5 bits of precision are su�cient for both neural activations andsynaptic weights, and that as few as 3 bits can be used with \probabilistic update", whereinan available weight value is selected with probability proportional to a higher precisionaccumulated inner product.We plan to implement a single sigmoid unit as a lookup table. We plan to implement thetemperature multiplier using reduced precision oating point with a 2 bit mantissa and a 4bit exponent.The multiplier-accumulators accumulate in carry-save form using 4:2 adders to reduce hard-ware and increase performance. To avoid delivering data to the sigmoid unit in carry-saveform, a few extra cycles are appended to the accumulation to ush the carries.There are two weight update processors, since N2 weights need to be updated every N2=2cycles (N cycles per inner product product �N=2 temperatures).10 Large networksVLSI faces formidable obstacles implementing large neural networks. Although the net-works are massively parallel, there is evidence that communication is predominantly local[11, 64, 53]. Furthermore, neurons are slow compared to VLSI, assuming a simple neuronmodel, implying that computation and communication should be time multiplexed. Digitalimplementations lend themselves well to time multiplexing, but this requires a projection orfolding of the network onto the hardware.Rudnick and Hammerstrom of the Oregon Graduate Center Cognitive Architecture Projectwrote an excellent paper on a waferscale architecture for large scale neural networks [64].They describe a waferscale communication architecture involving dual concentrate/broadcastdomain trees. They assume that most communication is local, and that when a neuralactivation changes, it is broadcast to the smallest domain that completely contains its fanout.Most often, this is just its nearest neighbor, but it could be the entire network.10.1 Energy/powerCarver Mead wrote an excellent paper for the October 1990 Proceedings of the IEEE [53],in which he discusses the energy requirements of electrical and biological systems. He makes36

the point that in systems on the scale of human cortex, with 1016 synapses, the energybudget is a primary constraint. The human brain consumes a few watts, so each synapticcomputation is constrained to require on the order of 0.1fJ.In 2� CMOS, a single minimum size (4 � 2) transistor is 7fF. That translates to 175fJ at5V. Cg scales as 1=S. In 0.5� CMOS, a single minimum size transistor is 1.75fF, or 16fJat 3V. Projecting a few years down the road to 0.1� technology, and 1V supplies, a singletransistor might consume 0.350fJ.Mead maintains that the energy required to switch a single transistor is comparable to theenergy to perform one complex synaptic computation in a biological network, and that digitalsystems switch about 10000 transistors to perform a single operation, making them 10000times less e�cient than biological systems.A 5x5 bit multiplier-accumulator can be built using roughly 1000 transistors such that onlyabout 100 switch during a computation, so we might hope to get within a factor of 100 ofbiology using reduced precision digital arithmetic.There is also an energy cost associated with retrieving synaptic weights from a memorystructure. If the synaptic store is divided into 64x64 bit blocks, only one of which is accessed,about 100 transistors will switch retrieving a weight from the memory.There is also an energy cost associated with the sigmoid, but it is insigni�cant since it onlyhappens once for every 10,000 synaptic computations.There is also an energy cost associated with delivering an activation to its synaptic destina-tions. This is probably a small percentage of the synaptic computation cost if connectivityis predominantly local, and each processor handles a large number of neurons.There is also an energy cost associated with learning. Hebbian learning [32], dwij = �sisj,could be implemented with a single multiplier, and could be kept to a fraction of the synapticcomputation cost by slow adaptation.So it looks like synaptic computation and weight retrieval dominate the energy cost in adigital network, and that this cost can be brought within a factor of a few hundred ofbiology (see Figure 20).10.2 Sparsely connected netsIf the network topology is not physically expressed in the hardware, then it must be foldedonto the hardware topology. This folding results in time multiplexed utilization of resources,and requires labeling of interconnections. Unless the network topology can be reconstructedalgorithmically, data owing in the system will have to be labeled. Another way of sayingthis is that as soon as the network becomes sparse, state information in the network (neuralactivations and synaptic weights) must be accompanied by an address. In the limit, thiswould increase memory storage requirements by a factor of 37 (since 237 = 1011), which,though onerous, is far better than implementing a fully connected network, which wouldincrease memory storage requirements by a factor of 106.37

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.2

0.4

0.8

1.6

3.2

6.4

12.8

25.6

51.2

102.4

en
er

gy
 p

er
 c

on
ne

ct
io

n
(p

J)

technology (microns)

Vdd = 5

Vdd = 3

Vdd = 2

Vdd = 1Figure 20: energy per connection vs technologyAlgorithmic and explicit labeling can be combined by partitioning the network into a hi-erarchy of subnetworks and recursively labeling the subnets down to some level at whichalgorithmic labeling is introduced. For example, if the average neural fanin is 10,000, thenetwork could be partitioned into fully connected sets of 104 neurons, with 108 synapticweights in a set.If we can avoid labeling synapses, and just label neural outputs, then communication band-width increases by a factor of 37, but synaptic storage stays the same. This is fortunate,since communication bandwidth is the easiest to increase. We can do this by grouping neu-rons in fully connected clusters. There will be a slight increase in synaptic storage requiredsince the neurons will not in general be fully connected.The most straightforward way to specify the interconnections among N neurons is witha matrix of N2 elements. Suppose the network connections are random and uniformlydistributed, ie the probability that any two neurons are connected is a constant P . Thenthe probability that a randomly selected matrix element is nonzero is also P , and the totalnumber of nonzero weights is PN2. If P is less than log2(wmax)=(log2(wmax) + log2(N)), itis more e�cient to store the address of each neuron along with each weight than to store allthe weights. That is, rather than store (wij : i = 1; N ; j = 1; N), store (wij ; j : wij <> 0). Itis not necessary to store i explicitly if weights are clustered by output. However, the inputneuron ids must be stored along with each weight if the network is randomly connected.Any regularity which might exist in the pattern of network connections can be exploitedto reduce the number of neuron ids which must be stored. In some cases, such as fully38

neurons APS synapses CPS[53] - - 1016 1016[76] 1011 1013 1014 1016Sejnowski PNS 109 1012 1013 1016Sejnowski CNS 1011 1011 1015 1015Table 7: Cortical statisticsconnected networks, or networks whose pattern of connectivity is the same for every neuron,id storage can be eliminated, since weights can be allocated to processors in a completelyuniform way.If any subset of the network has a regular connection pattern, then id storage for the neuronsin that subnet can be eliminated. For example. in a multilayer feedforward net, if each pairof adjacent layers is fully connected, then only one id is needed in each layer to identify theentire \block" of connections. All the connections within that block can be computed as afully connected set relative to a single base address.The number of block ids which must be stored is equal to the number of tiles requiredto cover the nonzero entries in the weight matrix. There is a signi�cant tradeo� in tilingfunction complexity and exibility. The more powerful the tiling function, the higher itscomputational cost. The objective is to �nd a set of functions and a tiling of those functionswhich maximizes coverage and minimizes overlap, at modest computational cost.10.3 Biological complexityVLSI may have been oversold in its ability to provide su�cient resources for large scalenetwork computation. It is tempting to endow VLSI with essentially limitless capabilities,so that any problem, no matter how intractable, can be solved. In neural networks, VLSI mayhave met its match. The major challenges are computation, communication, and memory.Since silicon is much faster, computation, and communication can be time multiplexed.Memory, however, cannot.Table 7 gives some published estimates of performance and capacity of the human cortex.Tables 8 and 9 further re�ne those estimates into peripheral and central nervous systemoperations.The bandwidth of a single metal wire is somewhere between 10 Mbit/sec and 1 Gbit/sec, de-pending on the technology. In the peripheral nervous system (PNS), the average bandwidthof a single nerve �ber is somewhere around 1 Kbit/sec. Therefore each silicon wire couldcarry the information of roughly 105 PNS neurons. In the central nervous system (CNS),39

109 neurons103 activations/sec/neuron104 fanout1013 synapses1012 activations/sec1016 connections/secTable 8: Peripheral nervous system capacity and performance1011 neurons1 activation/sec/neuron104 fanout1015 synapses1011 activations/sec1015 connections/secTable 9: Central nervous system capacity and performancethe average bandwidth of a single axon is around 1 bit/sec, so each silicon wire could carrythe information of roughly 108 CNS neurons.The computational bandwidth of a neuron is much more di�cult to quantify because itdepends to an overwhelming extent on the logical complexity of the model used to describeit. The secret is to �nd a good match between the set of available logic elements and thealgorithm to be implemented.Table 10 suggests that a single VLSI processor could conceivably process 109 synapses persecond, and might therefore handle 102 PNS neurons or 105 CNS neurons. 107 PNS pro-cessors and 106 CNS processors would be required. Each PNS processor would service 106synapses; each CNS processor 109 synapses. PNS CNSprocessors 107 106neurons/proc 102 105synapses/proc 106 109Table 10: Cortical processor architectures40

tech syn/cm2 macs/cm2 CPS/cm2 cm2=1015syn cm2=1016CPSS2 S2 S3 S2 S32.00� 1e6 1e2 1e10 1e9 1e61.00� 4e6 4e2 8e10 2e8 1e50.50� 2e7 2e3 6e11 4e7 1e40.25� 1e8 6e3 5e12 1e7 2e30.10� 1e9 4e4 8e13 1e6 1e2Table 11: Capacity and performance (scale V)Table 11 suggests that the synaptic storage problem is four orders of magnitude more chal-lenging than achieving adequate performance. It also suggests that achieving comparablecomputational bandwidth is perhaps feasible, but that comparable storage capacity will re-quire a technological breakthrough. The capacity numbers assume only one storage cell isrequired per synapse. Analog synaptic cells reported so far are two orders of magnitudelarger (see Table 12).The size of an individual synaptic storage element is the major limiting factor in determiningthe size of a network.Table 12 illustrates the wide range in synaptic densities among reported alternatives.Until someone comes up with a much more area e�cient analog synaptic cell, or until tech-nology scales well below 0.1 micron, adaptive analog synapses will remain too big to scaleup to biology. The only VLSI chance for large nets is 1T DRAM or 4T SRAM.Leakage current, according to Chatterjee et al[14], is 3fA/�2, and is a strong function oftemperature. A 0.5� 1T DRAM storage node with an area of 2�2 has a leakage current of6fA/bit. That's a total leakage current of 6 amps for 1e15 bits.An important consequence of these observations is that neurochip architectures which em-phasize computational bandwidth but have low synaptic storage densities will not scale wellto large networks.11 ConclusionDigital VLSI can be used to implement a wide variety of neural networks. Both very highperformance and very large scale networks can be implemented e�ectively, especially as41

type � � � �2 �2=T rel.area who1T EPROM 8�8 64 64 1 commercial1T DRAM 8�8 64 64 1 commercial4T SRAM 12�20 240 60 4 commercial1T DRAM 8�16 128 128 2 MOSIS2T DRAM 13�31 403 200 6 MOSIS3T DRAM 24�24 576 192 9 MOSIS6T SRAM 32�36 1152 192 18 MOSIS7T synapse 40�60 2400 342 37 [48]??T ETANN 83�97 8036 ?? 125 [38]42T synapse 200�200 40000 952 625 [9]200T CLC 160�320 51200 256 700 [5]Table 12: Area of various synaptic cellstechnology scales down into the submicron regime. There is a tradeo� between performanceand exibility. Two signi�cant challenges for future research are increasing synaptic storagecapacity and minimizing power consumption.The connectionist approach assumes synaptic communication can be modeled simply. Thelimit to the size of networks which VLSI can implement depends not only on the energy percomputation and the synaptic storage density, but also on the complexity of the synapticinteraction and the neuron model.AcknowledgementsThis work was supported by the NASA Center for Aeronautics and Space Information Sys-tems (CASIS) under grant NAGW 419.References[1] David H. Ackley and Geo�rey E. Hinton. A learning algorithm for BoltzmannMachines.Cognitive Science, 9:147{169, 1985.[2] Aharon J. Agranat, Charles F. Neugebauer, and Amnon Yariv. A CCD based neu-ral network integrated circuit with 64K analog programmable synapses". In IJCNNInternational Joint Conference on Neural Networks, pages II:551{555, 1990.42

[3] Shingo Aizaki, Masayoshi Ohkawa, Akane Aizaki, Yasushi Okuyama, Isao Sasaki,Toshiyuki Shimizu, Kazuhiko Abe, Manabu Ando, and Osamu Kudoh. A 15ns 4MbCMOS SRAM. In IEEE International Solid-State Circuits Conference, pages 126{127,1990.[4] Yutaka Akiyama. The Gaussian Machine: a stochastic, continuous neural networkmodel. PhD thesis, Keio University, February 1990.[5] Joshua Alspector. CLC - A cascadeable learning chip. NIPS90 VLSI Workshop, De-cember 1990.[6] Joshua Alspector, Joel W. Gannett, Stuart Haber, Michael B. Parker, and Robert Chu.A VLSI-e�cient technique for generating multiple uncorrelated noise sources and itsapplication to stochastic neural networks. IEEE Transactions on Circuits and Systems,1990.[7] Joshua Alspector, Bhusan Gupta, and Robert B. Allen. Performance of a stochasticlearning microchip. In Advances in Neural Information Processing Systems, pages 748{760, 1989.[8] Masakazu Aoki, Yoshinobu Nakagome, Masahi Horiguchi, Shin'ichi Ikenaga, and Kat-suhiro Shimohigashi. A 16-level/cell dynamic memory. IEEE Journal of Solid-StateCircuits, pages 297{299, April 1987.[9] Yutaka Arima, Koichiro Mashiko, Keisuke Okada, Tsuyoshi Yamada, Atushi Maeda,Harufusa Kondoh, and Shinpei Kayano. A self-learning neural network chip with 125neurons and 10K self-organization synapses. In Symposium on VLSI Circuits, pages63{64, 1990.[10] Algirdas Avizienis. Signed-digit number representations for fast parallel arithmetic. IRETransactions on Electronic Computers, pages 389{400, September 1961.[11] Jim Bailey and Dan Hammerstrom. Why VLSI implementations of associative VLCNsrequire connection multiplexing. In IEEE International Conference on Neural Networks,pages II:173{180, 1988.[12] G. Blelloch and C. R. Rosenberg. Network learning on the Connection Machine. InProceedings of the Tenth International Joint Conference on Arti�cial Intelligence, pages323{326, 1987. Milan, Italy.[13] James B. Burr et al. A 20 MHz Prime Factor DFT Processor. Technical report, StanfordUniversity, September 1987.[14] Pallab K. Chatterjee, Geo�rey W. Taylor, Al F. Tasch, and Horng-Sen Fu. Leakagestudies in high-density dynamic MOS memory devices. IEEE Transactions on ElectronDevices, pages 564{575, April 1979.[15] Alice Chiang, Robert Mountain, James Reinold, Jeo�rey LaFranchise, James Gregory,and George Lincoln. A programmable CCD signal processor. In IEEE InternationalSolid-State Circuits Conference, pages 146{147, 1990.43

[16] David Van den Bout and Thomas K. Miller III. TInMANN: The integer Markovianarti�cial neural network. In IJCNN International Joint Conference on Neural Networks,pages II:205{211, 1989.[17] Sang H. Dhong, Nicky Chau-Chau Lu, Wei Hwang, and Stephen A. Parke. High-speedsensing scheme for CMOS DRAM's. IEEE Journal of Solid-State Circuits, pages 34{40,February 1988.[18] M. Duranton and J.A. Sirat. Learning on VLSI: A general purpose digital neurochip.In IJCNN International Joint Conference on Neural Networks, 1989.[19] Silvio Eberhardt, Tuan Duong, and Anil Thakoor. Design of parallel hardware neuralnetwork systems from custom analog VLSI `building block' chips. In IJCNN Interna-tional Joint Conference on Neural Networks, pages II:183{190, 1989.[20] Brian R. Gaines. Stochastic computing. In Spring Joint Computer Conference, pages149{156, 1967.[21] Brian R. Gaines. Uncertainty as a foundation of computational power in neural net-works. In IEEE First International Conference on Neural Networks, pages III:51{57,1987.[22] Simon C. J. Garth. A chipset for high speed simulation of neural network systems. InIEEE First International Conference on Neural Networks, pages III:443{452, 1987.[23] James A. Gasbarro and Mark A. Horowitz. A single-chip, functional tester for VLSIcircuits. In IEEE International Solid-State Circuits Conference, pages 84{85, 1990.[24] Hans Peter Graf and Don Henderson. A recon�gurable CMOS neural network. In IEEEInternational Solid-State Circuits Conference, pages 144{145, 1990.[25] H.P. Graf, W. Hubbard, L.D. Jackel, and P.G.N. deVegvar. A CMOS associative mem-ory chip. In IEEE First International Conference on Neural Networks, pages III:461{468, 1987.[26] H.P. Graf, L.D. Jackel, R.E. Howard, B. Straughn, J.S. Denker, W. Hubbard, D.M.Tennant, and D. Schwartz. VLSI implementation of a neural network memory withseveral hundreds of neurons. In Neural Networks for Computing, Snowbird, Utah 1986,pages 182{187. American Institute of Physics, 1986.[27] A. J. De Groot and S. R. Parker. Systolic implementation of neural networks. In SPIE,High Speed Computing II, volume 1058, January 1989.[28] Dan Hammerstrom. A VLSI architecture for high-performance, low-cost, on-chip learn-ing. In IJCNN International Joint Conference on Neural Networks, pages II:537{544,1990.[29] Yoshihisa Harata, Yoshio Nakamura, Hiroshi Nagase, Mitsuharu Takigawa, and Nao-fumi Takagi. A high-speed multiplier using a redundant binary adder tree. IEEE Journalof Solid-State Circuits, pages 28{34, February 1987.44

[30] Shigeyuki Hayakawa, Masakazu Kakumu, Hideki Takeuchi, Katsuhiko Sato, TakayukiOhtani, Takeshi Yoshida, Takeo Nakayama, Shigeru Morita, Masaaki Kinugawa, KenjiMaeguchi, Kiyofumi Ochii, Jun'ichi Matsunaga, Akira Aono, Kazuhiro Noguchi, andTetsuya Asami. A 1uA retention 4Mb SRAM with a thin-�lm-transistor load cell. InIEEE International Solid-State Circuits Conference, pages 128{129, 1990.[31] Raymond A. Heald and David A. Hodges. Multilevel random-access memory using onetransistor per cell. IEEE Journal of Solid-State Circuits, pages 519{528, August 1976.[32] Donald O. Hebb. The Organization of Behavior. Wiley, 1949.[33] John L. Hennessy and David A. Patterson. Computer Architecture A QuantitativeApproach. Morgan Kaufmann Publishers, 1989.[34] G.E. Hinton, T.J. Sejnowski, and D.H. Ackley. Boltzmann Machines: Constraint satis-faction networks that learn. Technical Report CMU-CS-84-119, Carnegie-Mellon Uni-versity, May 1984.[35] Geo�rey E. Hinton. Deterministic Boltzmann learning performs steepest descent inweight-space. Neural Computation, 1:143{150, 1989.[36] Yuzo Hirai, Katsuhiro Kamada, Minoru Yamada, and Mitsuo Ooyama. A digital neuro-chip with unlimited connectability for large scale neural networks. In IJCNN Interna-tional Joint Conference on Neural Networks, pages II:163{169, 1989.[37] David A. Hodges and Horace G. Jackson. Analysis and Design of Digital IntegratedCircuits. McGraw-Hill, 1983.[38] Mark Holler, Simon Tam, Hernan Castro, and Ronald Benson. An electrically trainablearti�cial neural network (ETANN) with 10240 \oating gate" synapses. In IJCNNInternational Joint Conference on Neural Networks, pages II:191{196, 1989.[39] J.J. Hop�eld. Neural networks and physical systems with emergent collective computa-tional properties. Proceedings of the National Academy of Sciences, USA, 79:2554{2558,April 1982.[40] Masahi Horiguchi, Masakazu Aoki, Yoshinobu Nakagome, Shin'ichi Ikenaga, and Kat-suhiro Shimohigashi. An experimental large-capacity semiconductor �le memory using16-levels/cell storage. IEEE Journal of Solid-State Circuits, pages 27{33, February1988.[41] Robert R. Johnson. Multichip modules: Next-generation packages. IEEE Spectrum,pages 34{48, March 1990.[42] Max Stanford Tomlinson Jr., Dennis J. Walker, and Massimo A. Sivilotti. A digitalneural network architecture for VLSI. In IJCNN International Joint Conference onNeural Networks, pages II:545{550, 1990.45

[43] Howard Kalter, John Barth, John Dilorenzo, Charles Drake, John Fi�eld, WilliamHovis, Gordon Kelley, Scott Lewis, John Nickel, Charles Stapper, and James Yankosky.A 50ns 16Mb DRAM with a 10ns data rate. In IEEE International Solid-State CircuitsConference, pages 232{233, 1990.[44] Teuvo Kohonen. Self-Organization and Associative Memory. Springer-Verlag, 1984.[45] S. Y. Kung and J. N. Hwang. Digital VLSI architectures for neural networks. In IEEEInternational Symposium on Circuits and Systems, pages 445{448, 1989.[46] S.Y. Kung and J.N. Hwang. Parallel architectures for arti�cial neural nets. In IEEEInternational Conference on Neural Networks, pages II:165{172, 1988.[47] S.Y. Kung and J.N. Hwang. Ring systolic designs for arti�cial neural nets. In INNSFirst Annual Meeting, pages 390{, 1988.[48] Bang W. Lee, Ji-Chien Lee, and Bing J. Sheu. VLSI image processors using analogprogrammable synapses and neurons. In IJCNN International Joint Conference onNeural Networks, pages II:575{580, 1990.[49] Weiping Li. The Block Z transform and applications to digital signal processing usingdistributed arithmetic and the Modi�ed Fermat Number transform. PhD thesis, StanfordUniversity, January 1988.[50] Weiping Li and James B. Burr. Parallel multiplier accumulator using 4-2 adders. USpatent pending, Application number 088,096, �ling date August 21, 1987.[51] Weiping Li and James B. Burr. An 80 MHz Multiply Accumulator. Technical report,Stanford University, September 1987.[52] P. Mars and W. J. Poppelbaum. Stochastic and deterministic averaging processors. IEE,1981.[53] Carver Mead. Neuromorphic Electronic Systems. Proceedings of the IEEE, pages 1629{1636, 10 1990.[54] Carver Mead and Lynn Conway. Introduction to VLSI Systems. Addison-Wesley, 1980.[55] A. Moopenn, A.P. Thakoor, T. Duong, and S.K. Khanna. A neurocomputer based on ananalog-digital hybrid architecture. In IEEE First International Conference on NeuralNetworks, pages III:479{486, 1987.[56] Takayuki Morishita, Youichi Tamura, and Tatsuo Otsuki. A BiCMOS analog neuralnetwork with dynamically updated weights. In IEEE International Solid-State CircuitsConference, pages 142{143, 1990.[57] Alan F. Murray and Anthony V. W. Smith. Asynchronous VLSI neural networks usingpulse-stream arithmetic. IEEE Journal of Solid-State Circuits, 23(3):688{697, 1988.46

[58] L. W. Nagel. SPICE2: A computer program to simulate semiconductor circuits. Tech-nical report, University of California, Berkeley, May 9 1975. Memo ERL-M520.[59] J. Ouali and G. Saucier. Silicon compiler for neuro-ASICs. In IJCNN InternationalJoint Conference on Neural Networks, pages II:557{561, 1990.[60] Carsten Peterson and Eric Hartman. Explorations of the mean �eld theory learningalgorithm. In Neural Networks, volume 2, pages 475{494. Pergamon Press, 1989.[61] Dean A. Pomerleau, George L. Gusciora, David S. Touretzky, and H.T. Kung. Neuralnetwork simulation at Warp speed: How we got 17 million connections per second. InIEEE International Conference on Neural Networks, pages II:143{150, 1988.[62] Scott R. Powell and Paul M. Chau. Estimating power dissipation in VLSI signal pro-cessing chips: the PFA technique. In VLSI Signal Processing IV, pages 251{259, 1990.[63] Jack Ra�el, James Mann, Robert Berger, Antonio Soares, and Sheldon Gilbert. Ageneric architecture for wafer-scale neuromorphic systems. In IEEE First InternationalConference on Neural Networks, pages III:501{513, 1987.[64] Mike Rudnick and Dan Hammerstrom. An interconnect structure for wafer scale neu-rocomputers. In David Touretzky, Geo�rey Hinton, and Terrence Sejnowski, editors,Connectionist Models Summer School, pages 498{512. Carnegie Mellon University, 1988.[65] J.P. Sage, K. Thompson, and R.S. Withers. An arti�cial neural network integratedcircuit based on MNOS/CCD principles. In Neural Networks for Computing, Snowbird,Utah 1986, pages 381{385. American Institute of Physics, 1986.[66] Mark Santoro and Mark Horowitz. A pipelined 64X64b iterative array multiplier. InIEEE International Solid-State Circuits Conference, pages 35{36, February 1988.[67] Mark Santoro and Mark Horowitz. SPIM: A pipelined 64X64-bit iterative multiplier.IEEE Journal of Solid-State Circuits, pages 487{493, April 1989.[68] Mark R. Santoro. Design and Clocking of VLSI Multipliers. PhD thesis, StanfordUniversity, October 1989.[69] Terrance J. Sejnowski and Charles R. Rosenberg. NETtalk: A parallel network thatlearns to read aloud. Technical Report JHU/EECS-86/01, Johns Hopkins University,1986.[70] D. T. Shen and A. Weinberger. 4-2 carry-save adder implementation using send circuits.In IBM Technical Disclosure Bulletin, pages 3594{3597, February 1978.[71] M. Sivilotti, M. Mahowald, and C. Mead. Realtime visual computations using analogCMOS processing arrays. In Proceedings of the 1987 Stanford Conference, 1987.[72] Chris J. Terman. User's guide to NET, PRESIM, and RNL/NL. Technical Report VLSI82-112, Massachusetts Institute of Technology, 1982.47

[73] L. Waller. How MOSIS will slash the cost of IC prototyping. Electronics, 59(9), March3 1986.[74] Shlomo Waser and Michael J. Flynn. Introduction to Arithmetic for Digital SystemsDesigners. CBS College Publishing, 1982.[75] Takumi Watanabe, Yoshi Sugiyama, Toshio Kondo, and Yoshihiro Kitamura. Neuralnetwork simulations on a massively parallel cellular array processor: AAP-2. In IJCNNInternational Joint Conference on Neural Networks, pages II:155{161, 1989.[76] Carol Weiszmann, editor. DARPA Neural Network Study, October 1987 - February1988. AFCEA International Press, 1988.[77] Neil Weste and Kamran Eshraghian. Principles of CMOS VLSI Design - A SystemsPerspective. Addison-Wesley, 1985.[78] WilliamWike, David Van den Bout, and Thomas Miller III. The VLSI implementationof STONN. In IJCNN International Joint Conference on Neural Networks, pages II:593{598, 1990.[79] Kazuo Yano, Toshiaki Yamanaka, Takashi Nishida, Masayoshi Saito, Katsuhiro Shimo-higashi, and Akihiro Shimizu. A 3.8-ns CMOS 16x16-b multiplier using ComplementaryPass-Transistor Logic. IEEE Journal of Solid-State Circuits, pages 388{394, April 1990.[80] Moritoshi Yasunaga, Noboru Masuda, Mitsuo Asai, Minoru Yamada, Akira Masaki, andYuzo Hirai. A wafer scale integration neural network utilizing completely digital circuits.In IJCNN International Joint Conference on Neural Networks, pages II:213{217, 1989.[81] Moritoshi Yasunaga, Noboru Masuda, Masayoshi Yagyu, Mitsuo Asai, Minoru Yamada,and Akira Masaki. Design, fabrication and evaluation of a 5-inch wafer scale neuralnetwork LSI composed of 576 digital neurons. In IJCNN International Joint Conferenceon Neural Networks, pages II:527{535, 1990.
48

