
Digital Neural Network ImplementationsJames B. BurrDepartment of Electrical EngineeringStanford UniversityStanford, Ca. 94305burr@mojave.stanford.eduJanuary 2, 1995AbstractThis chapter gives an overview of existing digital VLSI implementations and dis-cusses techniques for implementing high performance, high capacity digital neural nets.It presents a set of techniques for estimating chip area, performance, and power con-sumption in the early stages of design to facilitate architectural exploration. It showshow technology scaling rules can be included in the estimation process. It presentsa set of basic building blocks useful in implementing digital networks. It then usesthe estimation techniques to predict capacity and performance of a variety of digitalarchitectures. Finally, it discusses implementation strategies for very large networks.1 IntroductionNeural network applications suitable for implementation in VLSI cover a wide spectrum,from dedicated feedforward nets for real time feature detection to general purpose enginesfor exploring learning algorithms. The DARPA Neural Network Study [76] contains a gooddiscussion of the range of applications together with a method of classifying them which weuse in this chapter.The fastest analog neurochips are almost six orders of magnitude faster than an averageworkstation or PC, and three orders of magnitude faster than the fastest supercomputer. Thefastest digital neurochip is about as fast as a supercomputer. Even so, many of the potentialapplications demand far more computational power and synaptic storage capacity than hasbeen implemented so far. As progress is made toward implementation of larger, higherperformance networks, and as technology scales further into the submicron regime, powerdissipation will become a dominant constraint, and e�ective power analysis and optimizationwill be an important aspect of design. 1



There is always a tradeo� in VLSI implementation between performance and 
exibility.Both are needed in neural nets. Mature applications with well characterized algorithms willcontinue to seek higher performance as learning algorithm research continues to suggest newarchitectures.This chapter discusses both existing implementations and some of the challenges facing fu-ture implementations. Section 2 proposes an informal classi�cation scheme for neurochips.Section 3 describes some of the more recent digital VLSI implementations. A table at theend of section 3 gives a quick overview of implementations to date. Section 4 discusses ar-chitectural tools which can be leveraged in implementing high performance, high capacitynetworks. Section 5 describes some low level basic building blocks useful in digital imple-mentations. Section 6 describes techniques for estimating area, performance, and power of adesired architecture, and shows how technology scaling rules can be included in the estima-tion process. Section 7 discusses techniques for maximizing performance on a constrainedpower budget. Section 8 discusses the impact of technology scaling on future neurochiparchitectures. Section 9 discusses a chip we have been working on at Stanford. Section 10discusses obstacles and opportunities to implementing large digital networks.2 Classifying VLSI implementationsYutaka Akiyama's PhD thesis [4] has a comprehensive section on neurochip classi�cation.Since its publication, the number and variety of neurochips has proliferated. We can groupthese chips into major categories depending on whether they use analog or digital computa-tion, how synaptic storage is implemented, whether they have some form of on-chip learning,and whether they are standalone or are meant to be connected to other chips to implementlarger networks.The most common analog architecture is a fully connected mesh of N2 synaptic processorssupporting N neurons. This architecture can perform feedforward computations at very highrates, typically converging in a few microseconds, and is well suited to Hop�eld nets [39] andassociative memories [26, 25]. For example, ATT's associative memory chip [25] has 256neurons and 65536 synapses. Assuming 10 iterations through the network for convergence,this chip has a feedforward computation rate of around 500 GCPS (billion connections persecond).Another analog architecture used in the Caltech retina chip [71] is a lattice of neural pro-cessors with nearest neighbor connections. This architecture can also compute at very highrates. The chip has 2304 neurons, each connected to 6 neighbors. Assuming convergence ina few microseconds, this chip has a feedforward computation rate of around 10 GCPS.Digital chips tend to be organized as a 1 dimensional systolic array [47, 46, 45]. Theygenerally have lower feedforward computation rates than analog chips; values reported rangefrom 3 MCPS [22] to 1.28 GCPS [28].Analog implementations usually compute the inner product as an analog current sum, butdi�er in how the weights are stored. Techniques reported include resistors [25, 26, 71], CCDs2



[2, 15, 65], capacitors [19, 48, 56], and 
oating gate EEPROMs [38].Digital implementations use either parallel, bit-serial, or stochastic arithmetic. Some haveone processor for each synapse; most have one processor per neuron or even one processorfor many neurons. Synaptic weights are either stored in shift registers, latches, or memory.Memory storage alternatives include one-, two-, or three-transistor dynamic RAM, or four-or six-transistor static RAM.Most digital implementations so far include some form of on-chip learning; most analogimplementations do not.A few hybrid chips have been reported which combine analog and digital techniques [7, 55,24]. One common approach is to store weights digitally and to compute the inner productas a current sum.Most chips that learn store weights digitally. One notable exception is a purely analogBoltzmann chip [9], which uses its learning algorithm to refresh capacitive weights. Thischip is implemented in 1.0� 2-poly 2-metal CMOS. It has 125 neurons and 10000 capaci-tive synapses. Each synapse implements the Boltzmann weight update rule [34, 1] with 42transistors, and measures 200� � 200�. Network convergence in response to a single inputtakes 5 microseconds, including annealing, which is implemented as a damped oscillation ona reference voltage. Assuming a 50 step anneal schedule, the equivalent digital feedforwardcomputation rate would be about 100 GCPS.3 Existing digital implementations3.1 TI's NETSIMNETSIM [22] was one of the �rst purely digital architectures reported. It consists of two typesof chips: a \solution engine" chip and a \communication handler" chip. Neural computationis done in the solution engine; neural activations are routed through the communicationhandler. The solution engine requires external memory to store weight values. A solutionengine, a communication handler, a local microprocessor, and memory are packaged on asingle NETSIM card. A system consists of a number of NETSIM cards in a 3-D arrayinterfaced to a general purpose computer.The solution engine performs an 8x8 bit multiply-accumulate in 250ns, so the performanceis 4 MCPS.These chips do not appear to have been implemented, but the architectural ideas appear invarious forms in later chips. The idea of pipelined o� chip weights is especially appealingfor very large networks. Also, considerable attention was given in the design to multichipimplementations. 3



3.2 Duranton and Sirat's digital neurochipDuranton and Sirat's proposed chip [18] is a fully digital architecture which stores 16 bitsynaptic weights in an on-chip RAM. The architecture supports on-chip learning, but exportsthe sigmoid function. It uses an interesting bit-serial technique to form the inner product.On each cycle, one bit of each activation is anded with the weights to form a set of partialproducts which are reduced to a single partial product in a tree of adders. Activations are8 bits, so it takes 8 cycles to form xi = �wijxj for a single i. The weights are fetched inparallel out of the RAM, so the RAM access time can be 1/8 the processor cycle time.The performance estimations are given for 1.6 micron CMOS. The paper states that a newxi is computed every 2 �sec. This implies a clock frequency of 25 MHz, and with 32 16-bitsynaptic weights in parallel on every cycle, 800 MCPS. This chip also does not appear tohave been implemented.3.3 Hirai et al's digital neuro-chipYuzo Hirai and colleagues [36] fabricated a digital neurochip using a 1.2 micron CMOS gatearray. The chip implements six neurons and 84 6-bit synapses using a variant of pulse-streamarithmetic (see section 5.7. Rather than use a chopping clock as in [57], or a comparator andpseudo-random number generator as in STONN [78], TInMANN [16], or DNNA [42], Hirai etal supply each neuron a separate, asynchronous clock to reduce pulse collisions. Each neuronrequires 1 msec to evaluate its inputs. This \time constant" depends only on the numberof bits in the synapses and not on the number of synapses. This implies a performance of84 KCPS. Other pulse-stream implementations achieve better performance by allowing thenetwork dynamics to overlap the neural computation.3.4 Ouali and Saucier's Neuro-ASICOuali and Saucier [59] have implemented a single neuron on a chip in 2.0 micron CMOSwhich runs at 20 MHz. The chip is a \cascadable neuron processor" that includes a localmemory for storing synaptic weights and activation function parameters, a multiplier, anadder/subtractor, a controller, and input, output, and state registers for interfacing to amultichip network. The paper does not specify precision or performance, though the chiphas been fabricated as a MOSIS TinyChip [73].3.5 Neural Semiconductor's DNNATomlinson et al [42] have implemented a scalable neural net architecture (DNNA: digitalneural network architecture) based on stochastic pulse trains. They have implemented twochips. The SU3232 contains 1024 synaptic elements arranged in a 32�32 matrix. The NU324



chip implements 32 neurons. A fully connected network with 32N neurons requires N2synapse chips.Each synapse includes a separate stochastic pulse train generator. Each synaptic pulsestream is anded with an activation output stream to produce a synaptic product. Synapticproducts are then wire-or'ed to produce activation input streams.The neural activation function is implemented by anding excitatory and inhibitory activationinput streams. Because the wire-or operation is naturally saturating, no extra sigmoid unitis needed to implement a nonlinear activation function.A two-chip set can implement 32 neurons and 1024 connections. k bit accuracy in theactivations requires 2k cycles. The chips run at 25 MHz, and can process 100K activationsper second at 8 bit resolution. This implies a feedforward computation rate of 100 MCPS,(200MCPS if the excitatory and inhibitory parts of each synapse are counted separately).3.6 North Carolina State's STONNWike et al [78] have proposed a 100K transistor CMOS Hop�eld network (STONN: stochasticneural net) using stochastic logic and bit-level pipelining. They leverage the recurrent natureof Hop�eld nets to overlap the neural computation with network relaxation so that by thekth iteration the neural activation has been computed to a precision of log2(k) bits. DNNAcould do this as well.Unlike the DNNA chip, which generates stochastic samples for N2 weights on every cycle,STONN stores weights in an on-chip shift register and generates stochastic samples of Nweights per cycle. This technique achieves much higher synaptic storage density than theDNNA approach, especially if the shift register weight store is implemented as a RAM.A weight is converted to a pulse stream by comparing it to a sequence of random numbers,using the carry out of the most signi�cant bit of a bit-level pipelined comparator to generatethe pulses. The synaptic pulse stream is "multiplied" by an input activation stream byanding the two streams. At this point, rather than wire-or the modulated input activationsas in DNNA, the modulated input activation increments or decrements a counter containingthe accumulating output activation. The chip has one activation comparator which generatesa single stochastic sample of one of the accumulating output activations each cycle.Weights are 7 bits; comparators are 6 bits, activation accumulators are 10 bits. The weightstore is implemented using a 6-transistor dynamic shift register. The chip has 20 neurons,and 100 7 bit weights per neuron. It is projected to run between 10 and 25 MHz (it has beenlayed out but not fabricated). At 10 MHz, one chip can achieve 200 MCPS; at 25 MHz, 500MCPS.Each iteration only involves one stochastic sample of weights and activations. This typeof optimization network converges over time to a stable state. STONN takes N cycles tocompute the outputs of N neurons. This is the same amount of time required by a parallelimplementation with one processor per neuron. The stochastic nature of the computation is5



much more e�cient. The parallel computation is too exact. That is, one stochastic samplefrom one neuron can be generated each cycle. Parallel algorithms also generate one sampleper cycle, but to higher precision and requiring more hardware.Reduced precision parallel computation can require comparable hardware. The multiplier-accumulator in STONN consists of an and gate, a 6-bit comparator, a random numbergenerator, and a 10-bit up-down counter. The multiplier in the Stanford Boltzmann chip (seesection 9) is a 5-bit full adder (shared Booth encoding reduces 5 partial products to 3) anda 10-bit carry-save accumulator. The 5-bit full adder matches STONN's 6-bit comparator.The accumulator matches STONN's random number generator. The carry-save accumulatormatches STONN's up-down counter.Given bit-level pipelining, STONN should run closer to 100 MHz than 10 MHz in 2.0 micronCMOS, unless power consumption is a problem, implying 5 GCPS. It should also be able toaccommodate around 64 neurons and 32K weights using one-transistor DRAM.3.7 North Carolina State's TInMANNTInMANN (The integer markovian arti�cial neural network) [16] is a stochastic architectureproposed by the STONN group to implement competitive learning using stochastic compu-tation. The system stochastically updates the weights with a probability proportional to theneural input, causing neurons closest to an input vector to move toward it and push othersaway. The algorithm replaces the proportional weight update of the standard Kohonen al-gorithm [44] with a probabilistic update that integrates to the same value over many cycleswithout requiring a multiplier.The authors predict 15 MHz operation, and 145,000 two-dimensional training examples persecond.3.8 Adaptive Solution's X1 (CNAPS)The Adaptive Solutions X1 chip (renamed CNAPS) [28] is a general purpose SIMD multipro-cessor architecture [47, 46, 45] developed for neurocomputing applications. It achieves highperformance (1.6 GCPS inner product, 1.28 GCPS and 300 MCUPS doing backpropagation,12.8 GCPS using 1-bit weights) and can implement a wide variety of learning algorithms, aswell as a wide variety of signal processing algorithms. A single chip has a fairly large synap-tic capacity, storing 2 million 1-bit, 256K 8-bit, or 128K 16-bit weights equally distributedamong 64 processors. Multiple chips can be assembled in various topologies.The chip (see Fig 1) contains 64 processors, a 32 bit instruction bus, an 8 bit global outputbus, an 8 bit global input bus, and a 4 bit inter-processor bus. Each processor includes 4kbytes of weight memory implemented using four-transistor SRAM, a memory base addressunit, 32 16-bit registers, an input unit, an output unit, an 8x16 bit multipier, a 32 bitsaturating adder, and a logic and shift unit. 6
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The chip is quite large - over 5 cm2. Redundancy is built in to improve yield. Each chip has80 processors, only 64 of which need to work. The X1 is implemented in 0.8 micron CMOS.It is expected to run at 25 MHz, and dissipate about 4 watts, for an energy per connectionof about 2 nJ.The chip requires an external instruction sequencer. In typical con�gurations, a single se-quencer will control a number of chips.The X1 should turn out to be a useful research tool in studying the behavior of learningalgorithms in larger networks.3.9 Waferscale implementationsRa�el et al from MIT Lincoln Labs [63] discuss a possible waferscale network using mul-tiplying digital to analog converters (MDACs) using their Restructurable VLSI (RVLSI)approach to waferscale integration.Yasunaga et al of Hitachi [80, 81] present a completely digital implementation which usesreduced precision parallel arithmetic. It is implemented using a 0.8 micron CMOS waferscalegate array. It has 540 neurons and 64 synapses per neuron. The wafer has 9 bit neuralactivations and 8 bit synaptic weights. Each weight wij is stored as a pair (j; wij) to e�cientlyrepresent sparse networks.The paper reports a \step speed" of 464nsec, which appears to indicate the system clocks at2.15 MHz. A unique j is generated on each step; only those neurons with matching (j; wij)pairs participate in the computation. If all the weights are utilized, 64�576 connections canbe processed in 576 \steps", for a performance of 64 connections per step, or 138 MCPS.3.10 Neurocomputer implementationsThere have been several papers describing implementations of neural nets on massively paral-lel processors or neural coprocessors. We only mention those that have reported performanceby way of comparison with neurochips.Blelloch and Rosenberg [12] discuss mapping backpropagation onto the Connection Machine,reporting 3 MCUPS. Pomerleau et al [61] discuss mapping backpropagation onto the CMUWarp, reporting 17 MCUPS. Watanabe et al [75] discuss backpropagation on the NTTAAP-2, reporting 18 MCUPS.De Groot and Parker [27] describe mapping backpropagation onto the Lawrence LivermoreSPRINT. The machine has 106 synapses, 64 transputers, dissipates 100 watts, and achieves12 MCPS. That's 8�J/connection.3.11 Neural processor capacity and performance summary8



who ref type tech capacity speed power learning scalability(N, S) CPS chip, syn (multichip)Caltech [2] CCD 2� 256, 64K 5e8 - no noChiang [15] CCD 3� 144, 2016 1.44e9 2W, 1.4nJ no noUSC [48] cap 2� CMOS 25, 2525 - - no noMatsushita [56] analog 2.2� BiCMOS 64, 768 7.7e7 - no noETANN [38] analog 1.0� EEPROM 64, 8192 8e9 2W, 250 pJ no noNET32K [24] D,A 0.9� CMOS 1024, 32K 3e11 160mW, 500fJ no yesCLC [5] D,A 1.2� CMOS 32, 1000 1e9 1W,1nJ yes yesMitsubishi [9] analog 1.0u CMOS 125, 10K 1e11 1.5W, 15pJ yes yesJPL [19] analog 2.0� CMOS 32, 1000 1e9 - no noX1 [28] digital 0.8� CMOS 64, 256K 1e9 4W, 4nJ yes yesOuali [59] digital 2.0� CMOS - - - no yesDuranton [18] digital 1.6� CMOS - 8e8 - yes yesHirai [36] digital 1.2� CMOS 6, 84 8.4e4 - no yesDNNA [42] stochastic - 32, 1024 2e8 - no yesSTONN [78] stochastic - 20, 2000 5e8 - no yesTInMANN [16] stochastic 2.0� CMOS 1, ? - - yes yesHitachi [81] digital wsi 0.8� CMOS 540, 34K 1.4e8 - no yesCM1 [12] mpp - - 3e6 - yes -Warp [61] systolic - - 17e6 - yes -AAP-2 [75] array - - 18e6 - yes -SPRINT [27] systolic - -, 1e6 12e6 100W, 8�J yes -neuron - - - 1e11,1e15 1e16 1W, 0.1fJ yes yesTable 1: Summary of existing implementationsTable 1 gives a summary of existing implementations. It is not meant to be exhaustive;it is meant to be a sampling of a wide variety of implementations. Analog, waferscale,neurocomputer, and biological entries are for comparison purposes. The two numbers in thepower column are chip power dissipation and energy per connection.The remainder of this chapter discusses issues related to building digital VLSI neural net-works. Large networks can easily exceed the capabilities of the technology, so it is importantto try to maximize network performance and capacity while minimizing power consumption.One of the messages we will try to convey is that digital systems have certain strengthswhich can be exploited as technology scales down into the submicron regime.4 Architectural weaponsThe performance of digital VLSI systems can be enhanced using a variety of techniques.These are: pipelining, precision, iteration, concurrency, regularity, and locality. Of these,precision may be particularly useful in neural net applications, and iteration may becomemore widespread as technology scales down. 9



4.1 PipeliningNeural networks are well suited to deep pipelining because the latency of an individual unitis not nearly as important as the computation and communication throughput of the system.If a system is too heavily piped, too much area is taken in latches, and the load on the clockis too large, increasing clock skew and reducing the net performance gain.A system clock based on the propagation delay of a 4:2 adder provides a good balancebetween area and perforamnce. This is typically 1/4 of a RISC processor clock period in thesame technology.4.2 PrecisionPrecision can have a signi�cant impact on area, power, and performance. The area ofa multiplier is proportional to the square of the number of bits. A 32 � 32 bit parallelmultiplier is 16 times the area of an 8 � 8 bit multiplier. At 8 or fewer bits, a multiplier isjust an adder. A Booth encoder can cut the number of partial products in half and a 4:2adder can accept up to 4 inputs.Precision should be leveraged where it is available in the system. For example, an N � Nbit multiply generates a 2N bit result. A Hebbian style learning algorithm could computea weight adjustment to higher precision than is available and choose a weight value proba-bilistically. Using "probabilistic update", our Boltzmann machine can learn with as little as2 bits of precision in the weight store.4.3 IterationIteration involves using an area-e�cient arithmetic element and a local high speed clockto compute a single result in several clock cycles. Iteration reduces logic area by timemultiplexing resources at a higher frequency than can be managed globally.The conventional way to achieve high computational throughput is to implement a parallelarithmetic element clocked at the system clock rate. An alternate approach is to generate alocal clock which is at least some multiple of the system clock rate, and then to implementonly a fraction of the arithmetic element.The basic idea behind iteration can be illustrated by the following example. Suppose wewant to build a multiplier which can accept two inputs and output a product on every clockcycle. Using conventional techniques, we would have to use N2 full adders and clock the datathrough the multiplier at the system clock rate. Suppose, however, that we could generatea local clock which was at least twice the frequency of the system clock. We could thenimplement the multiplier in half the area using N2=2 fulladders. Iterative structures tradespace for time.Iteration will become more widespread as technology scales down and local clock rates scale10



up.Mark Santoro implemented a 64X64-bit multiplier using an iterative 16X16-bit array [66,67, 68]. He built the clock driver out of a 4:2 adder so it would be sure to track temperatureand process variations. He achieved 400 MHz operation in 0.8� CMOS.Iterative structures, although highly area e�cient, are likely to be higher power than unrolledstructures. If unrolled, nodes only serve one function. Iteration essentially time multiplexesnodes. If the roles of the two nodes are unrelated, then their states are uncorrelated, andthey may have a higher probability of changing state from iteration to iteration, dumpingextra charge and thereby dissipating more power.4.4 ConcurrencyConcurrency is a widely used technique for increasing performance through parallelism. Thedegree of parallelism will increasingly be limited more by power density than by area. Neuralnetworks are intrinsically highly parallel systems.4.5 RegularityRegularity in an architecture or algorithm permits a greater level of system complexity tobe expressed with less design e�ort. Neural nets are composed of large numbers of similarelements, which should translate directly to VLSI implementation.4.6 LocalityLocal connections are cheaper than global ones. The energy required to transport informa-tion in CMOS VLSI is proportional to the distance the information travels. The availablecommunication bandwidth is inversely proportional to wirelength, since the total availablewirelength per unit area in a given technology is constant.The energy required to switch a node is CV 2, where C is the capacitance of the node andV is the change in voltage. C is proportional to the area of the node, which for �xed widthwires, is proportional to the length of a node.5 Building blocksA number of basic circuits and circuit techniques can be used to advantage in designingdigital neural networks. This section is not intended to be a thorough presentation of digitallogic design, as there are many excellent sources for this [54, 74, 77, 33]. Rather, we assumea familiarity with the basics and seek to highlight speci�c structures which are especiallyuseful in designing digital neural network arithmetic elements, memory, and noise sources.11
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5.5.2 SRAMFigure 6 shows a variety of SRAM circuits. Commercial SRAMs are normally implementedusing a high resistance poly pullup, and can achieve densities only a factor of 4 worse than1T DRAM.5.5.3 Logic processesThe trench capacitors in DRAMs and high resistance poly pullups in SRAMs are not nor-mally available in standard logic processes. A one-transistor DRAM was fabricated throughMOSIS [23, 73], although the cell was quite large (18:75� � 13:75� (258�2).5.5.4 Multi-level storageSeveral researchers have reported techniques to store multiple levels in a single DRAM cell.The �rst were Heald and Hodges [31] in 1976. More recently, Aoki, Horiguchi, and colleagues[8, 40] reported 16 levels per cell in 1987. More levels might be achievable in neural networkssince errors will always be small. Weight decay could be implemented by under-refreshingthe memory.5.5.5 Sense ampli�ersFigure 7 shows a high performance di�erential dense ampli�er reported in [17], and recom-mended for use with 1T DRAMs. This sense amp has the nice property that the crosscoupledinverters automatically perform a refresh write after read.Figure 8 shows a current mirror sense ampli�er similar to one reported in Aizaki et al [3] in1990.Figure 9 shows a single ended sense amp which can be used with ROMs, 3T DRAMs, andsingle-ended SRAMs.5.6 Noise sourcesNoise plays an important role in many neural network algorithms. Generating a large numberof uncorrelated noise sources is a hard problem. Joshua Alspector and colleagues havedeveloped an area-e�cient technique which they have implemented on their CLS chip [5].They give this subject a thorough treatment in [6].5.7 Stochastic computation 16
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Stochastic computation implements multiplication and addition using probabilities. It isparticularly e�ective when a computation can be spread out over many cycles. This isoften the case in neural network learning, where the network evolves incrementally overmany cycles. Stochastic techniques have been applied successfully to Hop�eld networks [42],competitive learning networks [16], and Boltzmann machines [7, 5].Figure 10 shows the two basic operations: multiplication by ANDing pulse streams (P (AB) =P (A)P (B)), and addition by ORing (P (A + B) = P (A) + P (B) � P (AB)). The P (AB)term in the probabilistic addition limits the available dynamic range of the computation.Although stochastic techniques are very e�cient at implementing local computation, theyare much less e�cient communicating globally because the energy required to transmit datawith a dynamic range of N is proportional to N rather than to log(N) as in standard digitalencoding.Good discussions of stochastic computation can be found in [20, 52, 21].6 Area, performance, and power estimationWe have developed a simple area, performance, and power estimation technique which we useto construct spreadsheets in the early stages of architectural exploration, feasibility analysis,and optimization of a new design. Area is computed by estimating the number of transistorsrequired. Performance is estimated by building an RC timing model of the critical paths intothe spreadsheet. Power is estimated using CV 2f , where f is obtained from the performancesection of the spreadsheet.Area, performance, and power are parametrized by technology. We have a \technologysection" of the spreadsheet where we build in technology scaling rules to compute transistortransconductance and device parasitics.6.1 Area estimationWe use a simple technique to estimate area of chips before we build them. We identifythe major resources on the chip, and estimate the number of transistors for each resource.We then multiply the number of transistors in each case by an area-per-transistor whichdepends on how regular and compact we think we can make the layout. One-transistorDRAM and ROM are about 100�2=xstr. 3T DRAM and 6T SRAM are about 200�2=xstr.Tightly packed, carefully handcrafted logic is also about 200�2=xstr. Loosely packed fullcustom logic is about 300�2=xstr. Standard cells are about 1000�2=xstr.Block routing takes about 30% of the chip area. Standard cell routing takes 60% of the block.The pad frame reduces the die by about 1mm. For example, the largest die available on astandard MOSIS run is 7.9x9.2mm. Of this, 6.9x8.2mm, or 56.58mm2, is available for logicand routing. Of this, 17mm2 is routing, and 40mm2 is logic. In 2 micron CMOS, lambda =1 micron, so there is room for 133,000 transistors at 300�2=xstr20



The number of transistors required to implement a function can vary signi�cantly dependingon the design style. For example, a full adder implemented with gate logic requires about30 transistors. However, it can be implemented in 15 transistors using pass-transistor logic.Which is best depends on desired performance and power dissipation, input drive and outputload.We maintain a list of leafcells, the number of transistors they require, and their area-per-transistor, which we reference in estimating requirements of new designs.We also have a set of \tiling functions" which we use to construct complex blocks. Forexample, an N�M bit multiplier requires roughly NM full adders, whether it is implementedas an array or a tree.This technique is especially well suited to spreadsheet implementation, and is especiallyuseful during the early stages of architectural exploration and feasibility analysis in an area-limited design.6.2 Performance estimationWe estimate performance using a simple RC timing model based on the RSIM simulator [72],in which transistors are calibrated to have an e�ective resistance charging or discharging anode capacitance.We build the following equations into our spreadsheet models to allow the performance esti-mates to scale with technology. The symbology of these equations follows the developmentin Hodges and Jackson [37].Effective resistance of transistorsIlin = k/2(2 * (Vgs-Vt) * Vds - Vds^2) Vds <= Vgs - VtIsat = k/2(Vgs - Vt)^2 Vds >= Vgs - VtIav = integrate(I * dt)/Treff = DV / Iav= const * kkn = un * cox kp = up * cox A/V^2rn = 1/kn/(Vdd - Vt) rp = 1/kp/(Vdd - Vt) ohms/sqRn = rn * l / w Rp = rp * l / w ohmsParasitic capacitancecg = eox / tox farad/m^2cox = cg farad/m^2xj = (2*esi/q/NA*(V-Vt))^.5 meters21



cj = esi / xj farad/m^2cjsw = 3 * cj * xj = 3 * esi farad/mci = eox / hi farad/m^2cisw = ci * ti farad/mPropagation delaytpu = Rp * (Cd + Ci + Cg) sectpd = Rn * (Cd + Ci + Cg) sec6.3 Power estimationThere are three principal components to power dissipation in most CMOS systems:Pdc = V 2=RdcPsc = IscVPac = CV 2fwhere V is the supply voltageC is the total capacitance being switchedf is the clock frequencyRdc is the total static pullup or pulldown resistanceIsc is the short-circuit currentPdc is the power dissipated at DCPsc is the power dissipated due to short-circuit currentPac is the power dissipated by switching capacitance.Pdc can be designed out of a system, except leakage, which is usually on the order of a fewmicrowatts [14, 30], but Psc and Pac cannot. In a CMOS inverter, Isc is the current which
ows when both the nfet and pfet are on during switching. Powell and Chau [62] havereported that Psc can account for up to half the total power.We have done some investigations which suggest that the short circuit current can be signif-icant if rise times are long and transistors large, and that in most cases Psc can be reducedto less than 10% of total power by sizing transistors. This implies that short circuit currentcan be more of a problem in gate array or standard cell design, where transistors are �xedsizes or are sized to drive large loads.Consider a single CMOS inverter driving a purely capacitive load. Initially, assume the gateis at 0 volts, so the pfet is on, the nfet is o�, and the output is at 5 volts. Now, switch thegate from 0 to 5 volts. Ideally, the pfet should turn o� instantly, the nfet should turn on and22
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Figure 11: short circuit currentdrain the charge o� the output (actually supply electrons to the output) until the outputpotential reaches 0 volts. The work done (or energy consumed) by the inverter is just QVwhere Q is the charge on the output and V is the initial potential di�erence between theoutput and GND. But Q = CV so the work done is CV 2.In practice, the input does not switch instantly, so both the nfet and the pfet are on for ashort time, causing excess current to 
ow.We measured the short circuit charge for a variety of transistor sizes, rise times, and outputloads using spice [58] on a typical 2 micron CMOS technology from MOSIS.Figure 11 shows the current 
owing through vdd and gnd supplies as the gate is switched�rst from 0 to 5 volts between 2ns and 7ns, and then from 5 to 0 volts between 40ns and45ns. The short circuit current in each case is the smaller spike; it is the current 
owingthrough the supply which should be o�. The short circuit charge is the area under the shortcircuit current. In the �gure the short circuit charge is about 15% of the charge initially onthe output, so Psc will be about 15% of Pac.Figure 12 shows short circuit charge as a percentage of output load vs input rise/fall time.Each graph has a pair of curves for each of 5 output loads: 0, 100, 200, 500, and 1000 fF.One curve in each pair is for a rising input, the other for a falling input. The short circuitcharge for a given output load is nearly the same whether the input is rising or falling. Thepair with no output load has the largest short circuit charge.The short circuit charge is negative for fast rise times because the coupling capacitancebetween the gate and the fet drains pulls the output above 5 volts. This deposits additional23
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charge on the output which must then be removed. So there is an energy cost associatedwith switching an input too fast, and a �nite rise time at which the net short circuit chargeis exactly zero.We want to investigate this phenomenon in more detail, and see if we can modify ourtransistor sizer to take advantage of it. We also want to extend our analysis to complexgates, and other logic design styles.In practice, we estimate power in a variety of ways. In some cases, when we have experienceor know statistically what percentage of the nodes are switching, we use CV 2f . In othercases, we use Powell and Chau's power factor approximation (PFA) technique, which usesthe energy of existing devices to predict new ones. In still other cases, when the devices havean analog behavior, such as sense ampli�ers in memories and reduced voltage swing logic,we use spice to compute current and integrate to �nd charge dumped.We have modi�ed the RSIM timing simulator to accumulate the charge dumped as nodesswitch during simulation. This is easy to do if the simulator is event driven. We comparedRSIM's results on a signal processing chip we fabricated through MOSIS [13] with powermeasurements done on a performance tester and found agreement to within 20%.6.4 Technology scaling rules and examplesTo scale area, performance, and power to a desired technology, we build into our spreadsheetthe parameters of a base technology (2.0 micron CMOS in our case; �0 = 1:0�), computeS = �0=�, and apply the equations in table 2. We leave V , the supply voltage, explicit sowe can compare the impact of \constant voltage" scaling and full scaling. These equationsfollow the development in Hodges and Jackson [37].Table 3 shows how actual 2� numbers would look scaled for a range of technologies. In thetable, R(12:2) is the e�ective resistance of a 12��2� transistor. Cg, Cd, and Ci are nominalgate, di�usion, and wiring capacitances. tgate is the propagation delay of a single gate. t4:2is the propagation delay of a 4:2 adder.Table 4 shows typical spice parameters for di�erent technologies. The \exp" row in the tableshows the exponent which would be supplied to spice. For example, for 2.0�, tox=403e-10.cpa, m1a, and m2a are area capacitance of polysilicon, metal1, and metal2 in farads/meter2.The information for 2.0, 1.6, and 1.2 � technologies was obtained from MOSIS. 16 runs wereaveraged in each technology, and the deck closest to the mean was selected as nominal. The0.8 micron information was obtained from a much smaller dataset.These technologies all run at 5 volts, so S2 performance is predicted by the formulas in Table2. However, Table 4 shows that mobility, uo, is not constant. Comparing 2.0� and 0.8�, uois scaling as 1/S1=2. Now R scales as 1=S=V=uo = 1=S1=2=V and C as 1=S so propagationdelay tp should then scale as 1=S3=2=V .According to Hodges and Jackson, mobility is a function of substrate doping, NA. NAincreases as � decreases. AsNA increases, collisions becomemore likely so mobility decreases.25



param scaling descriptiontech Stox 1=S gate oxidecox S gate capacitanceuo 1 mobilityk S transconductancer 1=S=V resistancexj V 1=2 junction depthcj 1=V 1=2 di�usion capacitancecjsw 1 di�usion sidewall capacitancehi 1=S metal elevationti 1=S metal thicknessci S interconnect area capacitancecisw 1 interconnect sidewall capacitanceR 1=S=V device resistanceC 1=S device capacitancetp 1=S2=V propagation delayI SV 2 currenti S3V 2 current densityp SV 3 power per deviceP S3V 3 chip power dissipationTable 2: Technology scaling
26



tech 2.0 1.6 1.2 1.0 0.8 0.6S 1.0 1.3 1.7 2.0 2.5 3.3S2 1.0 1.7 2.9 4.0 6.3 11.0clk S2 20 34 58 80 125 220 MHzclk S2 80 136 232 320 500 880 MHzR(12:2) 1=S 6.0 4.6 3.5 3.0 2.4 1.8 kohmCg 1=S 20.0 15.4 11.8 10.0 8.0 6.1 �Cd 1=S2 40.0 23.5 13.8 10.0 6.3 3.6 �Ci 1=S 40.0 30.8 23.6 20.0 16.0 12.2 �tgate 1=S2 1.38 0.81 0.48 0.35 0.23 0.13 nsect4:2 1=S2 12.5 7.35 4.31 3.13 1.98 1.14 nsecTable 3: scaling exampletech u0n u0p cgdon cgdop cjswn cjswp xjn xjp nsubn nsubpexp 0 0 -12 -12 -12 -12 -9 -9 +15 +152.0 631 237 298 285 548 334 250 50 5.76 6.241.6 583 186 573 494 588 1841.2 574 181 628 324 423 1590.8 447 101 229 271 200 200 157 138 85.58 79.65tech tox cpa cjn cjp m1a m2aexp -10 -6 -6 -6 -6 -6 tox 1=Scpa S2.0 403 388 130 262 26 19 cjn S3=21.6 250 573 140 432 35 23 cjp S1.2 209 644 293 481 36 24 m1a S0.8 170 794 547 570 79 31 m2a S1=2Table 4: nominal process parameters for di�erent technologies27



tech tpd MHz Vdd MHzconstV scaleV2.00 10.83n 92 51.60 7.58n 132 51.40 6.12n 163 51.20 4.78n 209 51.00 3.57n 280 50.80 2.50n 400 50.60 1.58n 634 3.3 4180.50 1.18n 849 3.3 5600.40 825p 1213 3.3 8010.30 520p 1921 3 11530.25 389p 2572 3 15430.10 90p 11143 2 4457Table 5: 4:2 adder-based clock circuit performanceIf the increase in NA is necessary to prevent breakdown in the presence of higher E �elds inconstant voltage scaling, then presumably NA could be kept constant if V were scaled.Table 5 shows predicted performance of Mark Santoro's self-timed 4:2 adder based clockdriver [68] in various technologies based on both constant V (S3=2) and scaled V (S). Thenumbers are in good agreement with observed performance at 2.0, 1.6, and 0.8� CMOS.Extrapolations below 0.5� are highly speculative. They serve as an upper bound on expectedperformance.Process variations can impact performance signi�cantly. We have found the ratio of \fast-fast" models to \slow-slow" models to be a factor of two in performance, with \typical"models right in the middle. ff=typ = typ=ss = p2ff=ss = 2Performance degrades by a factor of 1.8 from 25degC, 5V to 130degC, 4.5V. Worst caseperformance can therefore be as much as four times slower than best case when process andtemperature variations are combined.7 Design techniques for maximizing performance28



const V scale Vdevices/area S2 S2speed S2 Sops/sec/area S4 S3energy/op 1=S 1=S3power/area S3 1Table 6: Energy scalingFor many problems in signal processing, performance can be maximized by maximizingpipelining and parallelism. This is an excellent technique for small and medium scale sys-tems with generous power budgets. But as systems get very large, the level of parallelismachievable either by pipelining or replication will be limited by power considerations. Table6 suggests that scaled voltage is the way to go for implementing very large networks.In highly pipelined systems, performance is maximized by placing pipe stages so delay is thesame in every stage. This requires good timing analysis and optimization tools.As technology scales, the clock rates achievable by highly pipelined structures will be di�cultto distribute globally. Self-timed iterative circuits can save area by performing high speedlocal computation.8 Technology scaling of VLSI neural networksWe have applied the area and performance estimation techniques described in Section 6to three di�erent inner product processor architectures. The �rst (SP ; see Figure 13) hasone processor per synapse. The second (NP ; see Figure 14) has one processor per neuron,with the synaptic weights stored in memory local to each processor, similar to the AdaptiveSolutions X1 architecture. The third (FP ; see Figure 15) has a �xed number of processorson chip, and o�-chip weights.SP has the lowest synaptic storage density but the highest computational throughput. FPhas the lowest throughput, but the highest synaptic storage density and unlimited capacity.The number of processors which can be placed on a single FP is I/O limited. Assuming 4bit weights, 128 pins would be required to support 32 processors. The I/O constraint can besubstantially alleviated with multichip module (MCM) packaging [41]; this allows far more
exibility in choosing die size and system partitioning.8.1 Technology and performance scaling of inner product pro-cessors 29
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Figure 13: SP: one processor per synapse
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chipFigure 15: FP: o�-chip weights
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Figure 17: waferscale integration at 1.0�In Figure 16 we plotted the technology scaling trendlines of the SP , NP , and FP ar-chitectures on the DARPA-style capacity-vs-performance graph, along with the DARPAapplication requirements.In Figure 17, we plotted the waferscale integration trendlines of the three architectures. TheFP architecture has two trendlines. Since its weights are o�chip, a waferscale implementationhas the option of replicating memory alone. In this case performance remains constant, butcapacity improves. Interestingly, of the options shown, this one most closely matches therequirements of the DARPA applications.In Figure 18, we derive the architecture from the application and the technology. In avery rough sense, an application can be characterized by its capacity and performance re-quirements. An architecture can be loosely de�ned in terms of the connections servicedby a processor. For example, the SP architecture has one connection per processor. Thetechnology de�nes the available performance. According to Figure 18, the product of theavailable performance and the ratio of the desired capacity and performance determines thearchitecture.Figure 18 suggests that SP is most appropriate for the signal processing application in 2.0micron CMOS, but that NP is more appropriate in 1.0 and 0.6 micron. By comparing chipDRAM capacities in the table (5 bit weights), we see that the FP architecture is best in all33



Applications and architectures

connections/processor =
connections/system

connections/sec/system
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Figure 19: the Stanford Boltzmann Engineother cases except speech and vision-1 in 0.6 micron, where NP is best.9 The Stanford Boltzmann EngineBoltzmann machines [34, 1, 7, 35, 60] are a special class of neural networks whose learning al-gorithm can be shown to minimize a global energy measure using only local information. Thenetwork contains recurrent connections (feedback), which can result in multiple responses toa single stimulus depending on the time evolution of the neural activations in the presenceof noise.Alspector has shown that both the deterministic (mean �eld) and stochastic variations ofthe Boltzmann learning algorithm can learn NETtalk [69] as well as the backpropagationalgorithm. He says the computational e�ort of mean �eld learning is 3� backprop; stochasticis 100�.Three Boltzmann chips have been implemented to date [7, 9, 5]. Each uses an analog currentsum and adaptive synaptic processors.We are implementing a fully digital Boltzmann engine (see Figure 19) which stores synapticvalues and neural activations in one-transistor dynamic RAM and implements the wijxjproducts with 64 pipelined 5�5-bit multiplier accumulators operating in parallel. We aredesigning for 80 MHz operation, 100 pJ per connection in 2 micron CMOS, and a feedforward35



computation rate of 5 GCPS.During Boltzmann learning, the chip will complete one anneal step every 800 nsec. With 32temperatures in the anneal schedule (we have found that an N neuron network needs aboutN=2 temperatures in the anneal schedule), the chip will process one training vector every 25�sec, and learn to identify it in 100 to 1000 presentations. Because the implementation ispurely digital, previously learned weights can be up- and down-loaded between the chip anda host.Our simulations indicate 5 bits of precision are su�cient for both neural activations andsynaptic weights, and that as few as 3 bits can be used with \probabilistic update", whereinan available weight value is selected with probability proportional to a higher precisionaccumulated inner product.We plan to implement a single sigmoid unit as a lookup table. We plan to implement thetemperature multiplier using reduced precision 
oating point with a 2 bit mantissa and a 4bit exponent.The multiplier-accumulators accumulate in carry-save form using 4:2 adders to reduce hard-ware and increase performance. To avoid delivering data to the sigmoid unit in carry-saveform, a few extra cycles are appended to the accumulation to 
ush the carries.There are two weight update processors, since N2 weights need to be updated every N2=2cycles (N cycles per inner product product �N=2 temperatures).10 Large networksVLSI faces formidable obstacles implementing large neural networks. Although the net-works are massively parallel, there is evidence that communication is predominantly local[11, 64, 53]. Furthermore, neurons are slow compared to VLSI, assuming a simple neuronmodel, implying that computation and communication should be time multiplexed. Digitalimplementations lend themselves well to time multiplexing, but this requires a projection orfolding of the network onto the hardware.Rudnick and Hammerstrom of the Oregon Graduate Center Cognitive Architecture Projectwrote an excellent paper on a waferscale architecture for large scale neural networks [64].They describe a waferscale communication architecture involving dual concentrate/broadcastdomain trees. They assume that most communication is local, and that when a neuralactivation changes, it is broadcast to the smallest domain that completely contains its fanout.Most often, this is just its nearest neighbor, but it could be the entire network.10.1 Energy/powerCarver Mead wrote an excellent paper for the October 1990 Proceedings of the IEEE [53],in which he discusses the energy requirements of electrical and biological systems. He makes36



the point that in systems on the scale of human cortex, with 1016 synapses, the energybudget is a primary constraint. The human brain consumes a few watts, so each synapticcomputation is constrained to require on the order of 0.1fJ.In 2� CMOS, a single minimum size (4 � 2) transistor is 7fF. That translates to 175fJ at5V. Cg scales as 1=S. In 0.5� CMOS, a single minimum size transistor is 1.75fF, or 16fJat 3V. Projecting a few years down the road to 0.1� technology, and 1V supplies, a singletransistor might consume 0.350fJ.Mead maintains that the energy required to switch a single transistor is comparable to theenergy to perform one complex synaptic computation in a biological network, and that digitalsystems switch about 10000 transistors to perform a single operation, making them 10000times less e�cient than biological systems.A 5x5 bit multiplier-accumulator can be built using roughly 1000 transistors such that onlyabout 100 switch during a computation, so we might hope to get within a factor of 100 ofbiology using reduced precision digital arithmetic.There is also an energy cost associated with retrieving synaptic weights from a memorystructure. If the synaptic store is divided into 64x64 bit blocks, only one of which is accessed,about 100 transistors will switch retrieving a weight from the memory.There is also an energy cost associated with the sigmoid, but it is insigni�cant since it onlyhappens once for every 10,000 synaptic computations.There is also an energy cost associated with delivering an activation to its synaptic destina-tions. This is probably a small percentage of the synaptic computation cost if connectivityis predominantly local, and each processor handles a large number of neurons.There is also an energy cost associated with learning. Hebbian learning [32], dwij = �sisj,could be implemented with a single multiplier, and could be kept to a fraction of the synapticcomputation cost by slow adaptation.So it looks like synaptic computation and weight retrieval dominate the energy cost in adigital network, and that this cost can be brought within a factor of a few hundred ofbiology (see Figure 20).10.2 Sparsely connected netsIf the network topology is not physically expressed in the hardware, then it must be foldedonto the hardware topology. This folding results in time multiplexed utilization of resources,and requires labeling of interconnections. Unless the network topology can be reconstructedalgorithmically, data 
owing in the system will have to be labeled. Another way of sayingthis is that as soon as the network becomes sparse, state information in the network (neuralactivations and synaptic weights) must be accompanied by an address. In the limit, thiswould increase memory storage requirements by a factor of 37 (since 237 = 1011), which,though onerous, is far better than implementing a fully connected network, which wouldincrease memory storage requirements by a factor of 106.37
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neurons APS synapses CPS[53] - - 1016 1016[76] 1011 1013 1014 1016Sejnowski PNS 109 1012 1013 1016Sejnowski CNS 1011 1011 1015 1015Table 7: Cortical statisticsconnected networks, or networks whose pattern of connectivity is the same for every neuron,id storage can be eliminated, since weights can be allocated to processors in a completelyuniform way.If any subset of the network has a regular connection pattern, then id storage for the neuronsin that subnet can be eliminated. For example. in a multilayer feedforward net, if each pairof adjacent layers is fully connected, then only one id is needed in each layer to identify theentire \block" of connections. All the connections within that block can be computed as afully connected set relative to a single base address.The number of block ids which must be stored is equal to the number of tiles requiredto cover the nonzero entries in the weight matrix. There is a signi�cant tradeo� in tilingfunction complexity and 
exibility. The more powerful the tiling function, the higher itscomputational cost. The objective is to �nd a set of functions and a tiling of those functionswhich maximizes coverage and minimizes overlap, at modest computational cost.10.3 Biological complexityVLSI may have been oversold in its ability to provide su�cient resources for large scalenetwork computation. It is tempting to endow VLSI with essentially limitless capabilities,so that any problem, no matter how intractable, can be solved. In neural networks, VLSI mayhave met its match. The major challenges are computation, communication, and memory.Since silicon is much faster, computation, and communication can be time multiplexed.Memory, however, cannot.Table 7 gives some published estimates of performance and capacity of the human cortex.Tables 8 and 9 further re�ne those estimates into peripheral and central nervous systemoperations.The bandwidth of a single metal wire is somewhere between 10 Mbit/sec and 1 Gbit/sec, de-pending on the technology. In the peripheral nervous system (PNS), the average bandwidthof a single nerve �ber is somewhere around 1 Kbit/sec. Therefore each silicon wire couldcarry the information of roughly 105 PNS neurons. In the central nervous system (CNS),39



109 neurons103 activations/sec/neuron104 fanout1013 synapses1012 activations/sec1016 connections/secTable 8: Peripheral nervous system capacity and performance1011 neurons1 activation/sec/neuron104 fanout1015 synapses1011 activations/sec1015 connections/secTable 9: Central nervous system capacity and performancethe average bandwidth of a single axon is around 1 bit/sec, so each silicon wire could carrythe information of roughly 108 CNS neurons.The computational bandwidth of a neuron is much more di�cult to quantify because itdepends to an overwhelming extent on the logical complexity of the model used to describeit. The secret is to �nd a good match between the set of available logic elements and thealgorithm to be implemented.Table 10 suggests that a single VLSI processor could conceivably process 109 synapses persecond, and might therefore handle 102 PNS neurons or 105 CNS neurons. 107 PNS pro-cessors and 106 CNS processors would be required. Each PNS processor would service 106synapses; each CNS processor 109 synapses. PNS CNSprocessors 107 106neurons/proc 102 105synapses/proc 106 109Table 10: Cortical processor architectures40



tech syn/cm2 macs/cm2 CPS/cm2 cm2=1015syn cm2=1016CPSS2 S2 S3 S2 S32.00� 1e6 1e2 1e10 1e9 1e61.00� 4e6 4e2 8e10 2e8 1e50.50� 2e7 2e3 6e11 4e7 1e40.25� 1e8 6e3 5e12 1e7 2e30.10� 1e9 4e4 8e13 1e6 1e2Table 11: Capacity and performance (scale V)Table 11 suggests that the synaptic storage problem is four orders of magnitude more chal-lenging than achieving adequate performance. It also suggests that achieving comparablecomputational bandwidth is perhaps feasible, but that comparable storage capacity will re-quire a technological breakthrough. The capacity numbers assume only one storage cell isrequired per synapse. Analog synaptic cells reported so far are two orders of magnitudelarger (see Table 12).The size of an individual synaptic storage element is the major limiting factor in determiningthe size of a network.Table 12 illustrates the wide range in synaptic densities among reported alternatives.Until someone comes up with a much more area e�cient analog synaptic cell, or until tech-nology scales well below 0.1 micron, adaptive analog synapses will remain too big to scaleup to biology. The only VLSI chance for large nets is 1T DRAM or 4T SRAM.Leakage current, according to Chatterjee et al[14], is 3fA/�2, and is a strong function oftemperature. A 0.5� 1T DRAM storage node with an area of 2�2 has a leakage current of6fA/bit. That's a total leakage current of 6 amps for 1e15 bits.An important consequence of these observations is that neurochip architectures which em-phasize computational bandwidth but have low synaptic storage densities will not scale wellto large networks.11 ConclusionDigital VLSI can be used to implement a wide variety of neural networks. Both very highperformance and very large scale networks can be implemented e�ectively, especially as41



type � � � �2 �2=T rel.area who1T EPROM 8�8 64 64 1 commercial1T DRAM 8�8 64 64 1 commercial4T SRAM 12�20 240 60 4 commercial1T DRAM 8�16 128 128 2 MOSIS2T DRAM 13�31 403 200 6 MOSIS3T DRAM 24�24 576 192 9 MOSIS6T SRAM 32�36 1152 192 18 MOSIS7T synapse 40�60 2400 342 37 [48]??T ETANN 83�97 8036 ?? 125 [38]42T synapse 200�200 40000 952 625 [9]200T CLC 160�320 51200 256 700 [5]Table 12: Area of various synaptic cellstechnology scales down into the submicron regime. There is a tradeo� between performanceand 
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