
electronics

Article

Fast Convolutional Neural Networks in Low Density
FPGAs Using Zero-Skipping and Weight Pruning

Mário P. Véstias 1* , Rui Policarpo Duarte 2 , José T. de Sousa 2 and Horácio C. Neto 2,

1 INESC-ID, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa,
1959-007, Lisbon, Portugal; mvestias@deetc.isel.ipl.pt (M.V.);

2 INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal;
rui.duarte@tecnico.ulisboa.pt (R.D.); jose.desousa@inesc-id.pt (J.S.), hcn@inesc-id.pt (H.N.)

* Correspondence: mvestias@deetc.isel.ipl.pt; Tel.: +351 218 317 000

Received: 30 September 2019; Accepted: 6 November 2019; Published: date
����������
�������

Abstract: Edge devices are becoming smarter with the integration of machine learning methods, such
as deep learning, and are therefore used in many application domains where decisions have to be
made without human intervention. Deep learning and, in particular, convolutional neural networks
(CNN) are more efficient than previous algorithms for several computer vision applications such as
security and surveillance, where image and video analysis are required. This better efficiency comes
with a cost of high computation and memory requirements. Hence, running CNNs in embedded
computing devices is a challenge for both algorithm and hardware designers. New processing devices,
dedicated system architectures and optimization of the networks have been researched to deal with
these computation requirements. In this paper, we improve the inference execution times of CNNs in
low density FPGAs (Field-Programmable Gate Arrays) using fixed-point arithmetic, zero-skipping
and weight pruning. The developed architecture supports the execution of large CNNs in FPGA
devices with reduced on-chip memory and computing resources. With the proposed architecture, it
is possible to infer an image in AlexNet in 2.9 ms in a ZYNQ7020 and 1.0 ms in a ZYNQ7045 with
less than 1% accuracy degradation. These results improve previous state-of-the-art architectures for
CNN inference.

Keywords: Deep learning; convolutional neural network; smart edge devices; zero-skipping;
pruning; FPGA

1. Introduction

Artificial intelligence associated with image classification [1] is largely used in computer vision
applications improving computer vision tasks, such as image classification, object detection, and image
segmentation. When used in edge devices, these methods and algorithms turn embedded devices into
smart systems that can take decisions based on the smart analysis of collected data.

Deep neural networks (DNN) have attracted the attention in the field of artificial intelligence due
to its abilities to achieve data classification accuracy close to that achieved by humans. A type of DNN
used to classify images is the convolutional neural network (CNN) that identifies correlations among
data inputs in order to classify them. For example, it can identify correlations between pixels of an
image to identify the objects present in an image. Any DNN is made of a series of layers of connected
neurons each with an associated weight similar to the neuron structure of a human brain. After being
trained, the DNN can classify new data not seen during the training phase.

CNNs have a particular class of layers in the hidden layers known as convolutional. In these
layers, a set of 3D convolutions are executed between groups of weights (3D kernels) and input maps
produced by the previous layer to produce a set of output maps for the next layer. This large number

Electronics 2019, xx, 5; doi:10.3390/electronicsxx010005 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-8556-4507
https://orcid.org/0000-0002-7060-4745
https://orcid.org/0000-0001-8556-4507
https://orcid.org/0000-0001-8556-4507
http://www.mdpi.com/2079-9292/xx/1/5?type=check_update&version=1
http://dx.doi.org/10.3390/electronicsxx010005
http://www.mdpi.com/journal/electronics


Electronics 2019, xx, 5 2 of 25

of convolutions permits to discover features of the image. The final layers of a CNN are usually fully
connected (FC), whose name derives from the fact that all nodes of a layer are connected to all nodes
of the previous layer. The last fully connected layer outputs the result of the inference with each node
corresponding to a class probability. Convolutional and fully connected layers are the main layers of a
CNN.

The number and type of layers and kernels determines the accuracy of the network. The first
CNNs were regular networks based on the main two layers described. The first well known CNN
was LeNet [2] with a total of 60K weights distributed by five layers. The network was applied
for digit classification with small images. A much larger CNN, AlexNet [3], was presented in the
ImageNet Challenge for image classification, with five convolutional layers followed by three fully
connected layers with a total of 61M weights and 724 MAC (Multiply-ACcumulate) operations to
process images of size 224 × 224 × 3 with a Top-5 error rate around 15 %. Another well known
regular CNN model is VGG-16 [4] with 16 layers, 2.2×more weights than AlexNet and 15.5 GMAC
(Giga Multiply-ACcumulate) operations with a Top-5 error rate around 7%.

Other networks have followed, such as the GoogleNet [5], with a new type of layer: the inception
module, consisting of parallel convolutions. GoogleNet is a deep CNN with 22 layers with a total of
6M weights and 1.46 GMACs to process a single image. Besides the inception layer, other modifications
such as 1× 1 convolutions have improved the accuracy of GoogleNet when compared to previous
models.

The first CNN exceeding human level accuracy was ResNet [6], which won the ImageNet
Challenge in 2016 with 152 layers. ResNet introduced a new module that contains an identity
connection to reduce the complexity of the training and, similar to GoogleNet, also uses 1 × 1
convolutions. The model consists of 60M weights and a total of 11.3 GMACs.

Several other CNNs were proposed in the last years, some regular and some irregular with layers
different from the usual convolutional and fully connected layers. Running any of these networks in
an embedded system with strict performance, memory and energy constraints is a challenge because
of the high number of weights and operations. Therefore, it is very important to find efficient methods
and architectures to run large CNNs in low cost embedded platforms.

In this paper, a set of optimization techniques, namely fixed-point representation, zero-skipping,
dynamic pruning and coarse weight pruning, are used to improve the inference execution time and
reduce memory requirements of a state-of-the-art configurable architecture [7] designed for running
CNN in low density FPGAs (Field-Programmable Gate Arrays) for smart embedded computing.
The architecture supports the execution of large CNN in FPGA devices with small on-chip memory
size and low resources. The baseline architecture considers the following optimizations:

• Fixed-point quantization: Activations and weights are represented with fixed-point format
whose size can be different for each layer.
• An efficient method is used to calculate the convolutional layers that is independent of the size

of the convolution window.
• Image batch: Convolutional layers are run for multiple images before running the fully connected

layers.
• Convolutional and fully connected layers run with dedicated modules improving the

implementation of each type of layer.

This paper improves the baseline architecture with the following techniques:

• Zero skipping in the convolutional layers where multiplication with zero valued activations
are skipped;

• Dynamic zeroing of activations in convolutional layers; and
• Coarse pruning of fully connected layers where blocks of redundant weights are cut reducing

the memory size required to store them and the number of operations.



Electronics 2019, xx, 5 3 of 25

The paper is organized as follows. Section 2 describes the related work on FPGA implementations
of CNNs and optimization methods based on data reduction. Section 3 describes the fundamentals
of convolutional neural networks. Section 4 describes the baseline architecture for CNN execution of
large CNNs in low density FPGAs. Section 5 describes the architectural modifications of the baseline
architecture to support the set of optimization techniques. Section 6 introduces a model of the proposed
architecture to help in the design of a dedicated architecture for CNN inference. Section 7 describes
the results obtained with the proposed architecture. Section 8 concludes the paper.

2. Related Work

Devices and platforms for smart embedded computing must have low energy consumption and
be low cost. Therefore, high performance devices are in general not appropriate since they either have
high energy consumption or low power efficiency and are relatively expensive. Embedded processors
achieve only a few dozen GFLOPs (Giga FLoating-point Operations Per second) with low power
efficiency insufficient for real-time or almost real-time processing of CNNs. GPUs (Graphics Processing
Units) offer thousands of GFLOPs at the cost of high energy consumption not appropriate for embedded
computing. Dedicated high-performance processors (e.g., Tensor Processing Unit, TPU) with dozens
of TOPs (Tera Operations per second) and high energy efficiency have high energy consumption and
are therefore inappropriate for edge computing. Thus, the options are embedded GPUs, FPGAs and
dedicated hardware solutions with application specific integrated circuits (ASICs). Dedicated solutions
are the most efficient but very limited in terms of configurability and thus unable to keep with the fast
dynamic evolution of neural networks. FPGAs are less efficient but very hardware flexible and can be
tailored for each particular neural network.

FPGAs run CNN inference with high performance efficiency, because they can be reconfigured to
best implement each different CNN model. Depending on the FPGA family, hundreds or even thousands
of GFLOPs were already obtained in the execution of a CNN inference. FPGA implementations of
CNNs started with small networks [8,9] and/or considering only convolutional layers [10] and now
full CNN implementations [11] and automatic tools for the generation of CNN accelerators [12] are
available.

In [13,14], FPGA implementations of complete CNN models were proposed. The former uses
an architecture similar to that proposed in [10]. These works consider a flexible architecture that
can run any convolutional layer with different shapes and sizes of convolution windows. The
problem of this architecture is that the performance efficiency varies with the window sizes of
convolutions. To eliminate this performance variability with the window size, Suda et al. [14]
implemented convolutions as matrix multiplications by rearranging the input maps of the layer.
However, the solution introduces a large overhead associated with the memory accesses and execution
times necessary to rearrange the input maps. This overhead was partially eliminated in [15] using an
accelerator for matrix multiplication and dedicated units to convert the inputs maps into a matrix.

A different direction was followed in [16] that instead of a flexible structure to run any layer,
the authors proposed a pipelined architecture with a layer in each pipeline level. The work achieves
445 GOPs (Giga OPerations per second) (data represented with fixed-point 8–16 bits) in a Virtex7
VX690T. The approach permits the optimization of the architecture for each layer but requires other
techniques such as fused layers [17] to account for the extra memory required to store intermediate
maps and weights. A mid-term solution was proposed by Shen et al. [18]. They mentioned the
inefficiencies of a single module to run all convolutional layers, where for some layers there is an under
utilization of processing elements. On the other side, they stressed that using one hardware module for
each layer reduces the available on-chip memory for each layer, increases the complexity of external
memory accesses and increases the control structure reducing the available resources for the datapath.
Their proposal is to consider an accelerator with several execution modules, each running a subset of
the layers. The proposal achieved 2× speedup for SqueezeNet in a Virtex7 FPGA. The work by Gong
et al. [19] also proposes a fully pipelined FPGA accelerator for CNNs with 16-bit quantization and a



Electronics 2019, xx, 5 4 of 25

layer-fused technique. The architecture implemented in a small ZYNQ7020 FPGA has an acceptable
performance of 80 GOPs, but the complexity of the process referred by Shen et al. [18] reduces the
efficiency of the solution for small density FPGAs.

Recently, the authors started to focus on low density FPGAs for the implementation of CNNs.
In [20], small CNNs were implemented in a ZYNQ XC7Z020 with an average performance of
13 GOPs with weights represented as 16 bit fixed-point data. The same FPGA was used to
implemented bigger CNN models, such as VGG16, with data represented with 8 bits [21]. Their design
flow—Angel-Eye—maps CNNs onto the FPGA including some optimizations. It has a parameterizable
hardware module that is run-time reconfigured to run different layers. Data in layers are quantized with
the best fixed-point scale and bit width, showing that 8-bits are enough for state-of-the-art networks.
The architecture achieves performances of 84 GOPs with an energy efficiency 10× better than NVIDIA
TK1 and TX1. In [19], introduced above, the authors implemented a pipelined architecture with weight
pruning in fully connected layers in a ZYNQ XC7Z020 with data represented with 16-bit fixed-point
achieving 80 GOPs.

A few techniques have been proposed to improve the execution of CNNs. One of the first
techniques was data size reduction where smaller and simpler representations are used for activations
and weights. In [22], it is shown that dynamic fixed-point data representations with 8 bits guarantee
accuracies close to those obtained with 32-bit floating point. The size of data can be fixed for all
layers or optimized for each layer [23]. In [24], the trade-off between the network size and precision
was studied. They concluded that a binarized neural network requires 2–11 times more operations
and weights than a CNN with 8-bit fixed-point weights to achieve a comparable accuracy on MNIST.
The big advantage of binarized neural networks is that they are faster. The work also proposes a
framework to map a trained binarized neural network on FPGA. Each layer is computed with a
dedicated module in a pipeline fashion. The work was used to implement a network to run CIFAR-10
in a ZYNQ FPGA with performances over 2 TOPs (Tera OPerations per second).

A mixed representation of data was proposed in [25]. Different data representations for different
layers are exhaustively explored to find the best representation for the best accuracy. The approach
reduces resources and energy consumption without compromising accuracy. Running VGG16 with
mixed precision in a ZYNQ7045 FPGA achieves a performance of 316 GOPs, almost three times better
than previous approaches with fixed data size for all layers. While most authors considered fixed-point
arithmetic and reduced data size, in [26], a new floating-point representation (block floating-point) is
used with 8 and 16 bit data widths. The new representation reduces the accuracy loss and improves
arithmetic operations of floating-point data. The architecture running VGG16 in a Virtex 7 VX690T
achieves a performance of 760 GOPs.

The Winograd algorithm [27] and the Fast Fourier Transform (FFT) have been applied in the
design of CNN models [28] as methods that reduce arithmetic complexity. The FFT was also considered
in [29] but the complexity reduction is small for small kernels. A two-dimensional Winograd algorithm
was considered in [30] and applied to both convolutional and fully connected layers. The circuit was
tested running AlexNet and VGG in a ZC706 board and achieved a performance of 201 GOPs for
AlexNet and 680 GOPs for VGG16 with higher energy efficiency than a Titan X GPU. In [31], similar
results were obtained with the application of Winograd and FFT to AlexNet, ResNet and YOLO. For
example, the proposed architecture achieves 855 GOPs and 2480 GOPs running the convolutional
layers of AlexNet and VGG16 respectively in a large ZU9EG FPGA.

Another class of optimizations is known as data reduction, which includes all techniques to
reduce the number of weights and/or activations of the network model as a way to reduce the required
memory and computation of the target platform. A first approach to data reduction was proposed
in [32] where deep neural networks are compressed using pruning and Huffman coding. Pruning cuts
connections between neurons and consequently reduces the number of weights of the network. The
results show that pruning the fully connected layers of AlexNet by 91% has a negligible effect over the
network accuracy. In [33], the pruning is adapted to the underlying hardware matching the pruning



Electronics 2019, xx, 5 5 of 25

structure to the data-parallel hardware arithmetic unit. Blocks of nodes are removed iteratively until
there is a reduction in accuracy. The method was tested with a microcontroller, a CPU and a GPU. The
GPU implementation achieved a speed-up of 1.25% with a model reduction of 53%.

Pruning is typically not applied to convolutional layers since the percentage of weights in these
layers is quite below the number of weights in fully connected layers. In convolutional layers, the
bottleneck is the high number of computations. Therefore, a zero-skiping method was proposed
in [34] that avoids multiplications by activations with value zero. The work has observed that the
application of the ReLU function reduces many output activations to zero and so the number of
multiply-accumulations of the next layer can be reduced. The same work also considered dynamic
zeroing of activation outputs whenever the value is close to zero within a threshold. The problem of the
proposed architecture is that it requires large on-chip memory and memory bandwidth, which is not
adequate for low density devices, and only considers optimizations in convolutional layers. The work
was implemented in ASIC technology. In [35], an architecture implemented in FPGA was proposed that
dynamically skips computations with zeros similar to what is done in [34]. The authors kept a dense
format to store the matrix requiring that all weights be loaded from memory, and target high density
FPGAs. The NullHop architecture proposed in [36] also exploits the sparsity of convolutional feature
maps, consequence of zero activations generated by the ReLU activation function. The architecture
uses a particular sparse matrix compression scheme that reduces the required memory to store the
feature maps and reduces the memory bandwidth requirements. The proposal does not explore
intra-kernel parallelism since it accesses a single weight of a kernel at a time. With a working frequency
of 60 MHz, the peak performance of the architecture is 128 GOPs with weights represented with 16-bit
fixed-point. Running VGG16, the performance increases to 471 GOPs (the average sparsity for this
network is 3.7). In [37], the sparsity achieved with weight pruning is also explored. The proposal
considers one weight of each kernel at a time and applies kernel transformations to kernels with a
window size different than 3× 3 to a series of kernels of size 3× 3. The architecture implemented in a
ZYNQ ZCU102 running VGG16 with data represented with 16-bit fixed-point has a performance of
309 GOPs at 200 MHz.

Mixed fixed-point representation of activations and weights, zero-skipping, dynamic pruning of
activations and weight pruning are all optimization techniques that reduce the number of operations
and the number of weights in CNN. Most of these optimization schemes were only considered in large
density FPGAs or as dedicated hardware in ASIC (Applications Specific Integrated Circuit). In this
paper, an architectural solution able to integrate all these optimizations that can be implemented in
low density FPGAs for embedded computing is proposed.

The architecture proposed in this paper efficiently integrates all these optimization methods,
namely mixed fixed-point representation of activations and weights, zero-skipping, dynamic pruning
and block pruning of fully connected layers in FPGA. As far as we know, this is the first proposal
to integrate all these methods in a single architecture targeting low density FPGAs. Compared to a
baseline architecture without optimizations and to previous works, the proposed architecture improves
the inference performance of large networks up to 5.8× in a low density FPGA.

3. Convolutional Neural Networks

Convolutional neural networks consist of a series of processing layers of different types. Each layer
receives a set of input feature maps (IFM) from the previous layer and generates output feature maps
(OFM) to the next layer. In regular CNN, there are convolutional, fully connected and pooling layers.
Some works consider other type of layers in their CNNs. For example, GoogleNet [5] has the inception
layer and He et al. [6] introduced a new layer that contains an identity connection to reduce the
complexity of training. CNNs with specific layers are usually known as irregular CNNs.

The most computational intensive are the convolutional layers in which a set of 3D kernel are
convoluted with the IFMs to generate the OFMs. In this paper, we refer to the nodes of the feature
maps as activations.



Electronics 2019, xx, 5 6 of 25

Each convolution of a 3D kernel over the IFMs produce one OFM. Therefore, the number of
output feature maps generated in a convolutional layer is the same as the number of kernels at that
layer. Some convolutional layers are followed by pooling layers that sub-sample the OFMs by merging
neighbor activations into a single one using a max or average function.

The set of convolutional layers may be followed by one or more fully connected (FC) layers.
A node in a fully connected layer is connected to all nodes of the previous layer. The last FC layer
outputs the probabilities of each class of objects with one node for each class. These layers contain
most of the weights of a CNN which must be stored and transferred from external memory to on-chip
memory. Hence, they are very demanding in terms of memory space and memory bandwidth. In
addition, while in the convolutional layers the same kernel is used many times, in a FC layer each
kernel is used only once.

In all layers, each output is followed by an activation function. Several functions exist but
recently the Rectified Linear Unit (ReLU) function is commonly used for its simplicity and good results.
This function keeps the positive activations unaltered and zeroes the negative ones. Recently, some
variations of this function have appeared, such as leaky ReLU, parametric ReLU, concatenated ReLU,
and ReLU-6, that improve the training process.

Knowing that convolutional layers are computation intensive and that FC layers are memory
bandwidth intensive, several optimization techniques apply to both types of layers while others are
more appropriate to only one type of layer.

The most used optimization techniques to reduce the computational complexity, the required
memory bandwidth and memory size are using fixed-point computation instead of floating-point and
reducing the bit width of weights and activations. These techniques are known as data quantization.
Fixed-point format uses a set of the bits to represent the integer part of the number and the remaining
bits are used for the fractional part. The Q notation explicitly indicates this subdivision (e.g., Q3.5 means
3 bits for integer and 5 bits for fractional). Fixed-point numbers are also represented as an integer
number plus a scale factor that determines the binary point position. Thus, for example, Q3.5 would
have a scale factor of 2−5. Quantization of a CNN consists in determining the fixed-point format
of activations and weights for each layer. When the fixed-point size is the same for all layers, the
quantization only changes the scale factor for each layer. When different sizes are used for different
layers, both the size and the scale factor must be determined.

Another technique to reduce the computational complexity is zero-skipping. The ReLU function
converts negative values to zero and consequently many output activations are zero. Multiplying a
weight by zero is useless so the zero-skipping technique does not run these multiplications reducing
the processing time. In [34], the authors showed that for several known networks an average of up to
50% of input activations are zero. The number of zeros can be increased by applying dynamic pruning
to the convolutional layers that sets activation to zero if their values are below a threshold. The same
work has shown that within certain thresholds it is possible to dynamically prune activations without
affecting the network accuracy.

Static pruning is also used as an optimization technique to reduce the number of weights.
During training, weights below a certain threshold are cut. The technique is normally applied to the
fully connected layers where the number of weights is very high and cut percentages of up to 90 %
can be used without affecting the network accuracy. Another frequently used optimization technique
that reduces the impact of high memory transfer times of weights in the FC layers is the image batch.
In this technique, several outputs of the last convolutional layer are calculated and batched before
running the FC layers. This way, the weights of FC layers read from memory are then used for a batch
of input maps amortizing the transfer time.

This paper proposes a very efficient architecture that considers zero-skipping, dynamic pruning,
block pruning, fixed-point representations and image batch to be implemented in low density FPGAs
for smart embedded systems. The integration of all these techniques in a single architecture permits
the design of large CNNs in low density FPGAs with very high performance.



Electronics 2019, xx, 5 7 of 25

4. Baseline Architecture for CNN Inference

The architectural optimizations proposed in this paper are applied to a baseline architecture that
implements large CNNs in low density FPGAs considering only 8-bit fixed-point representation format
following the ideas of omi [7]. This architecture is designated as baseline architecture to be described
in this section.

The baseline architecture was designed to allow the execution of large CNNs in low density
FPGAs, that is, with low memory and computational resources. It has two main modules executing
in parallel, one dedicated to convolutional layers and another to fully connected layers, as shown in
Figure 1. This separation allows different optimization techniques to be applied independently to
convolutional and fully connected layers.

External Memory

Data Dispatcher

Conv PE 
Cluster

Weight 
Memory

Feature 
Map 

Memory FC PE 
Cluster

Weight 
Memory

Batch 
Memory

Convolutional Module Fully connected Module

Config.
Control

Config.
Control

Address 
generators

Address 
generators

Figure 1. Block diagram of the proposed architecture.

Each module executes one layer at a time. Since each layer may have a particular number of maps
and kernels, the modules have a set of configurable registers to set them for each specific layer. Thus,
before executing a particular layer, the module is configured with the specific characteristics of the
layer, namely number of kernels, size of kernels, source and destination addresses of activations and
kernels, the existence of a pooling layer and fixed-point format.

The input image and the intermediate feature maps are stored in on-chip memory to be processed.
If the on-chip memory is not enough, the image or the IFM is divided and processed in pieces.
The output feature maps are stored in external memory and then reloaded for the next layer.
This feature of the architecture permits the execution of larger CNNs in FPGAs with scarce on-chip
memory resources.

The convolutions of convolutional layers and dot-products of fully connected layers are all done
by clusters of processing elements (PE) that explore several levels of parallelism and have local memory
to store kernels of weights. Pooling and activation function run in a central module shared by all PEs.

Running a CNN in the architecture works as follows:

1. Each module is configured according to the layer features.
2. The image or the input feature maps are loaded to the on-chip memory.
3. Kernels are loaded into the local memories of the PE cluster.
4. PE clusters execute the convolutions and dot-products.
5. The results are sent to the pooling and activation module.
6. The new activations are stored in external memory.
7. Go to Step 3 if more kernels need to be loaded.
8. The whole process repeats for each layer.



Electronics 2019, xx, 5 8 of 25

The configuration of the main modules and of the data dispatcher is executed by a processor.
The processor configures the architecture according to the features of the layers to be executed and
configures the direct memory access (DMA) blocks of the data dispatcher to read the feature maps and
the kernels from external memory and write the feature maps back to external memory.

4.1. PE Clusters

The PE cluster for convolutions consists of a matrix of cores, as illustrated in Figure 2.

Core00 Core01 Core02 Core0m

Core10 Core11 Core12 Core1m

Corek0 Corek1 Corek2 Corekm

Weight Memory

F
e

at
ur

e 
M

ap
 M

e
m

or
y

S S S S

S S S S

S S S S

Mem Mem Mem Mem

>> ReLU Pool

>> ReLU Pool

>> ReLU Pool

Figure 2. Architecture of the PE cluster for convolutional layers.

Cores of a column share a local memory used to store weights. The weights stored in the local
memory are broadcasted to all cores of the column. A line of cores shares the same port of the feature
map memory. Activations read from a port of the feature map memory are broadcasted to the cores
of the line. The number of cores per line equals the number of kernels processed in parallel and the
number of cores per column equals the number of ports of the feature map memory. The baseline
architecture is statically configurable in the number of cores per line and per column.

Since all cores of a column receive the same kernel, they all contribute to the calculation of a single
OFM (intra-output parallelism). Cores in the same line receive different kernels and therefore each
produces a different OFM. The more cores there are in a line the more OFM are generated in parallel
(inter-output parallelism).

The PE cluster of fully connected layers has the same structure of the cluster for convolutions
but the number of lines of cores in the cluster is now determined by the batch size. In the fully
connected layers the kernels have the same size of the IFM, which is the same as having a single IFM.
Each kernel is applied to the whole IFM and produces a single activation. The intra-output parallelism
is explored only when batch of OFM of the last convolutional layer is considered. Several OFM of the
last convolutional layer can be stored before running the first fully connected layer. In this case, the
same kernel can be reused for several batched OFM reducing the memory bandwidth requirements at
the cost of some more on-chip memory to accumulate OFM.

Any core calculates dot products between activations and weights with a multiply-accumulate
unit. MAC units are implemented for fixed-point activations and weights. Multiplication results are



Electronics 2019, xx, 5 9 of 25

accumulated in the MAC units without bit loss. The final accumulation is sent to the central unit to be
shifted according to the fixed-point scale factor of the layer, and truncated and pooled when the layer
is followed by a pooling layer.

To explore dot-product parallelism, the core implements parallel MAC units to process multiple
multiplications between activations and weights read in a single memory access. The baseline
architecture considers 8-bit fixed-point data and 64-bit memory accesses. Therefore, each core processes
and accumulates eight multiplications in parallel.

4.2. Feature Map Memory

A major optimization feature of the baseline architecture is how convolutions are calculated. To be
independent of the convolution window size and take advantage of kernel parallelism, the architecture
considers 3D convolutions with activations and weights read as long vectors and multiply-accumulated
in a long dot-product.

Each activation of an output feature is obtained from the dot product between a 3D kernel
xk × yk × zk and the corresponding activations of the IFM of size xp × yp × zp, where zp is the number
of IFMs (see Figure 3).

Kernel1Kernel1

zk

Figure 3. The convolution of a 3D kernel with the corresponding activations.

As can be observed in Figure 3, both kernel and activations are read along the z-axis, followed
by dimension x and then y. The weights of the kernel are all read sequentially from the memories of
weights since they are stored in this order. The activations are read in sequence from the FMM (Feature
Map Memory) but after xk × zk activations it has to jump to the next yk adding an offset to the address
of the input feature memory being read. For a layer without stride or followed by pooling, the offset is
xp × zp. Formally, the dot product to calculate each step of the convolution is given by Equation (1).

DPconv =
i=yk−1

∑
i=0

j=xkzk−1

∑
j=0

Wixkzk+j × PstartAddr+ixpzp+j (1)

where startAddr is the address of the first activation of the block of the input feature map being
convoluted. This operation is used to convolute a kernel with the set of input feature maps sliding the
3D kernel along the feature maps. If a layer is followed by a pooling layer, the output activations of the
pooling window are pooled and only the pooling result is stored in the FMM. The advantage of the
proposed method is that it keeps the performance efficiency of the 3D convolution independent
of the size of the convolution window. Previous solutions required some kind of padding or
filter serialization.

Considering a 3D input feature map of size xp × yp × zp, a kernel of size xk × yk × zk, a pooling
window of size xpool × ypool and a stride of size s, the convolution of a kernel, kl, with the 3D input
feature map is given by Algorithm 1.



Electronics 2019, xx, 5 10 of 25

Algorithm 1: Convolution with a 3D kernel.
Input: 3D input feature map and one kernel of weights
Result: A single output feature map result of the convolution of the feature maps with the

kernel
initialization;
for r ← 0 to yp/s− 1 do

for m← 0 to xp/s− 1 do
poolVar ← 0;
for l ← 0 to ypool − 1 do

for k← 0 to xpool − 1 do
dp← ∑

i=yk−1
i=0 ∑

j=xkzk−1
j=0 Wixkzk+j × PstartAddr(r,m,l,k)+ixpzp+j

poolVar ← poolFunction(poolVar, dp)
end

end
neuron(m,r) ← poolVar

end
end

poolFunction is the function to be used in the pooling operation, such as maximum or average.
The startAddr function specifies the initial address of the feature memory map block to be convoluted
with the 3D kernel. It depends on the size of the input feature map, the pooling size and the stride
value. Given the first memory address where the feature map is stored, initialAddr, the startAddr
function is given by:

startAddr = initialAddr + k× zp + l × zp × xp + m× zp × s + r× zp × xp × s

The startAddr function is generated by the address generators associated with the feature
map memory.

Sending and receiving activations to and from the fully connected layers is simpler since there are
no convolutions, only a long dot-product. Data from the batch memory are read and written only once
for each kernel. When there is IFM batching, the batch memory consists of several separated memories,
one for each map batch. The read and write addresses are common for all memories. The output
activations from the cores are also shifted and truncated, such as in the convolutional layers, before
being written back to memory. Batch memories are dual port to allow reading from the fully connected
cores and writing of the next map batches.

5. Improved Architecture for CNN Inference

The baseline architecture was modified to support zero-skipping and dynamic pruning of
activations in the convolutional layers and weight pruning in the fully connected layers.

5.1. Zero-Skipping and Dynamic Pruning of Activations

The baseline architecture reads several blocks of activations and multiplies them with the weights
of kernels. If some of these activations are zero, then we have multiplications by zero. To avoid them,
only non-zero activations should be considered.

The first consideration is to decide how the feature maps are stored. Two different cases may be
considered: one that stores the complete feature map, including zeros, and then only the non-zero
activations are considered for calculation and one in which only the non-zero activations are stored.
Considering that the sparsity of a feature map is not too high (50 % on average for known networks),
storing only the non-zero elements requires extra index information, which for low sparsity is a high
overhead. Besides, in this case, determining the correct indexes to read the activations according to



Electronics 2019, xx, 5 11 of 25

the behavior of the send/receive activations module of the feature map memory is a complex task.
Therefore, the first option was adopted, that is, we store the whole map, including zeros. For those
networks with a high sparsity, storing compressed feature maps brings advantages about memory
storage and bandwidth requirements. How to adapt the proposed architecture for these cases is out of
scope of this paper and is left for future work.

When we read a block of activations, some of them may be zero. Thus, we cannot send the
whole block to be multiplied by a block of weights as in the baseline architecture. For each non-zero
activation, the correspondent weight is read from the weights memory and multiplied. In the baseline
architecture, each local memory stores one kernel of weights and, therefore, since a specific weight
must be read for each non-zero activation, it is not possible to explore dot-product parallelism with
this structure. However, if we partition the kernel and the activations by multiple memories, then
we can explore dot-product parallelism since several weights of a single kernel can be multiplied by
activations in parallel (see Figure 4).

RAM

Kernel m Kernel n Kernel k

RAM RAM RAM

z

x

y

Feature Map

Weights Memories

Core

Core

Core

Core

Figure 4. Partition of kernels across several weight memories.

Instead of storing the whole kernel in a single memory, which only permits reading one weight at
a time, kernels can be partitioned and stored in separate memories. The same partition is applied to
the memory of activations so that multiple activations can be read in parallel.

Inter-output parallelism is applied by storing several different kernels in the same memory,
that is, each memory position contains weights with the same index from different kernels. Hence,
each activation is multiplied by weights of different kernels contributing to different dot-products, that
is, to different output feature maps. The proposed optimized architecture also considers intra-output
parallelism, where multiple activations of a single output feature map are generated in parallel.
The partition of the feature map memory follows the same structure of the baseline architecture.
However, while, in the baseline architecture the weights memory is the same for all cores in a column,
in the optimized architecture, it cannot share the kernels among cores in the same column since
activations from different ports of the feature map memory may have different indexes and, therefore,
require access to different weights of the kernel. The weights memory must have multiple ports, one
for each port of the feature map memory. Since the FPGA memories only have at most two parallel
ports, data have to be replicated using more memories.

The structure of the PE cluster for the convolutional layers now has a slightly different structure
compared to the cluster of the baseline architecture (see Figure 5).



Electronics 2019, xx, 5 12 of 25

Core

F
e

at
ur

e 
M

ap
 M

e
m

or
y

Kernel 
Mem

Kernel 
Mem

Core

acc

S

Core

Kernel 
Mem

Kernel 
Mem

Core

acc

S

Core Core

acc

S

Core Core

acc

S

Core

Kernel 
Mem

Kernel 
Mem

Core

acc

S

Core

Kernel 
Mem

Kernel 
Mem

Core

acc

S

Core Core

acc

S

Core Core

acc

S

PE Cluster

Figure 5. Architecture of the PE cluster with support for zero-skipping.

The output of cores belonging to the same kernel are accumulated. In the configuration illustrated
in Figure 5, kernels are partitioned into two memories but more partitions can be considered to expose
more parallelism. Dual port weight memories feed data to two lines of cores that are connected to two
ports of the feature map memory. The structure is scalable and can be replicated to include more cores
to process the same kernels, different kernels and different ports of the feature map memory.

As stated above, to increase the intra-output parallelism, the kernels have to be replicated and
consequently more on-chip memory is necessary. To reduce this memory requirement, local memories
used to store the weights can operate at higher frequencies to feed more cores. Therefore, we considered
another implementation of the architecture where the operating frequency of local memories is twice
the frequency of the cores. With this dual-rate operation, a single dual-rate dual-port memory can feed
four cores in a single cycle at the frequency of the cores (see Figure 6).



Electronics 2019, xx, 5 13 of 25

Core

F
e

at
ur

e 
M

ap
 M

e
m

or
y

Kernel 
Mem

Kernel 
Mem

Core

acc

S

Core

Kernel 
Mem

Kernel 
Mem

Core

acc

S

Core Core

acc

S

Core Core

acc

S

Core Core

acc

S

Core Core

acc

S

Core Core

acc

S

Core Core

acc

S

PE Cluster

Figure 6. Architecture of the PE cluster with support for zero-skipping using dual-rate memories.

With more on-chip memories and memory bandwidth available, it is possible to increase the
number of cores of the cluster, as long as there are resources available. The operating frequency of the
cores may have to be reduced compared to their operating frequency in the baseline architecture, to
guarantee half of the operating frequency of the on-chip memories.

Each core in the zero-skipping architecture implements n parallel dot-products, where n is the
number of partial kernels stored in each weight memory. An implementation of the core with n = 8 is
illustrated in Figure 7).



Electronics 2019, xx, 5 14 of 25

X
W00

A0

XW10

X
W01

A1

XW11

+

+

MADD

MADD
W20, W30

W21, W31

A0, A1

MADD

MADD

a
c
c

+ DP1

a
c
c

+ DP0

W40, W50

W41, W51

A0, A1
W60, W70

W61, W71

A0, A1

ACC

ACC
DP3

DP2

ACC
DP5

DP4

ACC
DP7

DP6

Figure 7. Architecture of a pair of cores in a line for the zero-skipping architecture with eight
parallel dot-products.

The diagram in the figure illustrates the core considering a dot product parallelism of two. In this
case, eight dot products, DP0..DP7, are calculated between a vector of two activations A = [A0, A1],
and eight vectors of two weights each, W0 = [W00, W01], W1 = [W10, W11], W2 = [W20, W21],
W3 = [W30, W31], W4 = [W40, W41], W5 = [W50, W51], W6 = [W60, W61], W7 = [W70, W71].

The reading process of activations in the zero-skipping architecture is similar to the one used
in the baseline, except that activations must be dispatched in series. In the baseline architecture, a
block of eight activations is read from the feature map memory and sent in parallel to the cores to be
processed with the weights. In the zero-skipping architecture, each core processes only one activation
at a time. Thus, the module still reads eight activations in a clock cycle but then only sends one
non-zero activation per cycle. Zero activations are discarded (see Figure 8).

=0?

MUX

=0?

=0?

=0?

=0?

=0?

=0?

=0?

Dispatch

Select Input

A0

A1

A2

A3

A4

A5

A6

A7

valid

...

...

An

ixn

...

...

...

...

...

...

Am

ixm

FIFO

Figure 8. Architecture of the dispatcher for the zero-skipping architecture.



Electronics 2019, xx, 5 15 of 25

The circuit receives the eight activations, detects zero activations and then sends non-zero
activations to the output FIFO together with an index relative to the activation position in the vector of
eight activations.

A final modification of the convolutional cluster has to do with the dynamic pruning of activations.
The pruning is made by the same module responsible for fixed-point scaling, activation function and
pooling. All activations received from the PE cluster are compared to a fixed threshold. If it is lower
than the threshold, the activation is zeroed.

5.2. Pruning of Weights in Fully Connected Layers

Pruning of weights reduces the required memory to store kernels but introduces sparsity in the
kernels of weights and an overhead associated with the index information of the sparse vector of
weights. The pruning reported in the literature (see, for example, [32]) in some layers are over 90%,
which introduces a large sparsity in the kernel. To improve the hardware implementation and the
performance of pruned networks, we adopt the block pruning technique, which performs a coarse
pruning with blocks of weights. The method reduces the index overhead data and permits to efficiently
use the parallel MACs of the processing units.

The technique prunes blocks of weights (similar to what is done in [33]) instead of single weights
(see example in Figure 9).

-3 9 7 -5 1 -4 3 4 6 10 2 -2 -1 6 1 7

3 5 6

0 0 0 0 0 0 0 0 0 0 0 0 -3 9 7 -5

0 0 0 0 0 0 0 0 6 10 2 -2 -3 9 7 -5

-3 9 7 -5 0 0 0 0 0 0 0 0 0 0 0 0

-3 9 7 -5 0 0 0 0 6 10 2 -2 0 0 0 0

75%

50%

Average

Ascending order of averages

Blocks of size 4

Original order

Prune

75%

50%

6 3 5 3,75

3,75

Figure 9. Pruning method for blocks of four weights.

The method determines the average magnitude of a block of weights, sorts them and then the
blocks with the lowest average magnitude are pruned limited by a pruned percentage. The remaining
blocks are stored as a sparse vector where each position contains the block of weights and the index of
the next block.

Considering this technique, the fully connected cluster has one local memory for each sparse
kernel of weights and one local memory for each feature map instance (see Figure 10).



Electronics 2019, xx, 5 16 of 25

Core

W
ei

gh
t M

e
m

or
ie

s

Batch Memory

Input Feature Memory

Core

Kernel0

Kernel1

Core

Kernelm

Core

Core

Core

S

S

S

S

S

S

Input Feature Memory

Figure 10. Architecture of the fully connected PE cluster with support for pruned kernels.

Each kernel memory requires one port from the input feature memory. Considering memories
with at most two independent ports, the input feature memory must be replicated to supply activations
to more than two kernel memories. The implementation of batch only requires one input feature
memory for each batch since the kernels are shared by all batches. The cores are identical to those used
in the baseline architecture.

6. Designing with the Proposed Architecture for Best Performance

The convolutional and the fully connected clusters work in parallel in a pipelined fashion.
To obtain the best throughput, the delays of both PE clusters should be as close as possible.
The execution times of the clusters depend on the number of cores, which depends on the available
hardware resources, and the external memory bandwidth. In the following sections, we describe a
performance and an area model of the architecture that helps the designer obtaining the architecture
for best performance.

6.1. Performance Model

The execution time of the complete CNN, TexecCNN , is the sum of the execution time of
convolutional layers, TexecCL, fully connected layers, TexecFCL, and the time to load the image to be
inferred, Tcommimage,

TexecCNN = Tcommimage +
i=CL

∑
i=1

TexecCLi +
i=FCL

∑
i=1

TexecFCLi (2)

where CL is the number of convolutional layers and FCL is the number of fully connected layers.
The execution throughput, ThrCNN , of the architecture is given by

ThrCNN =
1

max(Tcommimage + ∑i=CL
i=1 TexecCLi ,

∑i=FCL
i=1 TexecFCLi

batchSize )

(3)

The batch size equals the number of cores in a column, FCcoreC, of the FC cluster. This throughput
is in fact an average throughput since the batch technique generates FCcoreC results for each execution
of the FC layers.

The time to read the image from external memory depends on the image size, imagesize (bytes), and
the memory bandwidth to external memory allocated to the convolutional module, BWCL (bytes/s),
as follows:



Electronics 2019, xx, 5 17 of 25

Tcommimage =
imagesize

BWCL
(4)

The time to execute a convolutional layer depends on the time to load the input feature maps and
the kernels and the time to execute the convolutions.

The time to load data from external memory depends on the size of the input feature maps,
IFMsize, the number of 3D kernels, nKernel, the size of the 3D kernel, kernelsize, and the external
memory bandwidth. The size of the image and feature maps determines the number of times the
kernels have to be reloaded. As stated above in the description of the baseline architecture, if any of
these do not fit in the feature map memory the inputs have to be partitioned and processed separately.
Therefore, the weights have to be read from external memory as many times as the number of image
or IFM partitions.

To reduce the time to load the input data of the layer, layer computation and kernel loading can
overlap, that is, while a set of kernels is being process, the next set of kernels can be loaded, as long as
the local memories of the PE clusters are large enough to hold two kernels. In addition, the output
activations are written to external memory during the layer execution.

Considering these aspects, the time to load all data associated with a convolutional, dCommCL,
layer is given by:

dCommCL =
IFMsize +

IFMsize
FMMsize

× (nKernelP× kernelsize)

BWCL
with overlap (5)

dCommCL =
IFMsize +

IFMsize
FMMsize

× (nKernel × kernelsize)

BWCL
without overlap (6)

where FMMsize is the size of the feature map memory and nKernelP is the number of kernels supported
by the on-chip memories.

The number of cycles to execute a convolutional layer, convCycle, is determined by the number of
3D convolutions to be executed, nConv, the size of kernels, kernelsize, and the characteristics of the PE
cluster, namely the number of cores, convCore, the number of parallel multiply-accumulations of each
core, nMAC, the operating frequency of the architecture, f req, and the expected fraction of zeros in a
layer that are not calculated, zeroEff (see Equation (7)).

convCycle =
nKernel × nConv× kernelsize

convCore× nMAC
× zeroE f f (7)

From these equations, the total execution time of a layer is given by Equation (8).

TexecCL =
convCycle

f req
+ dCommCL (8)

Considering the FC layers, the execution time depends on the time to load the input batches and
the kernels and the time to execute the dot products. The time to load the input batches depends on
the size of each batch (equal to the size of the output feature map of the last convolutional layer and
also equal to the size of the fully connected kernels), kernelsize, the number of batches, batchsize, the
number of 3D kernels nKernel, and the external memory bandwidth allocated to the fully connected
module, BWFCL. In the fully connected module, it is assumed that the batch memory is enough to



Electronics 2019, xx, 5 18 of 25

hold all batches. In addition, layer computation and kernel loading can overlap, as long as the local
memories of the PE clusters are large enough to hold two kernels. Hence, the time to load all data
associated with a fully connected layer, dCommFCL, is given by:

dCommFCL =
IFMbatchsize×kernelsize

+ FCcoreL× kernelsize ×
100−prune

100
BWFCL

with overlap (9)

dCommFCL =
IFMbatchsize×kernelsize

+ nKernel × kernelsize ×
100−prune

100
BWFCL

without overlap (10)

where FCcoreL is the number of cores in a line of the fully connected PE cluster and prune is the
percentage of pruning.

The number of cycles to execute a fully connected layer, FCCycle, is determined by the number of
kernels and their sizes, the characteristics of the fully connected PE cluster, namely the number of cores
in each line of the fully connected cluster, FCcoreL, the number of parallel multiply-accumulations of
each core, nMAC, and the pruning percentage, prune (see Equation (11)).

convCycle = d nKernel
FCcoreL

e × kernelsize
nMAC

× 100− prune
100

(11)

From these equations, the total execution time of a fully connected layer is given by Equation (12).

TexecFCL =
FCCycle

f req
+ dCommFCL (12)

The performance model just described does not include the time to configure the layers because
the configuration time is negligible compared to the execution of the CNN model.

6.2. Area Model

The area model estimates the computational and the on-chip memory resources. The total
computational area, Acomp, is given by:

Acomp = ACctrl + ACdispatch + convCoreL× convCoreC× ACCcore+ (13)

FCcoreL× FCcoreC× ACFCcore + ACCTRLconv + ACCTRL f c (14)

where ACctrl is the area of the system controller, ACdispatch is the area of the data dispatch module,
ACCTRLconv is the area of the address generators and controller of the convolutional module, ACCTRL f c
is the area of the address generators and controller of the fully connected module, ACCcore is the area
of the convolutional core and ACFCcore is the area of the FC core.

The total on-chip memory resources, Amem, is given by

Amem = AMdispatch + AM f mm + AMbatch + convCoreL× AMCcore + FCcoreL× AMFCcore (15)

where AMdispatch is the memory size of the data dispatch module, AM f mm is the memory size of the
feature map memory, AMbatch is the batch memory size of the fully connected module, AMCcore is the
local memory size of the convolutional cluster, and AMFCcore is the local memory size of the FC cluster.



Electronics 2019, xx, 5 19 of 25

6.3. Model Based Design

The number of cores of the proposed architecture is statically configurable and depends on the
available resources. Given a specific CNN to run, the designer determines the best configuration
of cores and the architecture is generated. During execution, the architecture cannot be modified.
Both clusters of cores of the proposed architecture run in parallel with a pipeline structure. Hence, to
obtain a balanced pipeline, the execution times of both must be equal, that is:

TexecCL = TexecFCL (16)

This condition is constrained by the available on-chip memory, OCM, the available computation
resources, COMP, and the available external memory bandwidth, BW. The available bandwidth must
be distributed according to the communication requirements of each cluster. An approximation is to
determine the ratio between the data communication of convolutional layers, convComm, and the data
communication of the FC layers, f cComm, and then distribute the bandwidth with the same ratio.

7. Results

We tested the architecture with a regular CNN: AlexNet. All architectures were implemented
with Vivado 2018.3 targeting a ZedBoard with a ZYNQ XC7Z020 (Artix-7 FPGA with a dual ARM
Cortex-A9 CPU). The programmable logic has four 64-bit High-Performance (HP) ports with direct
access to external memory working at 150 MHz with a total bandwidth of 4.8 GByte/s. We tested
the real data transfer with these ports. The four HP ports were configured for 64 bits connected to a
dedicated DMA and then DMAs were configured for reading the external memory. The total memory
bandwidth achieved was around 3.3 GByte/s and this is the bandwidth considering during the design
of the architecture. The configuration and control of the architecture was performed with the ARM
processor in a bare metal solution. The baseline architecture and the optimized architecture without
dual-rate memories run at 200 MHz. The optimized architecture with dual-rate memories runs at 160
MHz and the memory reads operate at 320 MHz. Power results were obtained with Vivado Power
Analysis tool.

AlexNet was trained with 8-bit fixed-point quantization achieving a Top-1 accuracy of 55.1%.
Several architectures with different combinations of optimizations were implemented. In all
case studies, optimizations were applied with less than 1% loss in accuracy compared to the
baseline architecture:

• Base is the baseline architecture with 8-bit fixed-point quantization without zero-skipping nor
pruning.
• BaseP is the baseline architecture with 8-bit fixed-point quantization with static pruning.
• arqZP is the optimized architecture with zero-skipping and static pruning.
• arqZDP is the optimized architecture with zero-skipping, dynamic pruning and static pruning.
• arqZP-dual is the optimized architecture with zero-skipping, static pruning and dual-rate memories.
• arqZDP-dual is the optimized architecture with zero-skipping, static and dynamic pruning and

dual-rate memories.

For all architectures, the performance and area results were obtained when running the inference
step of AlexNet (see Table 1).



Electronics 2019, xx, 5 20 of 25

Table 1. Results of the architectures running the inference of AlexNet in a ZYNQ XC7Z020 FPGA.

Base BaseP arqZP arqZDP arqZD-dual arqZDP-dual

Conv_Cores 112 112 24 24 28 28
MACs/core 8 8 32 32 32 32

FC_Cores 5 1 2 2 2 2
Batch 5 1 2 2 2 2

BW_CL(%) 0.25 0.5 0.75 0.75 0.5 0.5

LUTs 47082 48,454 41,758 42,561 47,832 48,635
BRAMs (4 KBytes) 110 110 134 134 119 119

DSPs 212 212 192 192 214 214

Images/s 201 249 308 351 284 309
Measured performance (GOPs) 291 360 446 509 412 464

GOPs/kLUTs 6.2 7.4 10.7 11.9 8.6 9.5
GOPs/DSPs 1.4 1.7 2.3 2.7 1.9 2.2

GOPs/BRAMs 2.6 3.3 3.3 3.8 3.5 3.9
GOPs/W 137 170 235 254 195 216

The fastest solution is the solution with single rate memory, with zero-skiping and static and
dynamic pruning, arqZDP. The solution improves the performance of the baseline architecture by
about 75% and 40% over a pruned architecture, that is, the zero-skipping and dynamic pruning
techniques improves a pruned architecture by a factor of 35%.

The single rate architectures have better performance than the dual-rate solutions with less
computational resources. However, the single rate architectures require more on-chip memory as
expected. The dual-rate technique increases the total on-chip memory bandwidth but requires more
computational resources to achieve the same performance since the operating frequency of the cores
is lower than that considered in the single rate architectures. These facts can be extracted from the
performance versus area metrics, GOPs/kLUTs and GOPs/BRAMs. The single rate solutions have the
best performance/kLUTs ratio, while the dual-rate solutions have the best memory efficiency.

Whether to use a single or a dual rate architectures depends on the ratio between the memory and
computing resources. If the bottleneck is the on-chip memory resources, then the dual-rate solution is
the best solution. Otherwise, if the bottleneck is the available computation resources, then it is better
to consider the single rate solution since it works at a higher frequency.

We compared the best proposed architecture with previous works (see Table 2).

Table 2. Performance comparison of the proposed architecture with previous works running AlexNet
in the low density FPGA ZYNQ7020.

ZYNQ 7020

Work Data Format Freq (MHz) Images/s Acc.

[38] 16× 16 100 14 55.9
[20] 16× 16 125 19 55.9
[19] 16× 16 200 60 55.9
[21] 8× 8 214 59 53.9

This work 8× 8 200 351 55.1

Most previous works on ZYNQ7020 consider activations and weights represented with 16 bits.
From these, Gong et al. [19] used weight pruning and image batch. The advantage of using 16 bits
instead of 8 bits is the higher network accuracy. Our architecture improves the throughput attained by



Electronics 2019, xx, 5 21 of 25

Gong et al. [19] about 5.8× with a small loss in accuracy (0.8%). Compared to Guo et al. [21] who used
8-bit data, our architectures improves the throughput by 5.8× with better accuracy.

To demonstrate the scalability of the proposed architecture, the arqZDP architecture was mapped
in a Xilinx SoC ZC706 Evaluation Kit with a XC7Z7045 FPGA (Kintex-7 FPGA with a dual ARM
Cortex-A9 CPU). The programmable logic has four 64-bit High-Performance (HP) ports with direct
access to external memory working at 150 MHz with a total bandwidth of 4.8 GByte/s. The real data
transfer of a ZC706 board is 4 GBytes/s. The architecture runs at 250 MHz in the Kintex-7 technology
(see results in Table 3).

Table 3. Results of the architectures running the inference of AlexNet in a ZYNQ XC7Z045 FPGA.

BaseP arqZDP arqZDP-dual

Conv_Cores 512 128 112
MACs/core 8 32 32

FC_Cores 5 16 16
Batch 5 16 16

BW_CL(%) 0.5 0.9 0.9

LUTs 191,338 185,920 193,976
BRAMs 222 490 320

DSPs 768 704 862

Images/s 794 967 928
Measured performance (GOPs) 1150 1401 1344

GOPs/kLUTs 6.1 7.5 6.9
GOPs/DSPs 1.5 2.0 1.6

GOPs/BRAMs 5.6 2.7 3.9
GOPs/W 125 156 145

The single rate architecture with zero-skipping is still the fastest solution and improves the pruned
baseline architecture by 22% and its slightly faster than the dual-rate architecture. The result was
expected since the ratios between LUTs, DSPs and BRAMs of the ZYNQ7045 is similar to that of the
ZYNQ7020. It is also interesting to note that ZYNQ7020 is more power efficient than ZYNQ XC7Z7045.

The best architectural option depends on the ratio between computational and on-chip memory
resources. The performance breakthrough design point was estimated based on the performance
and area models considering a maximum on-chip memory with the same size of the ZYNQ7045
(see Figure 11).

0

200

400

600

800

1000

1200

0 50 100 150 200 250

Im
ag

es
/s

Number of cores

Single-rate arquitecture Dual-rate architecture

532 BRAMs

522 
BRAMs

Figure 11. Performance breakthrough design point for fixed on-chip memory size.



Electronics 2019, xx, 5 22 of 25

The performance breakthrough point is at around 150 cores, when the dual-rate architecture
becomes faster than the single-rate solution. The increase in performance of the dual-rate architecture
from this point on is not so evident because the execution becomes limited by the external memory
bandwidth. Without this limitation, the scalability of the architecture would permit an almost linear
increase in performance until reaching the parallelization limits.

The best architecture was compared with previous works implemented on a ZYNQ7045 for the
same or smaller representations that consider other optimizations (see Table 4).

Table 4. Performance comparison of the proposed architecture with previous works running AlexNet
in ZYNQ7045 FPGA.

[23] Baseline [23] [39] This Work

Data format 8× 8 [8, 2] bits [4, 7] bits 8× 8
LUTs 86,262 103,505 176,192 185,920

BRAMs 303 498 – 522
DSPs 808 550 900 704
BW 10.8 3.3 – 4.0
Freq 200 200 150 250

Images/s 340 856 854 967
GOPs 493 1240 1238 1401

GOPs/kLUTs 5.7 11.9 7.0 7.6
GOPs/DSPs 0.6 2.2 1.4 2

GOPs/BRAMs 1.6 2.5 – 2.7
TOP-1 accuracy 54.6% 52.6% 52% 54.7%

The works in [23,39] consider data size reduction of weights. Reducing the size of weights allows
the reduction of required memory and the size of computation units. The first column considers a
fixed data size of 8 bits, as the proposed architecture. In this case, our solution has a performance 2.8×
better with a smaller memory bandwidth. The baseline architecture from [23] was quantized with 8
bits in the first and last layers, 2 bits in convolutional layers and 1 bit in fully connected layers. Our
solution is still faster than this proposal by about 13%; it is 2% more accurate but uses more resources.
It is important to note that zero-skipping can be applied to hybrid quantized networks without any
accuracy loss. In addition, the architectures proposed in [23,39] were only implemented in a medium
density FPGA. Its pipelined structure limits its implementation in low density FPGAs. Our proposal
can be implemented in any FPGA.

The area efficiency of our proposals is smaller than the compared works, since the proposed work
deals with a larger data format and consequently the arithmetic units are larger. Besides, the other
proposals implement pipelined structures with a module tailored for each layer, but require more
memory to store weights for all layers and a complex access pattern to read the feature maps stored in
external memory. This memory requirement limits its applicability to low density FPGAs.

8. Conclusions

This work describes an optimized architecture for the inference execution of CNN. The architecture
targets low density FPGAs, that is, with low on-chip memory and low computational resources.
To improve performance and reduce hardware, zero-skipping and weight pruning (static and dynamic)
were applied with 8-bit fixed-point representation.

Compared to state-of-the-art works over the same FPGA devices, we were able to improve the
throughput about 5.8× in a ZYNQ7020 with less than 1% accuracy degradation. To show the scalability
of the solutions, the architectures were designed for a ZYNQ7045. The improvements are smaller,
compared to state of the art but still 1.13×. Besides the achieved performance, the results show that



Electronics 2019, xx, 5 23 of 25

it is possible to run large networks in a low density FPGA with acceptable performance with small
accuracy degradation.

Since the size of data has a great impact over the performance of the solution, future work will
consider the integration of data size reduction techniques with the optimized architecture proposed in
this work.

Author Contributions: Investigation, M.V., R.D, J.S. and H.N; methodology, M.V. and J.S; validation M.V. and
R.D; writing–review and editing, M.V., R.D, J.S. and H.N.

Funding: This work was supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) with
reference UID/CEC/50021/2019

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.;
Bernstein, M.; Berg, A.C.; Fei-Fei, L. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis.
2015, 115, 211–252, doi:10.1007/s11263-015-0816-y.

2. Cun, Y.L.; Jackel, L.D.; Boser, B.; Denker, J.S.; Graf, H.P.; Guyon, I.; Henderson, D.; Howard, R.E.;
Hubbard, W. Handwritten digit recognition: applications of neural network chips and automatic learning.
IEEE Commun. Mag. 1989, 27, 41–46, doi:10.1109/35.41400.

3. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural
Networks. In Proceedings of the 25th International Conference on Neural Information Processing
Systems—Volume 1, Lake Tahoe, Nevada, 3–6 December 2012; Curran Associates Inc.: Red Hook, NY, USA,
2012; pp. 1097–1105.

4. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition.
In Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA, USA, 7–9
May 2015.

5. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9, doi:10.1109/CVPR.2015.7298594.

6. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016;
pp. 770–778, doi:10.1109/CVPR.2016.90.

7. omitted for blind review, 1900.
8. Chakradhar, S.; Sankaradas, M.; Jakkula, V.; Cadambi, S. A Dynamically Configurable Coprocessor

for Convolutional Neural Networks. SIGARCH Comput. Archit. News 2010, 38, 247–257,
doi:10.1145/1816038.1815993.

9. Chen, Y.; Luo, T.; Liu, S.; Zhang, S.; He, L.; Wang, J.; Li, L.; Chen, T.; Xu, Z.; Sun, N.; et al.
DaDianNao: A Machine-Learning Supercomputer. In Proceedings of the 2014 47th Annual IEEE/ACM
International Symposium on Microarchitecture, Cambridge, UK, 13–17 December 2014; pp. 609–622,
doi:10.1109/MICRO.2014.58.

10. Zhang, C.; Li, P.; Sun, G.; Guan, Y.; Xiao, B.; Cong, J. Optimizing FPGA-based Accelerator Design for Deep
Convolutional Neural Networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, Monterey, CA, 22–24 February 2015; USA ACM: New York, NY, USA,
2015; pp. 161–170, doi:10.1145/2684746.2689060.

11. Liu, B.; Zou, D.; Feng, L.; Feng, S.; Fu, P.; Li, J. An FPGA-Based CNN Accelerator Integrating Depthwise
Separable Convolution. Electronics 2019, 8(3), 281.

12. Rivera-Acosta, M.; Ortega-Cisneros, S.; Rivera, J. Automatic Tool for Fast Generation of Custom
Convolutional Neural Networks Accelerators for FPGA. Electronics 2019, 8(6), 641.

13. Qiu, J.; Wang, J.; Yao, S.; Guo, K.; Li, B.; Zhou, E.; Yu, J.; Tang, T.; Xu, N.; Song, S.; et al. Going Deeper with
Embedded FPGA Platform for Convolutional Neural Network. In Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 21–23 February 2016;
ACM: New York, NY, USA, 2016; pp. 26–35, doi:10.1145/2847263.2847265.

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/35.41400
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1145/1816038.1815993
https://doi.org/10.1109/MICRO.2014.58
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2847263.2847265


Electronics 2019, xx, 5 24 of 25

14. Suda, N.; Chandra, V.; Dasika, G.; Mohanty, A.; Ma, Y.; Vrudhula, S.; Seo, J.S.; Cao, Y. Throughput-Optimized
OpenCL-based FPGA Accelerator for Large-Scale Convolutional Neural Networks. In Proceedings of the
2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA,
21–23 February 2016; ACM: New York, NY, USA, 2016; pp. 16–25, doi:10.1145/2847263.2847276.

15. Qiao, Y.; Shen, J.; Xiao, T.; Yang, Q.; Wen, M.; Zhang, C. FPGA-accelerated deep convolutional neural
networks for high throughput and energy efficiency. Concurr. Comput. Pract. Exp. 2017, 29, e3850,
doi:10.1002/cpe.3850.

16. Liu, Z.; Dou, Y.; Jiang, J.; Xu, J.; Li, S.; Zhou, Y.; Xu, Y. Throughput-Optimized FPGA Accelerator for
Deep Convolutional Neural Networks. ACM Trans. Reconfigurable Technol. Syst. 2017, 10, 17:1–17:23,
doi:10.1145/3079758.

17. Alwani, M.; Chen, H.; Ferdman, M.; Milder, P. Fused-layer CNN accelerators. In Proceedings of the
2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Taipei, Taiwan,
15–19 October 2016; pp. 1–12, doi:10.1109/MICRO.2016.7783725.

18. Shen, Y.; Ferdman, M.; Milder, P. Maximizing CNN Accelerator Efficiency Through Resource Partitioning.
SIGARCH Comput. Archit. News 2017, 45, 535–547, doi:10.1145/3140659.3080221.

19. Gong, L.; Wang, C.; Li, X.; Chen, H.; Zhou, X. MALOC: A Fully Pipelined FPGA Accelerator for
Convolutional Neural Networks With All Layers Mapped on Chip. IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst. 2018, 37, 2601–2612, doi:10.1109/TCAD.2018.2857078.

20. Venieris, S.I.; Bouganis, C. fpgaConvNet: Mapping Regular and Irregular Convolutional Neural Networks
on FPGAs. IEEE Trans. Neural Netw. Learn. Syst. 2018, 1–17, doi:10.1109/TNNLS.2018.2844093.

21. Guo, K.; Sui, L.; Qiu, J.; Yu, J.; Wang, J.; Yao, S.; Han, S.; Wang, Y.; Yang, H. Angel-Eye: A Complete Design
Flow for Mapping CNN Onto Embedded FPGA. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2018,
37, 35–47, doi:10.1109/TCAD.2017.2705069.

22. Gysel, P.; Motamedi, M.; Ghiasi, S. Hardware-oriented Approximation of Convolutional Neural Networks.
In Proceedings of the 4th International Conference on Learning Representations, San Juan, Puerto Rico,
2–4 May, 2016.

23. Wang, J.; Lou, Q.; Zhang, X.; Zhu, C.; Lin, Y.; Chen., D. A Design Flow of Accelerating Hybrid Extremely
Low Bit-width Neural Network in Embedded FPGA. In Proceedings of the 28th International Conference on
Field-Programmable Logic and Applications, Dublin, Ireland, 27–31 August, 2018.

24. Umuroglu, Y.; Fraser, N.J.; Gambardella, G.; Blott, M.; Leong, P.; Jahre, M.; Vissers, K. FINN: A Framework for
Fast, Scalable Binarized Neural Network Inference. In Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 22–24 February 2017; ACM: New York,
NY, USA, 2017; pp. 65–74, doi:10.1145/3020078.3021744.

25. Wang, J.; Lin, J.; Wang, Z. Efficient Hardware Architectures for Deep Convolutional Neural Network.
IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 1941–1953, doi:10.1109/TCSI.2017.2767204.

26. Lian, X.; Liu, Z.; Song, Z.; Dai, J.; Zhou, W.; Ji, X. High-Performance FPGA-Based CNN Accelerator With
Block-Floating-Point Arithmetic. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27, 1874–1885,
doi:10.1109/TVLSI.2019.2913958.

27. Winograd, S. Arithmetic Complexity of Computations; Siam: Philadelphia, PA, USA, 1980; Volume 33.
28. Lavin, A.; Gray, S. Fast Algorithms for Convolutional Neural Networks. In Proceedings of the 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016;
pp. 4013–4021, doi:10.1109/CVPR.2016.435.

29. Zhang, C.; Prasanna, V. Frequency Domain Acceleration of Convolutional Neural Networks on CPU-FPGA
Shared Memory System. In Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, Monterey, CA, USA, 22–24 February 2017; ACM: New York, NY, USA,
2017; pp. 35–44, doi:10.1145/3020078.3021727.

https://doi.org/10.1145/2847263.2847276
https://doi.org/10.1002/cpe.3850
https://doi.org/10.1145/3079758
https://doi.org/10.1109/MICRO.2016.7783725
https://doi.org/10.1145/3140659.3080221
https://doi.org/10.1109/TCAD.2018.2857078
https://doi.org/10.1109/TNNLS.2018.2844093
https://doi.org/10.1109/TCAD.2017.2705069
https://doi.org/10.1145/3020078.3021744
https://doi.org/10.1109/TCSI.2017.2767204
https://doi.org/10.1109/TVLSI.2019.2913958
https://doi.org/10.1109/CVPR.2016.435
https://doi.org/10.1145/3020078.3021727


Electronics 2019, xx, 5 25 of 25

30. Lu, L.; Liang, Y.; Xiao, Q.; Yan, S. Evaluating Fast Algorithms for Convolutional Neural Networks on
FPGAs. In Proceedings of the 2017 IEEE 25th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), Napa, CA, USA, 30 April–2 May 2017; pp. 101–108,
doi:10.1109/FCCM.2017.64.

31. Liang, Y.; Lu, L.; Xiao, Q.; Yan, S. Evaluating Fast Algorithms for Convolutional Neural Networks on FPGAs.
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2019, 1, doi:10.1109/TCAD.2019.2897701.

32. Han, S.; Mao, H.; Dally, W.J. Deep Compression: Compressing Deep Neural Network with Pruning, Trained
Quantization and Huffman Coding. CoRR arXiv 2015, arXiv:1510.00149.

33. Yu, J.; Lukefahr, A.; Palframan, D.; Dasika, G.; Das, R.; Mahlke, S. Scalpel: Customizing DNN
Pruning to the Underlying Hardware Parallelism. SIGARCH Comput. Archit. News 2017, 45, 548–560,
doi:10.1145/3140659.3080215.

34. Albericio, J.; Judd, P.; Hetherington, T.; Aamodt, T.; Jerger, N.E.; Moshovos, A. Cnvlutin:
Ineffectual-Neuron-Free Deep Neural Network Computing. In Proceedings of the 2016 ACM/IEEE 43rd
Annual International Symposium on Computer Architecture (ISCA), Seoul, Korea, 18–22 June 2016; pp. 1–13,
doi:10.1109/ISCA.2016.11.

35. Nurvitadhi, E.; Venkatesh, G.; Sim, J.; Marr, D.; Huang, R.; Ong Gee Hock, J.; Liew, Y.T.; Srivatsan, K.;
Moss, D.; Subhaschandra, S.; et al. Can FPGAs Beat GPUs in Accelerating Next-Generation Deep Neural
Networks? In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, Monterey, CA, USA, 22–24 February 2017; ACM: New York, NY, USA, 2017; pp. 5–14,
doi:10.1145/3020078.3021740.

36. Aimar, A.; Mostafa, H.; Calabrese, E.; Rios-Navarro, A.; Tapiador-Morales, R.; Lungu, I.; Milde, M.B.;
Corradi, F.; Linares-Barranco, A.; Liu, S.; et al. NullHop: A Flexible Convolutional Neural Network
Accelerator Based on Sparse Representations of Feature Maps. IEEE Trans. Neural Netw. Learn. Syst. 2019,
30, 644–656, doi:10.1109/TNNLS.2018.2852335.

37. Lu, L.; Xie, J.; Huang, R.; Zhang, J.; Lin, W.; Liang, Y. An Efficient Hardware Accelerator
for Sparse Convolutional Neural Networks on FPGAs. In Proceedings of the 2019 IEEE 27th
Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM),
San Diego, CA, USA, 28 April–1 May 2019; pp. 17–25, doi:10.1109/FCCM.2019.00013.

38. Wang, Y.; Xu, J.; Han, Y.; Li, H.; Li, X. DeepBurning: Automatic generation of FPGA-based learning
accelerators for the Neural Network family. In Proceedings of the 2016 53nd ACM/EDAC/IEEE Design
Automation Conference (DAC), Austin, TX, USA, 5–9 June, 2016; pp. 1–6, doi:10.1145/2897937.2898002.

39. Kouris, A.; Venieris, S.I.; Bouganis, C. CascadeCNN: Pushing the Performance Limits of Quantisation
in Convolutional Neural Networks. In Proceedings of the 2018 28th International Conference on
Field Programmable Logic and Applications (FPL), Dublin, Ireland, 27–31 August 2018; pp. 155–1557,
doi:10.1109/FPL.2018.00034.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1109/FCCM.2017.64
https://doi.org/10.1109/TCAD.2019.2897701
https://doi.org/10.1145/3140659.3080215
https://doi.org/10.1109/ISCA.2016.11
https://doi.org/10.1145/3020078.3021740
https://doi.org/10.1109/TNNLS.2018.2852335
https://doi.org/10.1109/FCCM.2019.00013
https://doi.org/10.1145/2897937.2898002
https://doi.org/10.1109/FPL.2018.00034
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Convolutional Neural Networks
	Baseline Architecture for CNN Inference
	PE Clusters
	Feature Map Memory

	Improved Architecture for CNN Inference
	Zero-Skipping and Dynamic Pruning of Activations
	Pruning of Weights in Fully Connected Layers

	Designing with the Proposed Architecture for Best Performance
	Performance Model
	Area Model
	Model Based Design

	Results
	Conclusions
	References

