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Abstract—The multiple constant multiplication (MCM) block,
which realizes the multiplication of constants by a variable, is a
ubiquitous operation in digital signal processing (DSP) systems.
It can be implemented using generic multipliers or shifts and
adders/subtractors. This paper addresses the problem of finding
the minimum number of adders/subtractors to realize the MCM
block while a number of multipliers are available to realize some
constant multiplications. Such a situation appears in the design
of DSP systems on field programmable gate arrays (FPGAs)
which also include generic multipliers. We present a 0-1 integer
linear programming (ILP) formulation of this problem, yielding
an exact common subexpression elimination (CSE) method. Due
to the NP-completeness of this problem, we also introduce an
approximate graph-based (GB) algorithm. Experimental results
show that the proposed methods can find better solutions than
a state-of-art algorithm and the use of different number of
multipliers in the MCM block leads to filter designs with different
number of slices, delay, and power dissipation which enable a
designer to choose the one that fits best in an application.

I. INTRODUCTION
Finite impulse response (FIR) filters are used in many DSP

applications such as audio, image, and video processing. The
transposed form FIR filter is depicted in Fig. 1. Its design
complexity is dominated by the MCM block, because the
implementation of a multiplier in hardware is expensive in
terms of area. Since the filter coefficients are determined
beforehand, the MCM block of the FIR filter is generally
realized under the shift-adds architecture using only shifts and
adders/subtractors [1]. Note that shifts by a constant value
require only wires which represent no hardware cost. The
MCM problem is defined as finding the minimum number of
operations which realize the MCM block and was proven to be
NP-complete in [2]. Over the years, many efficient algorithms
have been introduced for the MCM problem [3]–[7].

FPGAs have been successfully used in many DSP appli-
cations due to their programmable nature and simple design
cycle. They consist of configurable logic blocks (CLBs) con-
nected via programmable interconnects. Today’s FPGAs have
configurable embedded SRAM, high-speed transceivers, high-
speed I/Os, and DSP blocks which support many independent
functions including multipliers with two non-constant inputs.

This paper presents the realization of the MCM operation
on an FPGA using multipliers in its DSP blocks together with
adders/subtractors realized in its CLBs, as previously presented
in [8]. In this so-called hybrid MCM problem, given the
constants to be multiplied by an input variable and the number
of multipliers available for constant multiplications, i.e., m, the
aim is to implement the MCM block using a minimum number
of adders/subtractors and at most m multipliers. Note that if m
is 0, the hybrid MCM problem turns to an MCM problem.

To this end, we present a 0-1 ILP formulation of the
hybrid MCM problem, where possible realizations of constant
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Fig. 1. Transposed form FIR filter.

multiplications are extracted from the number representations
of constants, yielding an exact CSE algorithm called FREYJA.
We also introduce an approximate algorithm called FREYR.
In an iterative loop, FREYR first finds a different solution to
the MCM problem using an efficient GB algorithm [6] at
each time. Second, based on this solution, it decides which
constant multiplications should be realized using at most m
multipliers so that a minimum number of adders/subtractors is
required for the MCM design. This decision problem is also
formulated as a 0-1 ILP problem similar to the one described
in FREYJA, but generating a 0-1 ILP problem whose size is
much smaller than that obtained by FREYJA. Experimental
results show that FREYJA can be applied to real-size instances.
However, FREYR can find better solutions than FREYJA, since it
considers more possible realizations of constants than FREYJA.
Also, both algorithms can obtain better solutions than the state-
of-art algorithm of [8]. The results of filter designs on FPGA
indicate that the use of generic multipliers in the MCM block,
which are realized in the DSP blocks of FPGA, leads to filter
designs with less delay and power consumption as well as less
number of slices. It is shown that by changing the m value, the
tradeoffs between the number of slices and delay and between
the number of slices and power dissipation can be explored
and an FIR filter that fits best in an application can be found.

II. BACKGROUND
This section presents the background concepts on the

number representation, 0-1 ILP problem, shift-adds design of
the MCM operation, and hybrid MCM operation.

A. Number Representation
The binary representation decomposes a number in a

set of additions of powers of two. The signed digit system
makes the use of positive and negative digits. The canonical
signed digit (CSD) representation [3] has two main properties:
i) two nonzero digits are not adjacent; ii) the number of
nonzero digits is minimum. The minimal signed digit (MSD)
representation [4] is obtained by dropping the first property of
CSD. Thus, a constant may have several representations under
MSD, but all with a minimum number of nonzero digits.

Consider 23 defined in six bits. Its binary representation,
010111, includes 4 nonzero digits. It is represented as 101001
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Fig. 2. Multiplierless designs of 3133x and 3359x: (a) exact CSE algo-
rithm [5]; (b) exact GB algorithm [7]; designs of 3133x and 3359x when one
generic multiplier is available: (c) FREYJA; (d) FREYR.

in CSD and both 101001 and 011001 denote 23 in MSD using
3 nonzero digits, where 1 stands for −1.

B. 0-1 ILP Problem
The 0-1 ILP problem is the optimization of a linear

objective function subject to a set of linear constraints and
is generally defined as follows1:

minimize wT ·x (1)
subject to A ·x≥ b, x ∈ {0,1}k (2)

In the objective function of the 0-1 ILP problem given in Eq. 1,
wi in w is a weight value associated with each variable xi,
where 1≤ i≤ k. In Eq. 2, A ·x≥ b denotes the set of j linear
constraints, where b ∈ Z j and A ∈ Z j×Zk.

C. Multiplierless Design of the MCM Operation
The algorithms proposed for the MCM problem can be

categorized in two classes as CSE and GB techniques. Their
aim is to maximize the sharing of common partial products.
The CSE methods [3]–[5] first define the constants under a
number representation such as, binary, CSD, or MSD. Then,
considering possible subexpressions which can be extracted
from the nonzero digits in representations of constants, the
“best” subexpression, generally, the most common, is chosen to
be shared among the constant multiplications. The drawback of
CSE methods is their dependency on a number representation.
The GB algorithms [6], [7] are not restricted to any particular
number representation and aim to find intermediate partial
products which enable to realize the constant multiplications
with a minimum number of operations. They consider a larger
number of realizations of a constant and obtain better solu-
tions than the CSE methods, but require more computational
resources due to a larger search space. As an example, consider
the constant multiplications 3133x and 3359x. The exact CSE
method [5] finds a solution with 6 operations when constants
are defined under CSD, sharing the common subexpressions
3x among the constant multiplications (Fig. 2a). The exact GB
method [7] obtains a solution with 5 operations, finding the
common intermediate partial products 3x and 49x (Fig. 2b).

The delay of a multiplierless MCM design is generally de-
fined as the number of adder-steps that denotes the maximum
number of operations in series [9]. For our example, the MCM
designs in Figs. 2a-b have 3 and 4 adder-steps, respectively.

1The minimization objective can be easily converted to a maximization
objective by negating the objective function. Less-than-or-equal and equality
constraints are respectively accommodated by the equivalences, A · x ≤ b⇔
−A ·x≥−b and A ·x = b⇔ (A ·x≥ b)∧ (A ·x≤ b).

D. Hybrid MCM Operation
To the best of our knowledge, the problem of finding a

hybrid MCM realization consisting of at most m multipliers
and the smallest number of adders/subtractors was only ad-
dressed in [8]. The algorithm of [8] is based on the method
of [10], targets the pipelined design of the MCM block,
and aims to find a design, including adders/subtractors and
pipeline registers, with the least complexity. Note that a CLB
block also includes flip-flops and thus, the registers for an
adder/subtractor come for free. This is also true for the generic
multipliers in the DSP blocks of FPGA. However, in order to
carry the output of an adder/subtractor or a multiplier located
at depth d to the input of another adder/subtractor at depth
d+2 or more, non-free pipeline registers are required. Hence,
the method of [8] targets the design of an MCM block with
the minimum number of adder-steps as the method of [10].

This paper considers the most fundamental form of the
problem presented in [8], i.e., the hybrid MCM problem. For
our MCM example, suppose that one generic multiplier is
made available to be used in the MCM block. The solutions
of FREYJA and FREYR include 3 adders/subtractors (Fig. 2c-
d), leading to a 50% and 40% gain in terms of the number
of adders/subtractors with respect to the solutions of the exact
CSE algorithm [5] (Fig. 2a) and the exact GB algorithm [7]
(Fig. 2b), respectively. Observe that the constant multiplication
chosen to be realized using a multiplier may be a required
constant multiplication as in the solution of FREYJA or an
intermediate partial product as in the solution of FREYR.

III. PROPOSED ALGORITHMS
This section introduces an exact CSE algorithm and an ap-

proximate GB method proposed for the hybrid MCM problem.
In their preprocessing phase, each constant to be multiplied by
the variable x is multiplied by -1 if it is negative and divided
by 2 until it is odd. Then, this positive and odd constant, except
1 that denotes the variable x, is stored in a set called target set
T without repetition. Note also that the shift-adds realization
of constant multiplications is in fact equal to the realization
of constants. For example, 3x realized as 3x=x≪1+x can be
rewritten as 3=1≪1+1 by removing the variable x from both
sides. This terminology is used interchangeably in this section.

A. FREYJA: An Exact CSE Algorithm
To increase the performance of FREYJA, we previously

computed all possible realizations of odd constants between 3
and 216−1 under binary, CSD, and MSD representations and
made them available to FREYJA by storing them in a file. To
do so, a constant is represented under a number representation
and the nonzero digits in its representation are decomposed
into two parts, considering all possible combinations. The same
realizations, that can be obtained due to the commutative law
of addition, are not considered. As an example, consider 45
under CSD, 1010101. Its realizations are given in Fig. 3a.
Note that a constant with a representation having n nonzero
digits has 2n−1−1 possible realizations. Under MSD, each of
multiple representations of a constant is considered similarly.

FREYJA has four parts which are described in detail next.
1) Determining Partial Terms: The steps of the first part

are given as follows, where P is a set of sets which will include
all partial terms required to realize each constant of T .
I) Take an unimplemented element from T , ti, and extract

its realizations from the previously generated file.



45=(1000000)+(0010101)=64−19
45=(0010000)+(1000101)=−16+61
45=(0000100)+(1010001)=−4+49
45=(0000001)+(1010100)=1+44
45=(1010000)+(0000101)=48−3
45=(1000100)+(0010001)=60−15
45=(1000001)+(0010100)=65−20
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(a) (b)
Fig. 3. (a) Possible implementations of 45 under CSD; (b) Boolean network generated for the realizations of 45 under CSD.

II) For each operation that realizes ti;
a) Convert the inputs of an adder/subtractor to positive

and odd integers, determine the non-repeated partial
terms that are not equal to 1, and store them in a set
called Iset. Thus, Iset may be empty or may contain
a single partial term or a pair of partial terms.

b) If Iset is empty, make Pi empty and go to Step IV.
c) Otherwise, check each element of Pi;

i) If Pi(k) dominates2 Iset, go to Step II.
ii) If Iset dominates Pi(k), delete Pi(k).

d) Add Iset to Pi.
III) Add all partial terms in Pi to T without repetition and

label them as unimplemented.
IV) Label ti as implemented and repeat Step I until all

elements in T are labeled as implemented.
In Step IIb, we determine that an element of T can be

realized using a single operation whose inputs are 1 or the
shifted version of 1. In Step IIc, we avoid the repetition of a
single partial term or a pair of partial terms and remove the
redundant partial terms determined by the dominance rule [11].

For our example in Fig. 3a, P1, which includes the partial
terms required for the implementation of 45, is found as
{19,61,49,11,3,15,(65,5)}. Then, the partial terms in P1 are
added to T and the partial terms required for their implementa-
tions are found in a similar way. Note that while the target set
T only consists of target constants to be realized in the MCM
block in the beginning of this part, it is augmented with partial
terms that are required for the realization of these constants.

2) Constructing a Boolean Network: The Boolean net-
work represents the implementations of constants both using
adders/subtractors and multipliers3. It includes only AND and
OR gates. The representation of realizations of constants under
the shift-adds architecture is done as follows:
I) For each constant in T , ti, if Pi is empty, assign ti as a

primary input (PI) of the network.
II) Otherwise, generate an OR gate corresponding to the

constant ti, ORti
A. For each single partial term in Pi, a,

2A dominates B, if A
∩

B = A.
3The variables denoted with the subscript A and M are related to the

adders/subtractors and multipliers, respectively.

assign the output of an OR gate related to this constant,
ORa (to be described below), to the input of ORti

A. For
each pair of partial terms in Pi, b and c, generate an AND
gate corresponding to this pair, ANDb&c, whose inputs
are respectively the outputs of OR gates related to these
constants, ORb and ORc (to be described below). Assign
the outputs of these AND gates to the input of ORti

A.
To associate the optimization variables of the 0-1 ILP

problem with the constants of T for their realizations under the
shift-adds architecture, for each OR gate ORti

A, we generate a
2-input AND gate, ANDti

A, where one of its inputs is the output
of ORti

A and the other is the optimization variable associated
with ti, OPTti

A. Each PI of the network denoting a constant of
T , ti, is also represented with an optimization variable OPTti

A.
To represent the realizations of constants using multipliers,

for each constant of T , ti, we generate a variable VARti
M .

To indicate that a constant multiplication can be realized
using a multiplier or an adder/subtractor, for each constant of
T , ti, we generate a 2-input OR gate, ORti , where one of its
inputs is VARti

M and the other is OPTti
A if ti is a PI of the

network, otherwise it is ANDti
A.

Fig. 3b shows the network generated for the constant 45.
3) Generating the 0-1 ILP Problem: The objective function

of the 0-1 ILP problem is a linear function of optimization
variables with weight values set to 1. To obtain the constraints
of the 0-1 ILP problem, first, we find the conjunctive normal
form (CNF) formulas of each gate in the network and express
each clause of the CNF formulas as a linear inequality [12]. For
example, a 2-input AND gate, c = a∧b, is translated to CNF
as (a+c)(b+c)(a+b+c) and converted to linear constraints
as a− c ≥ 0, b− c ≥ 0, −a− b+ c ≥ −1. Second, to avoid
the violation of the number of available multipliers, a single
constraint ∑|T |i=1 VARti

M ≤ m is added to the 0-1 ILP problem.
Third, for each element of the target set T obtained in the
preprocessing phase, ti, its variable ORti is set to 1, since these
are the constants to be realized in the MCM block.

4) Finding a Minimum Solution: A 0-1 ILP solver is used
to find a solution of the 0-1 ILP problem. In its solution, the
variables VARti

M set to 1 are the constants to be realized using
multipliers. The variables OPTti

A set to 1 are the constants to be



Algorithm 1 The FREYR algorithm.
FREYR(T, m)

1: BC = ∞,BS←{},seed = 0,Sset ←{}
2: repeat
3: seed = seed +1
4: O = MCMwHcub(T , seed)
5: S = GenerateSynthSet(O)
6: S = AddDepth1Constants(S)
7: if S /∈ Sset then
8: Sset ← Sset ∪S
9: [HS,cost] = FindHybridMCM(T , m, S)

10: if cost < BC then
11: BC = cost, BS← HS
12: until Termination conditions meet
13: return BS

implemented under the shift-adds architecture. The realizations
of these constants are found from the previously generated file
as adders/subtractors whose inputs are 1, the constants selected
by the 0-1 ILP solver, or their shifted versions.

B. FREYR: An Approximate GB Algorithm
The size of a 0-1 ILP problem generated by FREYJA grows

exponentially as the number of constants and the number of
nonzero digits in the representations of constants increase,
limiting its application to certain MCM instances. Hence, we
introduce an approximate algorithm FREYR which can be ap-
plied to instances that the exact CSE algorithm cannot handle
and find a solution in a reasonable time. FREYR is an iterative
procedure and consists of two parts. First, a different MCM
solution to the MCM problem is found by the MCM algorithm
Hcub [6] at each time. Second, based on this MCM solution,
the problem of determining which constant multiplications to
be realized using the fewest adders/subtractors and at most
m multipliers is formulated as a 0-1 ILP problem and a
hybrid MCM solution is found. Its pseudo-code is given in
Algorithm 1, where BC is the best cost value in terms of the
number of adders/subtractors, BS is the best solution consisting
of at most m multipliers and BC adders/subtractors realizing
the constant multiplications, seed is an integer parameter used
in Hcub to find a different MCM solution, and Sset includes
all the sets of constants considered in FREYR. It is described
using an example with T={171,211} when m is 1.

In the iterative loop of FREYR, the MCMwHcub function
finds a solution to the MCM operation including the constants
of T with a different seed value at each time. For our example,
the solution of Hcub to T when seed is 1 includes 5 operations
(Fig. 4a). In the GenerateSynthSet function, from the solution
of Hcub, i.e., a set of adders/subtractors, we extract all the
outputs of operations realizing constants, compute their depths
in the MCM design, and store these constants (including
the constants of T ) in a set called S in an ascending order
based on their depth values. For our example, S is formed as
{65,69,211,341,171}. Then, the AddDepth1Constants func-
tion augments S with the constants 2i± 1 without repetition,
where i ranges between 2 and mbw+1, paying attention to the
order of constants based on their depth values. Note that mbw
is the maximum bitwidth of constants of T . The reason behind
adding depth 1 constants is to increase the number of possible
realizations of a constant to be found in the FindHybridMCM
function (described next). For our example, S becomes {3, 5,
7, 9, 15, 17, 31, 33, 63, 65, 127, 129, 255, 257, 511, 513,
69, 211, 341, 171} after the depth 1 constants are added.
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Fig. 4. (a) A solution of Hcub on T = {171,211}; (b) 6 possible realizations
of 171 found based on the solution of Hcub in the FindHybridMCM function;
(c) a solution of the FindHybridMCM function on T when m is 1.

If the set S is not considered before, the FindHybridMCM
function decides which constants of S to be realized using
a minimum number of adders/subtractors and at most m
multipliers, implementing all the constant multiplications of
T . This problem is formulated as a 0-1 ILP problem similar
to the one described in the exact CSE algorithm FREYJA. The
only difference is finding the realizations of constants. In this
function, the realization of a constant is in the form of A-
operation [6] given as follows:

A(x,y) = w = |x≪lx +(−1)syy≪ly|≫r (3)

where lx and ly, which are greater than or equal to 0, stand for
the left shifts of the operands x and y respectively, sy, which
is equal to 0 or 1, determine the sign of y, and r, which is
greater than or equal to 0, is the right shift of the output.
Note that finding a realization of a constant means finding
the values of these parameters of the A-operation in Eq. 3.
Thus, for a constant of S, si, we find all possible A-operations
realizing si when x and y are 1 or a constant of S, s j, where
j<i, lx and ly are less than or equal to mbw + 1, and r is
less than or equal to mbw−⌈log2si⌉+1. Note that all these
parameters are searched exhaustively. In our example, other
than the depth 1 constants, which have a single realization,
6, 1, 4, and 6 possible realizations are found for 69, 211,
341, and 171, respectively, all of which include the ones
found by Hcub. For example, 6 possible realizations found
for 171 are shown in Fig. 4b. Thus, the size of the 0-1 ILP
problem depends on the constants of S and is much smaller
than that of the one generated by FREYJA. After the 0-1
ILP problem is generated and solved, the FindHybridMCM
function returns a hybrid solution HS, i.e., a set of multipliers
and adders/subtractors realizing the MCM operation, together
with the number of required adders/subtractors, i.e., cost. For
our example, a solution with 2 adders/subtractors is found
(Fig. 4c). If cost is better than the best cost value found so far,
BC, the best solution BS and BC are updated with HS and cost,
respectively. FREYR terminates if one of the following three
conditions is satisfied: i) if seed reaches 100; ii) if the last
20 HS values found in sequence have cost values greater than
or equal to BC; iii) if the last 10 S sets obtained in sequence
have been considered before. For our example, FREYR tries all
other solutions of Hcub until its termination, but cannot find
a better solution than the one given in Fig. 4c.



TABLE I. SUMMARY OF AVERAGE RESULTS OF ALGORITHMS ON RANDOMLY GENERATED INSTANCES.

N
MCM Hybrid MCM

[5]-CSD [5]-MSD [6] m FREYJA-CSD FREYJA-MSD FREYR
op as cpu op as cpu op as cpu op as cpu op as cpu op as cpu

2 6.0 3.7 5.4 5.5 3.7 29.2 5.4 3.9 6.2 1 3.2 3.1 6.4 3.0 2.9 38.3 2.9 2.6 6.8
3 8.1 3.8 9.1 7.6 3.8 42.5 7.3 4.6 8.1 1 5.4 3.5 13.1 5.2 3.6 52.0 5.0 3.5 7.9
5 11.7 3.5 10.4 11.1 3.6 36.7 10.0 5.4 8.1 2 6.9 3.5 13.9 6.6 3.3 38.6 5.9 3.5 8.3
7 15.6 3.9 23.8 14.4 3.6 129.7 12.8 5.8 9.3 3 8.6 3.7 24.7 8.0 3.5 119.2 7.0 3.8 9.4
10 20.5 3.8 32.1 19.2 3.8 274.6 16.3 7.5 9.4 5 9.9 3.6 37.8 9.3 3.7 145.8 7.7 3.7 10.2
15 27.2 3.8 41.6 25.8 4.0 480.6 21.1 8.0 10.0 7 13.8 3.6 44.2 12.9 3.7 350.8 10.2 3.7 10.3
20 34.9 3.9 60.9 32.6 4.1 666.3 26.5 9.4 12.1 10 16.6 3.6 63.3 15.7 3.8 320.2 12.1 4.3 12.5
30 46.6 4.0 104.2 44.0 4.1 1400.3 35.1 11.1 10.9 15 22.2 4.0 92.3 20.5 3.7 414.0 16.0 4.2 10.0
50 69.7 4.1 267.0 66.2 4.2 3143.2 53.1 12.0 6.8 25 32.5 4.0 118.8 30.3 3.9 783.4 25.0 4.3 0.6
75 96.7 4.3 504.4 92.4 4.3 3705.8 76.7 12.1 3.6 37 45.6 4.3 143.1 42.3 4.2 937.4 38.0 4.4 0.8
100 122.3 4.5 684.8 117.6 4.5 2539.3 101.8 12.1 3.0 50 56.4 4.5 143.2 52.9 4.2 280.1 50.0 4.5 1.1

TABLE II. SUMMARY OF RESULTS OF ALGORITHMS ON FIR FILTERS.

Fil. Nu

m = ⌊Nu/4⌋ m = ⌊Nu/2⌋ m = ⌊3Nu/4⌋
m [8] FREYJA FREYR m [8] FREYJA FREYR m [8] FREYJA FREYR

op as op as op as op as op as op as op as op as op as
A 2 0 7 3 6 3 6 3 1 4 3 3 3 3 3 1 4 3 3 3 3 3
B 4 1 7 3 6 4 7 4 2 4 2 4 3 4 4 3 2 2 2 2 2 2
C 6 1 10 3 9 3 9 6 3 5 3 5 3 5 3 4 3 2 3 3 3 3
D 8 2 10 3 9 4 8 3 4 7 3 6 3 4 2 6 2 1 2 1 2 1
E 13 3 17 3 15 3 13 4 6 13 2 11 3 8 4 9 6 2 6 3 4 2
F 20 5 22 3 19 3 15 6 10 13 2 11 2 10 4 15 6 2 5 2 5 2
G 30 7 33 2 28 3 23 4 15 22 2 18 3 15 3 22 12 2 9 3 8 2
H 53 13 44 3 40 4 40 6 26 30 2 27 4 27 5 39 13 2 14 2 14 2
I 70 17 63 3 54 5 53 10 35 39 2 35 4 35 5 52 21 2 18 3 18 2

Avg. 23.7 2.9 20.7 3.6 19.3 5.1 15.2 2.3 13.3 3.1 12.3 3.7 7.7 2.0 6.9 2.4 6.6 2.1

IV. EXPERIMENTAL RESULTS
This section presents the results of FREYJA and FREYR on

randomly generated instances and FIR filters and compares
them with those of the method of [8]. FREYJA and FREYR
were written in MATLAB and run on a PC with Intel Xeon
at 2.4GHz. They use SCIP2.0 [13] as the 0-1 ILP solver.
This section also introduces the results of FIR filters designed
based on the solutions of FREYR. In this experiment, the Xilinx
Virtex 6 xc6vlx75T-2ff484 FPGA device was used. Note that
a Virtex 6 slice contains four LUTs and eight flip-flops and
this device has 288 DSP48E1 blocks. The FIR filters were
described in VHDL when the bitwidth of the filter input was
16 and the Xilinx ISE Design Suite 13.1 was used as the
synthesis tool. The functionality of filters was verified on
10,000 randomly generated input signals in simulation, from
which we obtained the switching activity information that was
used by the synthesis tool to compute the power dissipation.

As the first experiment set, we used randomly generated
MCM instances with the number of constants (N) 2, 3, 5, 7,
10, 15, 20, 30, 50, 75, and 100. For each group, there were
30 instances. The positive and odd constants were generated
in between 212+1 and 213−1. Table I presents the results of
MCM algorithms, i.e., the exact CSE method [5] and Hcub [6].
The exact CSE method [5] was run when constants are defined
under CSD and MSD and Hcub [6] was run with different
seeds as done in FREYR and its best solution with the fewest
operations was found. This table also shows the results of
FREYJA and FREYR when the number of multipliers, m, is
⌊N/2⌋. In this table, op, as, and cpu stand respectively for the
number of adders/subtractors, the number of adder-steps, and
CPU time in seconds, all in average.

For the MCM instances, Hcub [6] finds significantly better
solutions than the exact CSE algorithm [5] in terms of the
number of adders/subtractors and CPU time. However, its
solutions include a large number of adder-steps. Also, the use
of MSD representation leads to MCM designs including less

number of operations with respect to the CSD representation,
since a constant may have multiple representations under
MSD, including the one under CSD. However, due to this fact,
the exact CSE algorithm [5] under MSD generates a larger
0-1 ILP problem and requires more CPU time than the exact
CSE algorithm [5] under CSD. On the other hand, for the
hybrid MCM instances, the observations stated for the CSE and
GB MCM algorithms are also valid for FREYJA and FREYR.
However, the solutions of FREYJA and FREYR are closer to
each other than those of the MCM algorithms. This is because
the use of multipliers reduces the number of constants to be
realized using adders/subtractors. For example, the use of 1
multiplier eliminates 2.5 adders/subtractors on average which
can be observed on the solutions of Hcub and FREYR on
instances with 2 constants. Also, the hybrid MCM designs
have less number of adder-steps than the MCM designs. As N
increases, the CPU time required for FREYJA decreases with
respect to those of the exact CSE algorithm [5]. Although the
sizes of 0-1 ILP problems generated by FREYJA are larger than
those obtained by the exact CSE algorithm [5], this is because
the 0-1 ILP problem becomes simpler to the 0-1 ILP solver
when m>0. This fact is also valid between Hcub and FREYR.

As the second experiment set, we used the filters given
in [8]. Table II presents the results of the hybrid MCM
algorithms when m was ⌊Nu/4⌋, ⌊Nu/2⌋, and ⌊3Nu/4⌋, where
Nu denotes the number of unique positive and odd filter coef-
ficients. Note that the results of FREYJA were obtained under
MSD. Observe that the proposed methods always find solutions
including the same or less number of adders/subtractors than
the algorithm of [8]. This is simply because the algorithm
of [8] does not primarily target the optimization of the number
of operations. However, its hybrid MCM designs have the same
or less number of adder-steps than the proposed algorithms,
since it aims to find a hybrid MCM design with the minimum
number of adder-steps. Also, the solutions of FREYJA and



TABLE III. SPECIFICATIONS OF FIR FILTERS.

Filter filter Nu
normalized normalized quantization

length passband stopband value
1 100 46 0.11 0.13 16
2 180 83 0.20 0.21 16

TABLE IV. SUMMARY OF RESULTS OF FIR FILTER DESIGNS.
Filter m op as Sl DSP48E1 D P

1

0 50 11 1160 0 15.5 1531
⌊Nu/4⌋ 36 8 1078 12 12.1 1492
⌊Nu/2⌋ 24 4 1008 24 8.8 1494
⌊3Nu/4⌋ 12 4 934 36 8.7 1498

Nu 0 0 875 46 8.9 1505

2

0 84 9 2065 0 17.2 1574
⌊Nu/4⌋ 63 8 1918 21 12.6 1536
⌊Nu/2⌋ 42 7 1776 42 11.0 1544
⌊3Nu/4⌋ 21 3 1685 63 10.2 1556

Nu 0 0 1559 83 10.8 1563

FREYR in terms of the number of adders/subtractors are very
close to each other and they get closer as m increases.

As the third experiment set, we generated two low-pass FIR
filters using the firgr function of MATLAB. Table III presents
their specifications. The MCM blocks of these filters were
realized based on the solutions of FREYR. Table IV presents the
results of filter designs when m is 0, ⌊Nu/4⌋, ⌊Nu/2⌋, ⌊3Nu/4⌋,
and Nu, where Sl, DSP48E1, D, and P denote the number of
slices, the number of DSP48E1 blocks, the critical path delay
in ns, and power dissipation in mW , respectively.

Observe from Table IV that as the number of multipliers m
is increased, the number of required adders/subtractors op, and
consequently, the number of occupied slices, decrease. Also,
the increase in m causes a reduction in the number of adder-
steps of the MCM design as, which generally reduces the delay
of filter designs. Since m, op, and as have an impact on the
power dissipation, a change in these parameters leads to filter
designs with different power consumption values.

To explore the tradeoff between the number of slices and
delay and between the number of slices and power dissipation,
we used the Filter 1 of Table III and obtained its designs when
m ranges between 0 and 46 in steps of 2. Figs. 5 and 6 present
these tradeoffs. Observe that FIR filters with different number
of slices, delay, and power dissipation values are obtained
when m is changed. We note that the maximum and minimum
values of delay are obtained as 17.1ns and 8.6ns when m is 2
and 36, respectively and the maximum and minimum values
of power dissipation are found as 1531mW and 1490mW when
m is 0 and 14, respectively. This is a clear evidence that the
minimum delay and power dissipation values may be found
when m is neither 0 nor Nu, but in between these values.
Note that as m increases, the generic multipliers become more
dominant on the delay and power dissipation of the design.

V. CONCLUSIONS

This paper addressed the problem of finding the minimum
number of adders/subtractors in a hybrid MCM design, where
the constant multiplications can be realized using both mul-
tipliers and adders/subtractors on FPGA. To the best of our
knowledge, FREYJA and FREYR are the first algorithms pro-
posed for this problem. Experimental results showed that they
can obtain better solutions than an existing algorithm targeting
pipelined hybrid MCM designs. Also, it was shown that the
use of hybrid MCM design leads to FIR filter designs requiring
less number of slices, having less delay, and consuming less
power with respect to those including only adders/subtractors.
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Fig. 5. Tradeoff between number of slices and delay of Filter 1.
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