
14

Multiplierless Design of Folded DSP Blocks

LEVENT AKSOY, INESC-ID
PAULO FLORES and JOSE MONTEIRO, INESC-ID/Instituto Superior Técnico,
Universidade de Lisboa

This article addresses the problem of minimizing the implementation cost of the time-multiplexed constant
multiplication (TMCM) operation that realizes the multiplication of an input variable by a single constant se-
lected from a set of multiple constants at a time. It presents an efficient algorithm, called ORPHEUS, that finds
a multiplierless TMCM design by sharing logic operators, namely adders, subtractors, adders/subtractors,
and multiplexors (MUXes). Moreover, this article introduces folded design architectures for the digital sig-
nal processing (DSP) blocks, such as finite impulse response (FIR) filters and linear DSP transforms, and
describes how these folded DSP blocks can be efficiently realized using TMCM operations optimized by OR-
PHEUS. Experimental results indicate that ORPHEUS can find better solutions than existing TMCM algorithms,
yielding TMCM designs requiring less area. They also show that the folded architectures lead to alternative
designs with significantly less area, but incurring an increase in latency and energy consumption, compared
to the parallel architecture.

Categories and Subject Descriptors: B.2.0 [Arithmetic and Logic Structures]: General; B.5.1 [Register-
Transfer Level Implementation]: Design

General Terms: Design, Algorithms

Additional Key Words and Phrases: Time-multiplexed constant multiplication, folded architecture, multi-
plierless design, area optimization, finite impulse response filter, discrete cosine transforms, integer cosine
transforms

ACM Reference Format:
Levent Aksoy, Paulo Flores, and Jose Monteiro. 2014. Multiplierless design of folded DSP blocks. ACM Trans.
Des. Autom. Electron. Syst. 20, 1, Article 14 (November 2014), 24 pages.
DOI: http://dx.doi.org/10.1145/2663343

1. INTRODUCTION

Multiplication of constant(s) by input variable(s) is a ubiquitous operation in many DSP
applications such as fast Fourier transforms (FFTs), FIR and infinite impulse response
(IIR) filters, discrete cosine transforms (DCTs), and integer cosine transforms (ICTs).
Since the constants are fixed and determined beforehand in these DSP blocks, the
constant multiplications are generally realized under a shift-adds architecture using
only adders, subtractors, and shifts [Nguyen and Chatterjee 2000]. Note that shifts by
a constant value can be realized using only wires that represent no hardware cost. In
the last two decades, efficient algorithms have been proposed for not only minimizing
the number of operations, but also for optimizing the gate-level area, delay, throughput,
and power dissipation of the shift-adds design of constant multiplications [Aksoy et al.

This work was supported by national funds through FCT, Fundação para a Ciência e a Tecnologia, under the
project PEst-OE/EEI/LA0021/2013.
Authors’ addresses: L. Aksoy (corresponding author), P. Flores, INESC-ID, Rua Alves Redol, 9, 1000-029,
Lisboa, Portugal; email: levent@algas.inesc-id.pt; J. Monteiro, INESC-ID, Rua Alves Redol, 9, 1000-029,
Lisboa, Portugal and Instituto Superior Tecnico, Universidade de Lisboa, Alameda da Universidade, 1649-
004, Lisboa, Portugal.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
c© 2014 ACM 1084-4309/2014/11-ART14 $15.00

DOI: http://dx.doi.org/10.1145/2663343

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 14, Pub. date: November 2014.

14:2 L. Aksoy et al.

2008, 2010, 2012; Boullis and Tisserand 2005; Dempster and MacLeod 1995; Hartley
1996; Johansson et al. 2005, 2011; Kang and Park 2001; Kumm et al. 2012; Thong and
Nicolici 2010; Park and Kang 2001; Voronenko and Püschel 2007].

Over the years, many design architectures, such as parallel, folded, bit-serial, and
digit-serial, have also been introduced addressing the area, latency, and energy con-
sumption of DSP applications [Parhi 1995, 1999]. The folded and digit-serial architec-
tures are preferred over the parallel architecture in DSP applications with stringent
constraints on circuit area. However, since these architectures need multiple clock
cycles to obtain the result, they lead to designs with higher latency and energy con-
sumption with respect to the parallel architecture [Parhi 1999].

In the design of folded DSP blocks, TMCM is a fundamental operation. For exam-
ple, single-input single-output (SISO) and single-input multiple-output (SIMO) TMCM
operations occur in folded design of filters, recursive DCT kernels, and filter banks
[Demirsoy et al. 2003, 2004, 2007]. Consider an SISO TMCM example with a set of n
constants. As illustrated in Figure 1, it can be realized in three different ways: (i) the
mux-mul architecture includes a generic multiplier and an n-to-1 MUX, where the
primary select input i with 0 ≤ i ≤ n−1 determines which constant is multiplied by
the input variable x (Figure 1(a)); (ii) the mcm-mux architecture uses an n-to-1 MUX
and a multiple constant multiplication (MCM) block that implements the constant
multiplications using adders and subtractors (Figure 1(b)); (iii) the mux-add archi-
tecture includes adders, subtractors, and adders/subtractors (determined by a select
input) and MUXes (Figure 1(c)). The mux-add architecture increases the number of
constants that a logic operator can generate and provides the possible sharing of logic
operators, yielding less complex TMCM designs when compared to other architectures
[Tummeltshammer et al. 2007].

In the last decade, many efficient algorithms were introduced for the minimiza-
tion of the design complexity in TMCM operations targeting the mux-add architecture
and the application-specific integrated circuit (ASIC) and field programmable gate
arrays (FPGA) design platforms [Aksoy et al. 2013b, 2014; Chen and Chang 2009;
Demirsoy et al. 2007; Sidahao et al. 2004, 2005; Tummeltshammer et al. 2007; Turner
and Woods 2004]. However, the exact method of Sidahao et al. [2004] can only be
applied to a small number of constants and the solution quality of the approximate
methods [Aksoy et al. 2013b; Chen and Chang 2009; Demirsoy et al. 2007; Sidahao
et al. 2005; Tummeltshammer et al. 2007; Turner and Woods 2004] depends heavily on
the TMCM instance. Recently, we introduced an approximate algorithm ORPHEUS [Aksoy
et al. 2014] that combines efficient heuristics from both MCM and TMCM techniques
and yields better solutions than previously proposed algorithms. To the best of our
knowledge, ORPHEUS is the only algorithm that can handle both SISO and SIMO TMCM
instances, targeting an ASIC design platform. In this article, we describe ORPHEUS and
explore its properties and performance in detail. Furthermore, we present the fully
folded realizations of FIR filters and linear DSP transforms. In order to explore the
trade-off between area and latency in the fully folded and unfolded (parallel) real-
izations, we also consider the partially folded design of these DSP blocks. We show
how these fully and partially folded realizations can be efficiently obtained using the
solutions of ORPHEUS. Experimental results include the comparison of ORPHEUS with
prominent TMCM algorithms, the comparison of different TMCM architectures, the
comparison of fully and partially folded designs of DSP blocks with their parallel de-
signs, and the exploration of the impact of design parameters on the area, latency, and
energy consumption of the DSP blocks.

The rest of the article proceeds as follows. Section 2 introduces the background
concepts related to the proposed TMCM algorithm ORPHEUS. Section 3 describes ORPHEUS

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 14, Pub. date: November 2014.

Multiplierless Design of Folded DSP Blocks 14:3

Fig. 1. TMCM architectures: (a) mux-mul; (b) mcm-mux; (c) mux-add.

and Section 4 presents the details on the folded design of FIR filters and linear DSP
transforms. Section 5 shows the experimental results and, finally, Section 6 concludes
the article.

2. BACKGROUND

In this section, we give the background concepts, introduce the TMCM problem, and
present an overview on previously proposed TMCM algorithms. We note that, since the
common input variable x is multiplied by multiple constants in MCM and TMCM, the
implementation of constant multiplications is in fact equal to the implementation of
constants. For example, 3x realized as 3x = x � 1+x can be rewritten as 3 = 1 � 1+1
by removing the variable x from both sides. This terminology is used interchangeably
throughout this article.

2.1. Number Representation

The binary representation decomposes a number in a set of additions of powers of two.
The signed digit system makes the use of positive and negative digits. The canonical
signed digit (CSD) representation [Hartley 1996] has two main properties: (i) two
nonzero digits are not adjacent; and (ii) the number of nonzero digits is minimum.
The minimal signed digit (MSD) representation [Park and Kang 2001] is obtained
by dropping the first property of the CSD representation. Thus, a constant may have
several representations under MSD, but all with a minimum number of nonzero digits.

Consider 23 defined in six bits. Its binary representation, 010111, includes 4 nonzero
digits. It is represented as 101001 in CSD and both 101001 and 011001 denote 23 in
MSD using 3 nonzero digits, where 1 stands for −1.

2.2. 0-1 Integer Linear Programming (ILP)

The 0-1 ILP problem is the optimization of a linear objective function subject to a set
of linear constraints and is generally defined as follows.1

minimize wT · x (1)
subject to A · x ≥ b, x ∈ {0, 1}k (2)

In the objective function of Eq. (1), wi in w is a weight value associated with each
variable xi, where 1 ≤ i ≤ k. In Eq. (2), A · x ≥ b denotes a set of j linear constraints,
where b ∈ Z j and A ∈ Z j × Zk.

1A maximization objective can be easily converted to the minimization objective by negating the objective
function. Less-than-or-equal and equality constraints are respectively accommodated by the equivalences
A · x ≤ b ⇔ −A · x ≥ −b and A · x = b ⇔ (A · x ≥ b) ∧ (A · x ≤ b).

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 14, Pub. date: November 2014.

14:4 L. Aksoy et al.

2.3. Multiplierless Design of Constant Multiplications

The constant multiplications can be categorized in four classes.

(1) The single constant multiplication (SCM) operation realizes the multiplication of
a single constant r by a single variable x, namely y = rx. It is used in compil-
ers [Bernstein 1986] and in the design of FFTs [Qureshi and Gustafsson 2009] and
fast DCTs [Thong and Nicolici 2010].

(2) The multiple constant multiplication (MCM) operation computes the multiplication
of m constants in a set R by a single variable x, namely yj = rj x with 1 ≤ j ≤ m. It
occurs in the transposed form FIR filters [Kang and Park 2001].

(3) The constant array-vector multiplication (CAVM) operation implements the multi-
plication of a 1 × n constant array R by an n× 1 input vector X, namely y = ∑

k rkxk
with 1 ≤ k ≤ n. It appears in IIR and direct form FIR filters [Hartley 1996].

(4) The constant matrix-vector multiplication (CMVM) operation realizes the multi-
plication of an m × n constant matrix R by an n × 1 input vector X, namely,
yj = ∑

k rjkxk with 1 ≤ j ≤ m and 1 ≤ k ≤ n. It is used in the design of linear
DSP transforms [Boullis and Tisserand 2005].

A straightforward way of realizing constant multiplications under a shift-adds archi-
tecture, called the digit-based recoding (DBR) technique [Ercegovac and Lang 2003],
has two steps: (i) define the constants under a particular number representation,
namely binary or CSD; and (ii) for the nonzero digits in the representation of constants,
shift the input variables according to digit positions and add/subtract the shifted vari-
ables with respect to digit values.

For an MCM example, consider 23x and 49x. Their decompositions under binary are

23x = (010111)binx = x � 4 + x � 2 + x � 1 + x
49x = (110001)binx = x � 5 + x � 4 + x

that lead to a multiplierless design with 5 operations as shown in Figure 2(a).
Further reductions in the number of operations can be found by sharing the common

partial products among the constant multiplications. The proposed algorithms can be
categorized in two classes: (i) the common subexpression elimination (CSE) methods;
and (ii) the graph-based (GB) techniques. The CSE methods [Aksoy et al. 2008; Boullis
and Tisserand 2005; Hartley 1996; Park and Kang 2001] define the constants under
a number representation, such as binary, CSD, or MSD. Then, considering possible
subexpressions that can be extracted from the nonzero digits in the representations of
constants, the “best” subexpression, generally the most common, is chosen to be shared
among the constant multiplications. Their main drawback is their dependency on a
number representation. The GB techniques [Aksoy et al. 2010; Dempster and MacLeod
1995; Thong and Nicolici 2010; Voronenko and Püschel 2007] are not restricted to any
particular number representation and aim to find intermediate subexpressions that
enable to realize the constant multiplications with a minimum number of operations.
They consider a larger number of realizations of a constant and obtain better solutions
than the CSE methods, but require more computational resources due to a larger
search space. Additionally, hybrid techniques combine methods from both CSE and
GB algorithms [Aksoy et al. 2012] and increase the number of implementations of a
constant obtained by a CSE method considering alternative realizations [Dempster
and MacLeod 2004; Ho et al. 2008].

For our MCM example, the exact CSE algorithm [Aksoy et al. 2008] finds a minimum
solution with 4 operations when constants are defined under binary representation
(Figure 2(b)). The exact GB method [Aksoy et al. 2010] obtains a minimum solution

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 14, Pub. date: November 2014.

Multiplierless Design of Folded DSP Blocks 14:5

Fig. 2. Multiplierless designs of 23x and 49x: (a) DBR method [Ercegovac and Lang 2003]; (b) exact CSE
algorithm [Aksoy et al. 2008]; (c) exact GB algorithm [Aksoy et al. 2010].

Fig. 3. (a) Solution of ORPHEUS on C = [23 49]; (b) outputs of the TMCM design; (c) mapping of select inputs.

with 3 operations (Figure 2(c)). In both solutions, the partial product 3x is shared
among the constant multiplications.

2.4. Time-Multiplexed Constant Multiplication

Considering both SISO and SIMO TMCM operations, we represent the constants of the
TMCM operation in an m× n matrix C, where m and n denote the number of outputs
and time slots, respectively. As a simple example, consider an SISO TMCM instance
with a 1 × 2 matrix C = [23 49]. This constant matrix indicates that 23x and 49x are
required at the output of the TMCM design at time slots 1 and 2 (in other words, when
the primary select input i is equal to 0 and 1), respectively. Note that, in SISO TMCM
instances, m is 1 and n refers to the number of constants in an array.

Figure 3(a) illustrates the TMCM design obtained by ORPHEUS on C = [23 49]. All pos-
sible values at its output f under the select inputs of an MUX and an adder/subtractor
are shown in Figure 3(b). The adder/subtractor is assumed to act as an adder and a sub-
tractor when its select input is 0 and 1, respectively. Observe that the TMCM operation
can also generate 25x and 47x. In order to obtain the desired outputs, a combinational
logic is required to map the primary select input i to the select inputs of the MUX and
the adder/subtractor (Figure 3(c)).

Thus, the TMCM problem is defined as follows: Given the constant matrix C, find
a set of logic operators, namely adders, subtractors, adders/subtractors, and MUXes,
that realizes the TMCM operation and leads to a TMCM design occupying minimum
area.

2.5. Related Work

The TMCM algorithms of Demirsoy et al. [2007], Sidahao et al. [2004, 2005], and
Turner and Woods [2004] target the FPGA design platform. In Demirsoy et al. [2007]

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 14, Pub. date: November 2014.

14:6 L. Aksoy et al.

and Turner and Woods [2004], the basic structure consists of an adder, a subtractor, or
an adder/subtractor, that may include a 2-to-1 MUX at one of its inputs requiring no
additional hardware in an FPGA. The algorithm of Turner and Woods [2004] generates
all possible configurations of the basic structure under the given FPGA technology and
maps the decompositions of constants to basic structures. The method of Demirsoy et al.
[2007] can find the fewest basic structures by identifying the common partial products
among the constant multiplications. In Sidahao et al. [2004, 2005], the basic structure
is assumed to include a 4-to-1 MUX whose inputs are a, b, a+ b, and 0, considering the
Xilinx Virtex/Virtex-II slice architecture. The exact algorithm of Sidahao et al. [2004]
formalizes the problem of minimizing the number of basic structures as a 0-1 ILP
problem. Since the size of the 0-1 ILP problem grows exponentially as the number of
constants in the TMCM operation increases, the algorithm of Sidahao et al. [2004] can
only be applied to TMCM instances with a small number of constants. In the method
of Sidahao et al. [2005], first, the MCM solution of each array of constants is found
and then these graphs are merged, exploiting the common partial terms. Note that all
these techniques can target both SISO and SIMO TMCM operations.

In Aksoy et al. [2013b], Chen and Chang [2009], and Tummeltshammer et al. [2007],
the SISO TMCM operations are targeted under an ASIC design platform and the cost
of a TMCM operation is computed based on the area cost of each logic operator in a
standard cell library. Given an array of constants, the algorithm of Tummeltshammer
et al. [2007], called DAGfusion, finds the SCM graph of each constant using the min-
imum number of addition and subtraction operations [Gustafsson et al. 2002]. Then,
it obtains a TMCM solution by merging the SCM graphs using MUXes iteratively. In
Chen and Chang [2009], first, the multiplierless realization of constant multiplications
is found using an MCM algorithm and, second, a scheduling algorithm is applied to
design the TMCM operation. The algorithm of Aksoy et al. [2013b] combines both the
exploitation of the most common partial terms and merging of SCM graphs that is
realized by DAGfusion. In the algorithm of Aksoy et al. [2013b], the problem of finding
the basic structures, including the most common partial terms, was formulated as a
0-1 ILP problem and the selection of basic structures among alternative realizations
was accomplished efficiently using a decision tree. To the best of our knowledge, only
ORPHEUS [Aksoy et al. 2014], presented in the following section, can target both SISO
and SIMO TMCM operations under an ASIC design platform. Note that any TMCM
algorithm, which can target only SISO TMCM instances, can be applied to each output
of an SIMO TMCM instance and its solutions can be combined to realize the SIMO
TMCM instance. However, in this case, the common logic operators among different
outputs may not be extracted and shared properly.

3. ORPHEUS: AN APPROXIMATE TMCM ALGORITHM

The main motivations behind the development of ORPHEUS are to combine efficient tech-
niques proposed for both MCM and TMCM operations into a single TMCM algorithm,
to obtain better solutions than existing TMCM algorithms using little computational
resources, and to handle both SISO and SIMO TMCM instances under the ASIC design
architecture. ORPHEUS is designed as an iterative method and includes two main parts:
(i) optimal and (ii) heuristic. In its optimal part, the arrays of constants, that is, the
rows of the constant matrix, which can be realized using a single logic operator with
available arrays of constants, are synthesized. Note that the input variable x and its
shifted versions are always available. If there still exist arrays of constants to be im-
plemented, ORPHEUS switches to its heuristic part. In this part, an array of constants is
chosen, its three alternative implementations are found, and the one having the small-
est implementation cost is favored. ORPHEUS iterates its optimal and heuristic parts
until all rows of the constant matrix are synthesized.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 14, Pub. date: November 2014.

Multiplierless Design of Folded DSP Blocks 14:7

The steps of ORPHEUS, as described in detail in the following sections, are given next.
In these steps, the set M, that initially consists of an input variable denoted by 1, will
include constants whose multiplications by the input variable will be realized under a
shift-adds architecture based on the solution of an efficient MCM algorithm [Voronenko
and Püschel 2007]. Also, the matrix S, initially consisting of a single array of n 1’s, will
include the synthesized arrays of constants. The set I will include logic operators
realizing the TMCM operation.

(1) Given the constant matrix C of the TMCM operation, in a preprocessing phase,
determine the nonredundant target matrix T .

(2) For each row of T , Ti, search for an optimal realization. If such a realization exists,
move Ti from T to S, update M if necessary, and add this realization to I.

(3) If T is empty, go to step 10.
(4) Select an array of constants from T , Ti.
(5) Find a realization of Ti using a single operation, one of whose inputs is a row of S

or its shifted version and that has the smallest estimated cost ecost1.
(6) Find a realization of Ti under the mcm-mux architecture and compute its esti-

mated cost ecost2.
(7) Find a realization of Ti using a single operation that has the minimum number of

distinct partial terms at its inputs and the smallest estimated cost ecost3.
(8) Among these three realizations, choose the one with the minimum cost value and

update T , S, I, and M.
(9) If T is not empty, go to step 2.

(10) Synthesize the constants of M under a shift-adds architecture, update, and return
I.

In following sections, these steps are described through an SIMO example with a
4×2 matrix C = [5 5; 2 1; 12 10; 92 196]. This TMCM instance has 4 outputs and
2 time slots. The constant matrix C indicates that the first, second, third, and forth
outputs compute 5x, 2x, 12x, and 92x at time slot 1, respectively. Also, at time slot 2,
they compute 5x, x, 10x, and 196x, respectively We note that the final realization of
this TMCM operation found by ORPHEUS is presented in Figure 6(a), where the select
inputs of the MUX and adders/subtractors are not shown for the sake of clarity.

3.1. Step 1: Preprocessing Phase

The negative constants of C are converted to positive, because it is always assumed
that the sign of a constant is handled where the constant multiplication is required
using an adder/subtractor. For each row of C, Ci, its left shift lsi is found by dividing
Ci by 2 until at least one of its constants is odd. Then, Ci · 2−lsi is added to T without
repetition. For our example, T is found as [5 5; 2 1; 6 5; 23 49].

3.2. Step 2: Searching for Optimal Realizations

First, we check each row of T , Ti, if it includes the same constant at its every time slot
(column). If such an array of constants exists, it is moved from T to S and this constant
is added to M without repetition. For our example, the row of T , namely [5 5], is moved
from T to S and 5 is added to M.

Second, we check each Ti if its constants are 1, or its shifted versions, so that it can
be realized using a single MUX. If there exists such an array of constants, it is moved
from T to S and this MUX is added to I. For our example, the row of T , namely [2 1],
can be realized using a single MUX (Figure 6(a)).

Third, we check each Ti if it can be realized using a single operation, that is, an
adder, a subtractor, or an adder/subtractor, whose inputs are the rows of S or their
shifted versions. While searching for such realizations, the arrays of constants Ds are

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 14, Pub. date: November 2014.

14:8 L. Aksoy et al.

computed as

D · 2lsd = Ti − (
Sj · 2lsj

) � SA, (3)

where lsd ≥ 0 denotes the left shift of D, lsj stands for the left shift of Sj with 1 ≤
j ≤ |S| and 0 ≤ lsj ≤ mbc(Ti) − mbc(Sj) + 1 (where the mbc(A) function determines the
maximum bitwidth of constants in an array A), and SA is a 1 × n sign array consisting
of 1 and −1. Note that � denotes the element-by-element product of arrays (e.g., in
C = A � B, each entry in the array C is the product of the corresponding entries in
arrays A and B). Thus, Ds are found by searching all possible Sj , lsj , and sign arrays
exhaustively. If D is equal to a row of S, then Ti can be realized using a single operation.
If SA consists of 1’s, then the operation is an adder, whereas if SA consists of −1’s, then
it is a subtractor. Otherwise, it is an adder/subtractor. If such a realization is found, it
is added to I and Ti is moved from T to S. In our example, for the row of T , [6 5] as Ti,
a D can be found as [1 1], which is a row of S, with [1 1] · 22 = [6 5] − ([2 1] · 20) � [1 1],
where [2 1] standing for Sj is another row of S. Thus, the realization of [6 5], namely
[1 1] · 22 + ([2 1] · 20) � [1 1], needs a single adder (Figure 6(a)).

This procedure iterates until there is no such row of T satisfying the preced-
ing checks. For our example, at the end of this step, T , S, and M are [23 49],
[1 1; 5 5; 2 1; 6 5], and {1, 5}, respectively.

3.3. Step 4: Selection of an Array of Constants

At this point, there exist row(s) of T that require(s) intermediate arrays of constants to
be synthesized. ORPHEUS selects one row of T that has the minimum tnzd value, denoting
the total number of nonzero digits of constants in an array under CSD. An array with
a smaller tnzd value roughly indicates that it can be realized using a small number of
logic operators. This metric is preferred for two reasons: (i) it may increase the sharing
of logic operators, since ORPHEUS considers the synthesized arrays of constants of S in
the realization of a row of T (steps 2, 5, and 7); (ii) it ensures the convergence of each
realization to an array consisting of 1 or its shifted versions (step 5).

3.4. Step 5: First Alternative Realization

Note that every computation of D in Eq. (3) actually presents a possible realization of
a row of T , Ti. To find the promising one, whenever a new D is determined, we first
check whether its tnzd value is less than that of Ti to ensure its convergence. If so, next
we determine the type of the operation realizing Ti and compute its cost in a given
standard cell library, costop. Then we estimate the cost of D as if it will be realized
under the mcm-mux architecture as shown in Figure 1(b). Initially, we determine the
quantity of different constants of D, namely q. If q > 1, the cost of a q-to-1 MUX in a
given standard cell library, namely costmux, is computed; otherwise, costmux is set to 0.
Then, we convert each constant of D to an odd constant, find the minimum number of
operations required for its multiplication by an input variable using the solutions of
the algorithm of Gustafsson et al. [2002], compute the cost values of these operations
assuming them as adders, and add them to costadd that was initially set to 0. Note
that the costadd value is computed without repeating the same odd constants. Thus, the
implementation cost of an operation realizing Ti is found as costop + costmux + costadd.
Note that the array of constants Sj in Eq. (3) is already synthesized. After all possible
realizations of Ti are considered, we choose the one with the minimum cost value which
is assigned to ecost1.

For the realization of the row of T , [23 49], [3 6] · 23 + ([1 1] · 20) � [−1 1] is found to
be the one with the minimum cost, requiring an adder/subtractor and the intermediate
array of constants [3 6] that is estimated to need a 2-to-1 MUX and an adder.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 14, Pub. date: November 2014.

Multiplierless Design of Folded DSP Blocks 14:9

Fig. 4. Possible implementations of 23 and 49 under MSD.

3.5. Step 6: Second Alternative Realization

In this case, we consider the mcm-mux realization of Ti as shown in Figure 1(b). Its
cost value is computed exactly as described for the estimation of the cost of D in step 5,
except that the elements of M are taken into account in this case, meaning that if
the odd version of a constant of Ti is an element of M, then it is not considered in
computation of costadd. Thus ecost2 is found as costmux + costadd. For our example, the
estimated cost of [23 49] includes a 2-to-1 MUX and 4 adders.

3.6. Step 7: Third Alternative Realization

In this realization of Ti, we aim to find an implementation (an adder or a subtractor)
for each constant of Ti such that these operations include the minimum number of
distinct partial terms at their inputs. The reason behind this is that common partial
terms reduce the sizes of MUXes and the number of elements in the intermediate array
of constants [Aksoy et al. 2013b]. This problem is formulated as a 0-1 ILP problem that
requires five steps as described in following.

First, we find all possible realizations of each constant of Ti by decomposing its
nonzero digits in two partial terms when it is defined under MSD. Since a constant
may have alternative representations under MSD, the number of possible realizations
is increased. For the row of T , [23 49], the possible realizations of its constants are
given in Figure 4. Removing the same realizations of 23 and 49, that is, −1 + 24 and
48 + 1, respectively, there are 5 realizations for both constants.

Second, we represent the realizations of constants in a Boolean network that includes
only AND and OR gates. For an adder, two AND gates, denoted as ANDp1+p2 and ANDp2+p1 ,
are generated. For a subtractor, we assume that the first and second inputs are the
partial terms with the positive and negative signs, respectively, and we generate an
AND gate denoted as ANDp1−p2 . For each constant of Ti, Ti[h], where 1 ≤ h ≤ n, an OR

gate, ORTi [h], is generated to combine all realizations of Ti[h]. Each partial term pk at
the first or second input of an operation is denoted as an optimization variable, O1|pk|
or O2|pk|, respectively. Figure 5 shows the network generated for the row of T , [23 49].

Third, the objective function of the 0-1 ILP problem is obtained as a linear combina-
tion of optimization variables whose weights are set to 1. Its constraints are obtained
by finding the conjunctive normal form (CNF) formulas of each gate and expressing
each clause of the CNF formulas as a linear inequality [Barth 1995]. For example, a
two-input AND gate c = a∧b is translated to CNF as (a+c)(b+c)(a+b+c) and converted
to linear constraints as a − c ≥ 0, b − c ≥ 0, −a − b + c ≥ −1. The outputs of OR gates
related to constants of Ti, namely ORTi [h], are set to 1 since they need to be realized.

Fourth, a minimum solution is found using a 0-1 ILP solver. Based on the selected
operations (the outputs of AND gates set to 1 in the solution), the realization of Ti is
formed as

Ti = G1 · 2ls1 + (G2 · 2ls2) � SA, (4)

where G1 (G2) includes the first (second) input of the selected operations for each
constant of Ti, ls1 (ls2) is the amount of left shift of G1 (G2), and SA denotes the sign

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 14, Pub. date: November 2014.

14:10 L. Aksoy et al.

Fig. 5. The Boolean network generated for the array of constants [23 49] under MSD.

array and is determined based on the type of each operation. In other words, if Ti[h]
is realized using an adder, then SA[h] is 1; otherwise, it is −1. For our example, the
operations 7 + 16 and 65 − 16 are respectively found for constants 23 and 49, and the
realization of [23 49] is obtained as [7 65] · 20 + ([1 1] · 24) � [1 − 1] according to Eq. (4).

Finally, we compute the cost of this realization as done in step 5. To do so, we define
the type of operation based on SA and compute its cost, costop. For any of G1 and G2,
if it is not included in S, then we estimate its cost in terms of costmux and costadd. For
our example, the type of operation is adder/subtractor and only the cost of [7 65] is
estimated that needs a 2 × 1 MUX and two adders.

This solution leads to an operation with common partial terms at the inputs. In order
to include information about the design complexity into the 0-1 ILP problem, for each
partial term pk, we also take into account its bitwidth bw(pk) and number of nonzero
digits under CSD nzd(pk). Hence, we modify the objective function of the previous 0-1
ILP problem, where the weight of each optimization variable, denoting a partial term
pk at the inputs of operations, is assigned to bw(pk) · nzd(pk). In this case, 23 and 49 are
implemented as 8 + 15 and 64 − 15, respectively. The realization of [23 49] is found as
[1 8] ·23 +([15 15] ·20)�[1 −1], requiring an adder/subtractor. The intermediate arrays
[1 8] and [15 15] are estimated to require a 2 × 1 MUX and an adder, respectively.

Among these two possible realizations, we determine the one with the minimum cost,
which is assigned to ecost3. For our example, the second one has the minimum cost.

3.7. Step 8: Selection of the Realization with Minimum Cost

Among the realizations found in steps 5, 6, and 7, if ecost1 is the minimum, we add the
required intermediate array of constants found in step 5 to T . If ecost2 is the minimum,
we add the odd versions of constants in Ti to M without repetition and move Ti from T
to S. Otherwise, we add the required intermediate array(s) of constants found in step 7
to T . In case of equality of cost values, the realization found in step 6 is favored first,
and then the one found in step 5. This is because that in the realizations of constants
in M is larger than that among the realizations of the arrays of constants. For our
example, ecost1 is the minimum cost value, thus [3 6] is added to T .

3.8. Step 9: Iterations in ORPHEUS

ORPHEUS iterates until T is empty. For our example, in step 2 of the next iteration,
[3 6] and [23 49] are respectively realized as [5 5] · 20 + ([2 1] · 20) � [−1 1] and
[3 6] · 23 + ([1 1] · 20) � [−1 1].

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 14, Pub. date: November 2014.

Multiplierless Design of Folded DSP Blocks 14:11

Fig. 6. Time-multiplexed realizations of C = [5 5; 2 1; 12 10; 92 196]: (a) ORPHEUS; (b) algorithm of Demirsoy
et al. [2007].

3.9. Step 10: Realization of the Constant Multiplications

If M includes constants other than 1, the MCM algorithm of Voronenko and Püschel
[2007] is applied to find the fewest operations realizing these constant multiplications
and these operations are added to I. For each chosen mcm-mux realization, the neces-
sary MUX is added to I.

The solution of ORPHEUS to our example C is presented in Figure 6(a). On the other
hand, the solution of the algorithm of Demirsoy et al. [2007], that can target SIMO
TMCM instances under the FPGA design platform, is illustrated in Figure 6(b). Recall
that the basic structure in Demirsoy et al. [2007] consists of an adder, a subtractor,
or an adder/subtractor with a 2-to-1 MUX, as shown in dashed blocks. Observe that
such a restriction may disable the possibility of sharing common partial terms and may
yield a design of an array of constants using a large number of logic operators as in
the realization of [2 1], leading to a design with a large area under the ASIC design
platform.

To support this work with synthesis results, we developed a computer-aided design
(CAD) tool that can describe the TMCM operation obtained by ORPHEUS under the mux-
add architecture in VHDL. It can also describe a TMCM design under the mul-mux
and mcm-mux architectures.

4. FOLDED DESIGN ARCHITECTURES FOR FUNDAMENTAL DSP BLOCKS

This section describes the folded design of FIR filters focusing on the transposed form
and of linear DSP transforms, emphasizing DCTs and ICTs. We note that the time-
multiplexed design of filter banks was described in Demirsoy et al. [2007]. A TMCM
architecture required for the design of FFTs can be found in Qureshi and Gustafsson
[2009]. In Karkala et al. [2010], the sum of products in FFTs was considered in a folded
architecture, and an optimization algorithm that exploits the common nonzero digits
of constants in order to reduce the design complexity was introduced.

4.1. FIR Filters

Digital filtering is a ubiquitous operation in DSP applications and is realized using
IIR or FIR filters. Although an FIR filter requires a larger number of coefficients than
that of an equivalent IIR filter, it is preferred over the IIR filter due to its stability
and phase linearity properties [Wanhammar 1999]. The output of an N-tap FIR filter,
namely y(n), is computed as

∑N−1
k=0 rk · x(n − k), where N is the filter length, rk is the

k-th filter coefficient, and x(n − k) is the k-th previous filter input with 0 ≤ k ≤ N − 1.
Figure 7(a) presents the parallel design of the transposed form FIR filter that requires

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 14, Pub. date: November 2014.

14:12 L. Aksoy et al.

Fig. 7. (a) Parallel (unfolded) transposed form FIR filter design; (b) its fully folded design; (c) the timing
signal TS.

N multipliers and N − 1 registers and adders (the one having 0 as an input is not
counted). The sizes of these logic operators depend on the bitwidths of the filter input
and filter coefficients.

Figure 7(b) depicts the fully folded FIR filter of the transposed form of Figure 7(a)
using the mux-mul architecture for the TMCM operation. Note that any architecture
shown in Figure 1 can be used for the TMCM operation. In the folded design, the SISO
TMCM operation realizes the multiplication of the filter input by the absolute value of
the filter coefficient determined by the output of a counter. Note that pnk denotes the
sign of the filter coefficient rk, namely positive (0) or negative (1). If the sign values of all
coefficients are positive (negative), only an adder (a subtractor) is required. Otherwise,
an adder/subtractor and an MUX as shown in Figure 7(b) are needed.2 Moreover, the
counter is 	log2(N − 1)
-bit wide and counts from N − 1 to 0. It also generates the
timing signal TS shown in Figure 7(c) using additional hardware, where CLK denotes
the clock signal that is fed to all registers in these circuits (not shown for the sake
of clarity). OUTR stands for cascaded N − 1 registers and their sizes are equal to the
bitwidth of the filter output bwo, computed as bwi+	log2

∑N−1
k=0 |rk|
, where bwi denotes

the bitwidth of the filter input. The size of the adder/subtractor is bwo and the bitwidth
of the output of the TMCM operation is equal to bwi + 	log2 maxk{|rk|}
. Note that the
filter input should not be altered in N clock cycles in order to compute the filter output
accurately.

Although the complexity of the filter design under the fully folded architecture is
reduced with respect to the parallel design, the filter output is obtained in N clock cycles
under the fully folded architecture, increasing the latency and energy consumption. To
explore this trade-off, we consider the hybrid form [Bougas et al. 2005] that is obtained
by dividing the transposed form filter of Figure 7(a) into s subsections and moving the
registers in-between subsections from the output-line (i.e., the signal path computing
the filter output in Figure 7(a)) to input-line (the signal path carrying the filter input in
Figure 7(a)). In this form, each subsection includes 	N/s
 filter coefficients. If N is not
multiple of s, extra 	N/s
s − N coefficients equal to 0 are added. Figure 8(a) shows the
hybrid form FIR filter generated from a 4-tap transposed form filter when s is 2. Each
subsection can be regarded as a transposed form filter including 	N/s
 coefficients with
an additional input and output, except the last subsection.

Thus, when each subsection of the hybrid form is realized under the fully folded
architecture, as shown in Figure 8(b) for the hybrid filter in Figure 8(a), 	N/s
 clock

2Similarly, in the parallel design of the transposed form of Figure 7(a), if a coefficient is negative, its absolute
value is used in the MCM block and the related adder in the register-add block is converted to a subtractor.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 14, Pub. date: November 2014.

Multiplierless Design of Folded DSP Blocks 14:13

Fig. 8. (a) A hybrid form FIR filter obtained when N is 4 and s is 2; (b) corresponding partially folded filter.

cycles are required to obtain the filter output. In each of s subsections of the partially
folded design, there exist one TMCM operation and 	N/s
 − 1 cascaded registers.
Note that the sizes of multipliers and MUXes may be smaller than those in the fully
folded design since a smaller number of coefficients is included in each subsection.
Additionally, there is one counter counting from 	N/s
 − 1 to 0. Note that the registers
between subsections, colored in gray, are triggered at the end of 	N/s
 clock cycles,
since the inputs of subsections fed from these registers should not be altered in this
period.

The folded designs of direct form FIR filters can be found similarly. Our CAD tool
was improved to design the partially and fully folded FIR filters under any TMCM
architecture shown in Figure 1.

4.2. Linear DSP Transforms

Over the years, many fast and efficient algorithms for DCTs have been intro-
duced [Chen et al. 1977; Hou 1987]. DCTs are widely used in image data compression
and video coding [Banerjee et al. 2007]. The n × n DCT matrix B is an orthonormal
matrix, that is, BBT = I, where I is the identity matrix, and its floating-point entries
bij with 0 ≤ j ≤ n−1 are determined as follows.

bij =
{√

1/n i = 0
(
√

2/n) · cos(π (j + 0.5)i/n) 1 ≤ i ≤ n − 1
(5)

The complexity of DCTs is dominated by the floating-point multipliers, hence ICTs
were proposed to be alternative to DCTs [Cham 1989]. The n × n ICT matrix E is an
orthogonal matrix, that is, EET = K, where K is a diagonal matrix and includes integer
values. Due to the orthogonality and boundary constraints, as well as the similarity
relations with the entries of the DCT matrix B that an ICT matrix must satisfy, there
exist many ICTs [Cham 1989; Cheung et al. 1991; Aksoy et al. 2013a].

Considering the DCT and ICT matrices as an n × n constant matrix R, the computa-
tion of DCTs and ICTs can be regarded as a CMVM operation as given in Figure 9(a).
The parallel design of this CMVM operation requires n2 multipliers and n2 − n adders,
where the sizes of the multipliers and adders depend on the bitwidth of the input
variables and constants, and the order of summations. Figure 9(b) presents the fully
folded realization of the CMVM operation under the assumption that each of its out-
puts is required to be computed simultaneously. Although the TMCM operation is
depicted under the mux-mul architecture, it can be realized under the mcm-mux or
mux-add architecture. In Figure 9(b), pnjk with 0 ≤ j, k ≤ n − 1 denotes the sign of
the entry rjk, namely positive (0) or negative (1) of the constant matrix R. The SIMO
TMCM operation realizes the multiplications of an input variable by all entries of each
column of R determined by a counter. It requires n multipliers and n-to-1 MUXes.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 14, Pub. date: November 2014.

14:14 L. Aksoy et al.

Fig. 9. (a) The outputs of a CMVM operation; (b) fully folded design of a CMVM operation.

The fully folded design additionally needs n adders/subtractors and accumulator reg-
isters, n + 1 n-to-1 MUXes, and one counter. Assuming that the bitwidths of input
variables are equal to bwi, the size of the relevant output of the TMCM operation f j is
bwi + 	log2maxk(rjk)
 and the sizes of the relevant adder/subtractor and accumulator
register required for the computation of the output yj are bwi + 	log2

∑n−1
k=0 |rjk|
. Also,

the counter is 	log2(n − 1)
-bit wide and counts from 0 to n−1. The computation of each
output of the CMVM operation yj requires n clock cycles. Although it is not shown in
this circuit, the counter also generates a signal similar to the TS signal in Figure 7(c)
to reset the accumulator registers after each n clock cycles.

The partially folded design of the CMVM operation, that requires less number of
clock cycles than the CMVM operation under the fully folded architecture, can be
obtained in three steps. First, the n input variables are split into g = 	n/v
 groups,
each consisting of v variables. Second, the sums of products associated with these
groups of input variables are implemented under the fully folded architecture. Third,
the relevant outputs of these designs are summed to obtain the outputs of the CMVM
operation. Thus, the number of clock cycles required to compute the outputs of the
CMVM operation is reduced to v. Note that, if n is not multiple of v, then vg − n input
variables are added into the CMVM operation and the relevant entries in the constant
matrix R are filled with 0. As an example, consider a 4×4 constant matrix and assume
that v is 2. Also, suppose that one group consists of x0 and x1, and the other of x2 and
x3. The computations of the outputs of the CMVM operation and their partially folded
design are given in Figure 10.

The partially folded design includes g subcircuits, each including a single SIMO
TMCM operation, n adders/subtractors and accumulator registers, and n + 1 v-to-1
MUXes. Each TMCM operation consists of n multipliers and v-to-1 MUXes. Also, a
counter that counts from 0 to v − 1 is required to synchronize the computation and
to reset the accumulator registers for the next computation. Finally, for each output
of the CMVM operation, g − 1 adders are needed to obtain the output. Although the
number of logic operators increases as g increases (v decreases), in this case their sizes
may decrease since a small number of constants are considered in each group.

In this work, our CAD tool was enhanced to design the partially and fully folded
CMVM operations under the mux-mul, mcm-mux, and mux-add architectures.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 14, Pub. date: November 2014.

Multiplierless Design of Folded DSP Blocks 14:15

Fig. 10. (a) Partitioning of the outputs of a 4 × 4 CMVM operation when g is 2; (b) corresponding partially
folded design.

Similarly, the given folded architectures can be applied to IIR filters, filter banks, and
other linear DSP transforms such as the Reed-Muller transform and error correcting
codes.

5. EXPERIMENTAL RESULTS

This section is divided into two sections. In the first, we present the results of ORPHEUS

and compare them with those of prominent TMCM algorithms. In the second, we
present the gate-level implementations of SIMO TMCM instances under the mux-mul,
mcm-mux, and mux-add architectures and of FIR filters and linear DSP transforms
under the unfolded, partially folded, and fully folded architectures. ORPHEUS was written
in MATLAB and its results were obtained on a PC with Intel Xeon at 2.4GHz and 10GB
memory. It uses the 0-1 ILP solver SCIP (http://scip.zib.de/). The Synopsys Design
Compiler was used as the synthesis tool with the UMCLogic 0.18-μm Generic II library.
In the synthesis script, relaxed timing constraints were used in order to provide more
freedom to the synthesis tool to optimize area. The functionality of designs was verified
on 10,000 randomly generated input signals in simulation, from which we obtained
the switching activity information that was used by the synthesis tool to compute the
power dissipation.

5.1. Comparisons of TMCM Algorithms

For the comparison of ORPHEUS with DAGfusion [Tummeltshammer et al. 2007], we used
randomly generated 1×n TMCM instances, where the maximum bitwidth of constants
(mbc) ranges from 6 to 14 in steps of 2 and n ranges between 2 and 18 in steps of 4.
For each group, 30 instances were generated. Table I presents the results of the algo-
rithms, where #BS denotes the number of better solutions than ORPHEUS found against
DAGfusion in terms of area, which is computed using the 0.18-μm standard cell library
when the bitwidth of the input variable (bwi) was 16, as described in Tummeltshammer
et al [2007]. In DAGfusion, the exhaustive search on all possible orderings of SCM
graphs was limited to 10,000 orderings since it may take enormous CPU time. In this

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 14, Pub. date: November 2014.

14:16 L. Aksoy et al.

Table I. Summary of Results of Algorithms on SISO TMCM Instances

mbc n 2 6 10 14 18

6

#BS 27 19 21 24 29
Min Gain (%) −4.78 −19.85 −18.19 −16.91 −1.94
Avg Gain (%) 9.16 4.20 6.75 9.94 17.03
Max Gain (%) 30.30 31.90 28.98 28.21 32.75
CPU DAGfusion (s) 0.76 2.90 8.08 11.29 19.34
CPU ORPHEUS (s) 0.94 0.33 1.07 1.50 2.15

8

#BS 24 16 20 18 26
Min Gain (%) −9.46 −13.52 −19.95 −16.14 −7.98
Avg Gain (%) 8.20 2.93 4.51 5.98 12.71
Max Gain (%) 25.54 26.02 22.71 25.25 34.46
CPU DAGfusion (s) 0.84 4.84 11.41 15.55 20.42
CPU ORPHEUS (s) 1.39 1.75 2.24 2.83 4.19

10

#BS 22 15 16 19 24
Min Gain (%) −23.26 −14.75 −12.85 −12.91 −15.97
Avg Gain (%) 6.99 1.27 0.75 7.59 7.81
Max Gain (%) 28.48 27.66 22.96 28.51 27.75
CPU DAGfusion (s) 0.83 7.18 20.97 113.34 99.28
CPU ORPHEUS (s) 1.94 2.86 3.84 5.55 8.57

12

#BS 25 18 18 24 19
Min Gain (%) −12.06 −19.22 −14.69 −21.54 −20.33
Avg Gain (%) 13.88 3.17 4.17 6.80 4.75
Max Gain (%) 43.23 39.97 23.96 27.91 24.52
CPU DAGfusion (s) 1.00 23.54 65.72 276.09 515.20
CPU ORPHEUS (s) 2.85 4.89 7.12 8.68 13.42

14

#BS 23 21 19 19 24
Min Gain (%) −12.49 −24.13 −15.55 −25.02 −15.90
Avg Gain (%) 10.10 4.64 4.12 6.37 8.93
Max Gain (%) 37.23 24.26 27.72 28.21 25.27
CPU DAGfusion (s) 1.15 12.12 39.97 53.53 48.93
CPU ORPHEUS (s) 4.98 7.82 11.15 15.17 22.53

table, Min Gain, Avg Gain, and Max Gain are the minimum, average, and maximum
gain in percentage found by ORPHEUS over DAGfusion, respectively. Average runtime of
both methods is in seconds.

Observe from Table I that ORPHEUS obtains better solutions than DAGfusion (#BS) on
more than half of the total number of TMCM instances, namely 30, in each group, except
that including 10-bit 6 constants. Its maximum gain over DAGfusion is greater than
20% on every group of instances, reaching up to 43.23% on a TMCM instance with
12-bit 2 constants. Note that this value is higher than DAGfusion’s maximum gain
over ORPHEUS on every group of instances and its average gain reaches up to 17.03% on
instances consisting of 6-bit 18 constants. Also, ORPHEUS requires less CPU time than
DAGfusion on TMCM instances with n ≥ 6. However, ORPHEUS cannot always find the
best solution, primarily because ORPHEUS is an approximate algorithm developed as
an iterative method, including efficient heuristics. Thus, in ORPHEUS, a decision made
in an earlier iteration has a significant impact on the quality of the final solution. In
turn, DAGfusion aims to consider all possible mergings of SCM graphs exhaustively.
Secondarily, ORPHEUS was developed to handle both SISO and SIMO TMCM instances,
whereas DAGfusion only targets SISO TMCM ones. However, taking into account an
increase in its runtime, the solution quality of ORPHEUS can be increased by considering

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 14, Pub. date: November 2014.

Multiplierless Design of Folded DSP Blocks 14:17

Table II. Area Estimation for C = [256 162 50 26 15 8 4 2 1]

Method Add Sub Add/Sub MUX Cost

[Tummeltshammer et al. 2007] 0 0
1 (12-bit) 1 (14-bit) 3-to-1

4704
1 (14-bit) 1 (16-bit) 7-to-1

[Demirsoy et al. 2007] 1 (10-bit) 1 (12-bit)

1 (8-bit) 2-to-1

9578

1 (10-bit) 1 (9-bit) 2-to-1
2 (11-bit) 2 (10-bit) 2-to-1
1 (12-bit) 1 (11-bit) 2-to-1
1 (16-bit) 1 (12-bit) 2-to-1

1 (16-bit) 2-to-1

[Chen and Chang 2009] 0 0
1 (12-bit) 1 (14-bit) 3-to-1

46481 (14-bit) 1 (11-bit) 4-to-1
1 (16-bit) 4-to-1

ORPHEUS 1 (14-bit) 0 1 (15-bit)
1 (14-bit) 4-to-1

4452
1 (15-bit) 6-to-1

Table III. Area Estimation for C = [362 392 473]

Method Add Sub Add/Sub MUX Cost

[Tummeltshammer et al. 2007] 1 (19-bit) 1 (16-bit) 1 (12-bit)

2 (12-bit) 2-to-1

6365
1 (19-bit) 2-to-1
1 (16-bit) 3-to-1
1 (20-bit) 3-to-1

[Demirsoy et al. 2007]
1 (11-bit)

0 1 (11-bit)
3 (11-bit) 2-to-1

50741 (12-bit) 1 (14-bit) 2-to-1
1 (17-bit)

[Chen and Chang 2009] 1 (17-bit)

1 (11-bit)

0

1 (14-bit) 2-to-1

5986
1 (12-bit) 1 (16-bit) 2-to-1
1 (14-bit) 1 (17-bit) 2-to-1

1 (18-bit) 3-to-1

ORPHEUS 1 (10-bit)
1 (15-bit)

0
1 (11-bit) 3-to-1

4036
1 (17-bit) 1 (12-bit) 3-to-1

not only one realization of an array of constants in each iteration, but a few, and by
including the unique merging technique of DAGfusion in ORPHEUS.

For the comparison of ORPHEUS with prominent TMCM algorithms, we also used two
benchmark sets given in Chen and Chang [2009]. Tables II and III present the results of
the algorithms, where Cost, denoting area, was computed using the 0.18-μm standard
cell library when bwi was 8. The results of other TMCM algorithms were taken from
Chen and Chang [2009]. Observe that ORPHEUS finds a TMCM design with the least
complexity, where the gain over the second best solution in Tables II and III is 4.21%
and 20.45%, respectively.

5.2. Comparisons of Design Architectures

This section presents the gate-level results of TMCM operations, FIR filters, DCTs,
and ICTs.

5.2.1. TMCM. For this experiment, we used randomly generated m×n matrices, where
m was 2, 4, 6, and 8, n was 4, 6, 8, 10, 12, 14, and 16. For each group, 30 instances were
generated with 12-bit constants. Figure 11 presents the average gate-level area (in
μm2) of the TMCM designs under the mux-mul, mcm-mux, and mux-add architectures
when bwi was 16 and 24. Note that the MCM designs in the mcm-mux architecture

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 14, Pub. date: November 2014.

14:18 L. Aksoy et al.

Fig. 11. Gate-level area results on SIMO TMCM operations: (a) m = 2 and bwi = 16; (b) m = 2 and bwi = 24;
(c) m = 4 and bwi = 16; (d) m = 4 and bwi = 24; (e) m = 6 and bwi = 16; (f) m = 6 and bwi = 24; (g) m = 8
and bwi = 16; (h) m = 8 and bwi = 24.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 14, Pub. date: November 2014.

Multiplierless Design of Folded DSP Blocks 14:19

Table IV. Specifications of FIR Filters

Filter N pass stop Q

1 15 0.1 0.2 12
2 51 0.07 0.12 16

were obtained by the exact MCM algorithm of Aksoy et al. [2010] and mux-add designs
were found by ORPHEUS.

Observe that the number of time slots (n) has a significant impact on the area of
the mux-add designs, since the number of logic operators in the solutions of ORPHEUS

generally increases as n increases. However, it has a slight impact on the area of the
mux-mul designs, since it affects only the size of those MUXes that occupy smaller
area than the multipliers. As the number of outputs (m) and the bitwidth of the input
variable (bwi) increase, the mux-add designs become less complex when compared to
the mux-mul designs. This is due to the fact that, as m is increased, the number of
multipliers in the mux-mul architecture is increased, and as bwi is increased, the size
of the multipliers is increased. Observe that both m and n have a significant impact
on the area of the mcm-mux designs, since the number of constants in the MCM block
is increased as m and n are increased. However, this architecture may lead to TMCM
designs occupying less area than those designed under the mux-mul architecture when
n is decreased. Furthermore, as bwi increases, the complexity of a TMCM design also
increases.

We also observed that the delay in TMCM operations under the mux-add architecture
is generally higher than that designed under the mux-mul architecture, since the
solutions of ORPHEUS include a large number of logic operators in series.

5.2.2. FIR Filters. To make a fair comparison between filter architectures, we used two
low-pass FIR filters with asymmetric coefficients obtained using the firgr function of
MATLAB with the minphase option. Table IV presents their specifications, where N is
the filter length, pass and stop denote the normalized passband and stopband frequen-
cies, respectively, and Q is the quantization value used to convert the floating-point
coefficients to integers.

Table V presents the gate-level results of the transposed form parallel, partially
folded, and fully folded filters whose constant multiplications are realized using Generic
Multipliers (GMs) and using the solutions of optimization algorithms under the Shift-
Adds (SA) architecture. For the partially and fully folded designs, GM and SA respec-
tively indicate that the TMCM operations are realized under the mux-mul architecture
and the mux-add architecture based on the solutions of ORPHEUS. For the parallel de-
signs under the SA architecture, their multiplier blocks are realized using the solution
of the exact MCM algorithm of Aksoy et al. [2010]. In this experiment, the bitwidth of
the filter input bwi was 16 and the partially folded filters were generated with three
different s values. In this table, CA, NCA, and TA stand, respectively, for combina-
tional, noncombinational, and total area in mm2. Also, D and L denote, respectively,
the critical-path delay and latency (computed as D × cc, where cc is the number of
clock cycles required to obtain the filter output) both in ns. P and E are, respectively,
the power dissipation in mW and energy consumption in pJ (computed as P × L). The
minimum values on total area, latency, and energy consumption are shown in bold.

First, consider the parallel, partially folded, and fully folded architectures. For fil-
ters using generic multipliers, their area is decreased using the folded architecture,
but their latency and energy consumption are increased. For Filter 2, while the area
ratio between the parallel and fully folded realizations is 3.9, the latency and energy
consumption ratio between the fully folded and parallel realizations are 78.1 and 23.8,
respectively. This is simply due to the 51 clock cycles required to obtain the filter output

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 14, Pub. date: November 2014.

14:20 L. Aksoy et al.

Table V. Results of Transposed Form FIR Filters Using 16-Bit Filter Input

Filter Architecture CA NCA TA D L P E

1

Parallel
GM 31.4 6.3 37.7 7.2 7.2 4.0 28.8
SA 16.7 6.3 23.0 7.1 7.1 2.5 17.5

Partially Folded GM 26.1 5.8 31.9 8.6 25.8 1.7 43.9
s = 5 SA 22.5 5.8 28.3 8.0 24.0 1.6 38.4
Partially Folded GM 23.0 6.5 29.5 8.4 33.6 1.7 57.1
s = 4 SA 22.1 6.5 28.6 9.3 37.2 1.8 67.0
Partially Folded GM 18.8 6.3 25.1 8.1 40.5 1.8 72.9
s = 3 SA 19.6 6.3 25.9 8.8 44.0 1.9 83.6

Fully Folded
GM 7.3 7.0 14.3 8.5 127.5 1.5 191.3
SA 8.6 7.0 15.6 9.4 141.0 1.6 225.6

2

Parallel
GM 139.3 26.0 165.3 8.1 8.1 17.7 143.4
SA 69.2 26.0 95.2 9.1 9.1 9.8 89.2

Partially Folded GM 107.1 22.2 129.3 11.6 34.8 5.4 187.9
s = 17 SA 99.3 22.2 121.5 10.1 30.3 5.5 166.7
Partially Folded GM 67.9 25.8 93.7 10.4 62.4 6.6 411.8
s = 9 SA 70.5 25.8 96.3 11.3 67.8 6.8 461.0
Partially Folded GM 26.8 26.2 53.0 10.4 176.8 5.3 937.0
s = 3 SA 34.9 26.2 61.1 10.5 178.5 5.6 999.6

Fully Folded
GM 14.3 28.2 42.5 12.4 632.4 5.4 3415.0
SA 18.3 28.2 46.5 12.7 647.7 5.5 3562.2

in the fully folded design. Moreover, the partially folded filters have area, latency, and
energy consumption values in-between those of the parallel and fully folded filters. For
the filters under the shift-adds architecture, this is also true, except that the parallel
realizations may have less complexity than the partially folded filters. For example,
while the parallel realization of Filter 1 occupies less area than all its partially folded
realizations in Table V, the parallel design of Filter 2 has less area than the partially
folded designs when s is 17 and 9. This is due to more possible sharing of partial prod-
ucts in parallel designs than those in partially folded designs and the number of filter
coefficients. Note that, as s increases, the number of TMCM operations increases while
that of cascaded registers in the OUTR blocks decreases in the partially folded filters.
Thus, as s increases, the NCA values increase and the CA values decrease, with the
exception of Filter 1 when s is 4, because N is not a multiple of s and an extra coefficient
is added.

Second, consider different realizations of constant multiplications in FIR filters,
namely GM and SA. For parallel designs, filters designed using generic multipliers
occupy larger area and consume more power than those designed under the shift-
adds architecture. For the fully folded designs, they are better in terms of area, delay,
and power dissipation than those realized under the shift-adds architecture. This is
because, as the number and size of coefficients increase, the area of the TMCM design
under the shift-adds architecture increases. Thus, for the partially folded designs, as
s increases, since the number of coefficients in the TMCM operation is decreased, the
area of filter designs under the shift-adds architecture decreases and becomes better
than those using generic multipliers. We note that the delay and power dissipation of
filters under the shift-adds architecture are strongly related to the gate-level area and
the number of logic operators in series.

To explore the impact of bwi on the FIR filter designs, Table VI presents the results
of Filter 2 when it is 24. Observe that, as bwi is increased, the values of the gate-level
parameters also increase, since the sizes of logic operators in these designs increase.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 14, Pub. date: November 2014.

Multiplierless Design of Folded DSP Blocks 14:21

Table VI. Results of the Transposed Form Filter 2 Using 24-Bit Filter Input

Architecture CA NCA TA D L P E

Parallel
GM 195.3 32.8 228.1 9.9 9.9 25.1 249.5
SA 90.8 32.8 123.6 10.6 10.6 14.1 150.1

Partially Folded GM 149.9 29.0 178.9 12.4 37.2 7.2 266.3
s = 17 SA 133.4 29.0 162.4 11.9 35.7 7.2 257.8
Partially Folded GM 95.0 33.0 128.0 12.2 72.9 8.6 628.8
s = 9 SA 94.3 33.0 127.3 12.7 76.5 8.9 677.0
Partially Folded GM 36.8 33.0 69.8 12.2 207.0 6.8 1408.9
s = 3 SA 46.6 33.0 79.6 12.3 209.8 7.1 1494.8

Fully Folded
GM 18.7 35.0 53.7 14.5 738.3 6.9 5088.2
SA 23.7 35.0 58.7 14.7 748.0 7.0 5257.5

5.2.3. Linear DSP Transforms. For this experiment, we used a 16 × 16 DCT whose
floating-point constants are converted to integers with a quantization value 8 and
a 16 × 16 ICT matrix, namely the ICT 163 of Aksoy et al. [2013a] that includes 6-
bit constants. The linear DSP transforms were designed under the parallel, partially
folded, and fully folded architectures. For a fair comparison between the architectures,
the parallel design of a linear DSP transform was described as a sequential circuit,
where the registers were added to the outputs of the combinational circuit that compute
the linear DSP transform. In designs using generic multipliers, the summations of con-
stant multiplications are described as in a binary tree so that the delay of these designs
is reduced. For their multiplierless designs, the state-of-art CMVM algorithm [Aksoy
et al. 2012] was used to find the fewest operations under the minimum number of adder-
steps, that is, the maximum number of operations in series. Note that the algorithm
of Aksoy et al. [2012] finds very similar solutions to those of matrix decomposition
techniques [Chen et al. 1977; Dong and Ngan 2006] in terms of the number of opera-
tions and the butterfly structure. In the partially folded designs, the groups of input
variables were formed considering the symmetric property of the DCT and ICT matri-
ces [Banerjee et al. 2007] and three different g values were used. Table VII shows the
results on linear DSP transforms obtained when the bitwidth of input variables bwi
was 16. The parameters given in Table VII have the same descriptions explained for
Table V.

Observe from Table VII that the realization of linear DSP transforms under the shift-
adds architecture leads to designs occupying less area and consuming less power with
respect to those implemented using generic multipliers. Note that it was the opposite
for all fully folded and some partially folded filter designs presented in Table V. This
is because the linear DSP transforms have a larger number of outputs and require
more multipliers than FIR filters. The fully folded designs have less complexity with
respect to the parallel designs, but larger latency, since 16 clock cycles are needed to
compute the linear DSP transforms. As g is increased, hence decreasing the number
of variables in each group, the latency and energy consumption of the design decrease.
However, the area of the design increases in this case. When g is greater than 2, all the
partially folded linear DSP transforms under the shift-adds architecture occupy larger
area than their relevant parallel designs. This is because the algorithm of Aksoy et al.
[2012] exploits a larger number of common partial products than those achieved in the
partially folded designs by ORPHEUS.

Table VIII presents the results of the 16 × 16 ICT designed under the parallel, par-
tially folded, and fully folded architectures when bwi was 24. Observe that an increase
in bwi leads to an increase in area, delay, latency, power, and energy consumptions,
since it increases the sizes of logic operators.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 14, Pub. date: November 2014.

14:22 L. Aksoy et al.

Table VII. Results of Linear DSP Transforms Using 16-Bit Inputs

Transform Architecture CA NCA TA D L P E

DCT

Parallel
GM 437.0 7.3 444.3 7.3 7.3 40.0 290.2
SA 94.2 7.3 101.5 8.0 8.0 9.7 77.9

Partially Folded GM 359.4 46.4 405.8 7.9 15.7 23.8 374.5
g = 8 SA 269.2 46.4 315.7 7.8 15.7 19.2 300.5
Partially Folded GM 287.9 27.0 314.9 8.7 35.0 19.2 671.8
g = 4 SA 156.6 27.0 183.6 8.6 34.6 12.9 446.1
Partially Folded GM 205.6 14.2 219.8 9.6 76.9 12.4 953.5
g = 2 SA 81.9 14.2 96.1 9.2 73.5 6.7 492.4

Fully Folded
GM 151.2 7.5 158.7 10.3 165.3 9.3 1537.0
SA 41.8 7.5 49.3 9.5 151.7 4.4 667.5

ICT

Parallel
GM 191.6 6.4 197.9 6.9 6.9 18.8 129.8
SA 68.1 6.4 74.5 7.0 7.0 8.3 57.9

Partially Folded GM 186.5 24.7 211.2 6.7 13.4 11.2 150.3
g = 8 SA 170.5 24.7 195.2 7.0 14.0 10.3 144.0
Partially Folded GM 167.7 21.6 189.4 8.0 32.1 12.2 391.5
g = 4 SA 121.0 21.6 142.7 7.9 31.6 9.8 309.2
Partially Folded GM 120.9 12.3 133.2 8.6 68.6 7.9 542.3
g = 2 SA 64.1 12.3 76.3 9.4 75.4 5.3 399.7

Fully Folded
GM 92.4 6.5 98.8 9.3 148.1 6.3 932.7
SA 32.9 6.5 39.4 8.9 141.8 3.6 510.3

Table VIII. Results of the 16 × 16 ICT Using 24-Bit Inputs

Architecture CA NCA TA D L P E

Parallel
GM 273.8 8.5 282.3 8.8 8.8 28.7 252.5
SA 96.3 8.5 104.8 8.6 8.6 12.0 102.8

Partially Folded GM 263.9 34.5 298.4 8.9 17.8 16.0 285.6
g = 8 SA 239.6 34.5 274.1 8.8 17.6 14.6 257.4
Partially Folded GM 236.8 29.8 266.6 9.5 38.1 17.1 651.3
g = 4 SA 168.5 29.8 198.3 9.2 36.8 13.7 504.3
Partially Folded GM 174.7 16.6 191.3 10.3 82.7 11.4 943.0
g = 2 SA 88.4 16.6 105.0 10.5 84.1 7.5 630.6

Fully Folded
GM 134.2 8.6 142.9 11.5 183.3 9.0 1650.1
SA 45.3 8.6 54.0 10.6 170.3 5.0 851.6

6. CONCLUSIONS

This article presented an efficient approximate algorithm, ORPHEUS, developed for the
optimization of design complexity in TMCM operations and described the multiplierless
design of folded DSP blocks, including the transposed form FIR filters, DCTs, and
ICTs. Experimental results on TMCM algorithms showed that ORPHEUS generally finds
better solutions than existing algorithms, although it cannot always guarantee the best
solution. Experimental results on TMCM architectures indicated that the use of the
mux-add architecture and the solutions of ORPHEUS become more efficient with respect to
the mux-mul architecture on m×n TMCM instances with a large mand a small n value.
However, there still exist TMCM instances on which the mux-mul architecture leads to
TMCM designs with the least area. Experimental results on FIR filters and linear DSP
transforms showed that the fully and partially folded architectures present alternative
circuits so that a designer can choose the one that fits best in an application. It was
indicated that the folded design of DSP blocks including a small number of outputs

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 14, Pub. date: November 2014.

Multiplierless Design of Folded DSP Blocks 14:23

and a small number of multipliers may occupy less area when realized using generic
multipliers, rather than its design under the shift-adds architecture.

REFERENCES

L. Aksoy, E. Costa, P. Flores, and J. Monteiro. 2008. Exact and approximate algorithms for the optimization
of area and delay in multiple constant multiplications. IEEE Trans. Comput.-Aided Des. Integr. Circ.
Syst. 27, 6, 1013–1026.

L. Aksoy, E. Costa, P. Flores, and J. Monteiro. 2012. Multiplierless design of linear dsp transforms. In VLSI-
SoC: Advanced Research for Systems on Chip, S. Mir, C.-Y. Tsui, R. Reis, and O. Choy, Eds., Springer,
73–93.

L. Aksoy, E. Costa, P. Flores, and J. Monteiro. 2013a. Exploration of tradeoffs in the design of integer cosine
transforms for image compression. In Proceedings of the IEEE European Conference on Circuit Theory
and Design (ECCTD’13). 1–4.

L. Aksoy, P. Flores, and J. Monteiro. 2013b. Towards the least complex time-multiplexed constant multi-
plication. In Proceedings of the IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC’13). 328–331.

L. Aksoy, P. Flores, and J. Monteiro. 2014. Optimization of design complexity in time-multiplexed constant
multiplications. In Proceedings of the Design, Automation, and Test in Europe Conference (DATE’14).
1–4.

L. Aksoy, E. Gunes, and P. Flores. 2010. Search algorithms for the multiple constant multiplications problem:
Exact and approximate. J. Microprocess. Microsyst. 34, 5, 151–162.

N. Banerjee, G. Karakonstantis, and K. Roy. 2007. Process variation tolerant low power DCT architecture.
In Proceedings of the Design, Automation, and Test in Europe Conference (DATE’07). 630–635.

P. Barth. 1995. A davis-putnam based enumeration algorithm for linear pseudo-boolean optimization.
https://www.princeton.edu/∼chaff/papers/barth95davisputnam.pdf.

R. Bernstein. 1986. Multiplication by integer constants. Softw. Pract. Exper. 16, 7, 641–652.
P. Bougas, P. Kalivas, A. Tsirikos, and K. Pekmestzi. 2005. Pipelined array-based FIR filter folding. IEEE

Trans. Circ. Syst. 52, 1, 108–118.
N. Boullis and A. Tisserand. 2005. Some optimizations of hardware multiplication by constant matrices.

IEEE Trans. Comput. 54, 10, 1271–1282.
W.-K. Cham. 1989. Development of integer cosine transforms by the principle of dyadic symmetry. IEE Proc.

I Comm. Speech Vis. 136, 4, 276–282.
J. Chen and C.-C. Chang. 2009. High-level synthesis algorithm for the design of reconfigurable constant

multiplier. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 28, 12, 1844–1856.
W. Chen, C. Smith, and S. Fralick. 1977. A fast computational algorithm for the discrete cosine transform.

IEEE Trans. Comm. 25, 9, 1004–1009.
K.-M. Cheung, F. Pollara, and M. Shahshahani. 1991. Integer cosine transform for image compression.

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19940025116.pdf.
S. Demirsoy, R. Beck, A. Dempster, and I. Kale. 2003. Reconfigurable implementation of recursive DCT

kernels for reduced quantization noise. In Proceedings of the IEEE International Symposium on Circuits
and Systems (ISCAS’03). 289–292.

S. Demirsoy, A. Dempster, and I. Kale. 2004. Efficient implementation of digital filters using novel reconfig-
urable multiplier blocks. In Proceedings of the Asilomar Conference on Signals, Systems and Computers
(ACSSC’04). 461–464.

S. Demirsoy, I. Kale, and A. Dempster. 2007. Reconfigurable multiplier constant blocks: Structures, algorithm
and applications. Circ. Syst. Signal Process. 26, 6, 793–827.

A. Dempster and M. Macleod. 1995. Use of minimum-adder multiplier blocks in FIR digital filters. IEEE
Trans. Circ. Syst. II 42, 9, 569–577.

A. Dempster and M. Macleod. 2004. Digital filter design using subexpression elimination and all signed-
digit representations. In Proceedings of the IEEE International Symposium on Circuits and Systems
(ISCAS’04). 169–172.

J. Dong and K. N. Ngan. 2006. 16 × 16 integer cosine transform for HD video coding. In Proceedings of the
7th Pacific Rim Conference on Advances in Multimedia Information Processing (PCM’06). 114–121.

M. Ercegovac and T. Lang. 2003. Digital Arithmetic. Morgan Kaufmann, San Fransisco.
O. Gustafsson, A. Dempster, and L. Wanhammar. 2002. Extended results for minimum-adder constant

integer multipliers. In Proceedings of the IEEE International Symposium on Circuits and Systems
(ISCAS’02). 73–76.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 14, Pub. date: November 2014.

14:24 L. Aksoy et al.

R. Hartley. 1996. Subexpression sharing in filters using canonic signed digit multipliers. IEEE Trans. Circ.
Syst. II 43, 10, 677–688.

Y.-H. Ho, C.-U. Lei, H.-K. Kwan, and N. Wong. 2008. Global optimization of common subexpressions for
multiplierless synthesis of multiple constant multiplications. In Proceedings of the Asia and South
Pacific Design Automation Conference (ASP-DAC’08). 119–124.

H. Hou. 1987. A fast recursive algorithm for computing the discrete cosine transform. IEEE Trans. Acoust.
Speech Signal Process. 35, 10, 1455–1461.

K. Johansson, O. Gustafsson, L. Debrunner, and L. Wanhammar. 2011. Minimum adder depth multiple
constant multiplication algorithm for low power fir filters. In Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS’11). 1439–1442.

K. Johansson, O. Gustafsson, and L. Wanhammar. 2005. A detailed complexity model for multiple constant
multiplication and an algorithm to minimize the complexity. In Proceedings of the IEEE European
Conference on Circuit Theory and Design (ECCTD’05). 465–468.

H.-J. Kang and I.-C. Park. 2001. FIR filter synthesis algorithms for minimizing the delay and the number of
adders. IEEE Trans. Circ. Syst. II: Analog Digital Signal Process. 48, 8, 770–777.

V. Karkala, J. Wanstrath, T. Lacour, and S. P. Khatri. 2010. Efficient arithmetic sum-of-product (SOP) based
multiple constant multiplication for fft. In Proceedings of the International Conference on Computer-
Aided Design (ICCAD’10). 735–738.

M. Kumm, P. Zipf, M. Faust, and C.-H. Chang. 2012. Pipelined adder graph optimization for high speed
multiple constant multiplication. In Proceedings of the IEEE International Symposium on Circuits and
Systems (ISCAS’12). 49–52.

H. Nguyen and A. Chatterjee. 2000. Number-splitting with shift-and-add decomposition for power and
hardware optimization in linear DSP synthesis. IEEE Trans. VLSI Syst. 8, 4, 419–424.

K. Parhi. 1995. High-level algorithm and architecture transformations for DSP synthesis. J. VLSI Signal
Process. 9, 1, 121–143.

K. Parhi. 1999. VLSI Digital Signal Processing Systems: Design and Implementation. John Wiley and Sons.
I.-C. Park and H.-J. Kang. 2001. Digital filter synthesis based on minimal signed digit representation. In

Proceedings of the Design Automation Conference (DAC’01). 468–473.
F. Qureshi and O. Gustafsson. 2009. Low-complexity reconfigurable complex constant multiplication for

FFTs. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS’09). 24–27.
N. Sidahao, G. Constantinides, and P. Cheung. 2004. Multiple restricted multiplication. In Proceedings of

the International Conference on Field-Programmable Logic and Applications (FPL’04). 374–383.
N. Sidahao, G. Constantinides, and P. Cheung. 2005. A heuristic approach for multiple restricted multi-

plication. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS’05).
692–695.

J. Thong and N. Nicolici. 2010. A novel optimal single constant multiplication algorithm. In Proceedings of
the Design Automation Conference (DAC’10). 613–616.

P. Tummeltshammer, J. Hoe, and M. Puschel. 2007. Time-multiplexed multiple-constant multiplication.
IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 26, 9, 1551–1563.

R. Turner and R. Woods. 2004. Highly efficient, limited range multipliers for lut-based FPGA architectures.
IEEE Trans. VLSI Syst. 12, 10, 1113–1117.

Y. Voronenko and M. Puschel. 2007. Multiplierless multiple constant multiplication. ACM Trans. Algor. 3, 2.
L. Wanhammar. 1999. DSP Integrated Circuits. Academic Press.

Received May 2014; revised August 2014; accepted August 2014

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 14, Pub. date: November 2014.

