
0

Multiplierless Design of Folded DSP Blocks

LEVENT AKSOY, INESC-ID
PAULO FLORES, INESC-ID/Instituto Superior Técnico, Universidade de Lisboa
JOSE MONTEIRO, INESC-ID/Instituto Superior Técnico, Universidade de Lisboa

This article addresses the problem of minimizing the implementation cost of the time-multiplexed constant multiplication
(TMCM) operation which realizes the multiplication of an input variable by a single constant selected from a set of multiple
constants at a time. It presents an efficient algorithm, called ORPHEUS, which finds a multiplierless TMCM design by shar-
ing logic operators, i.e., adders, subtractors, adders/subtractors, and multiplexors (MUXes). Moreover, this article introduces
folded design architectures for the digital signal processing (DSP) blocks, such as finite impulse response (FIR) filters and
linear DSP transforms, and describes how these folded DSP blocks can be efficiently realized using TMCM operations opti-
mized by ORPHEUS. Experimental results indicate that ORPHEUS can find better solutions than existing TMCM algorithms,
yielding TMCM designs requiring less area. They also show that the folded architectures lead to alternative designs with
significantly less area, but incurring an increase in latency and energy consumption, compared to the parallel architecture.

Categories and Subject Descriptors: B.2.0 [Arithmetic and Logic Structures]: General; B.5.1 [Register-Transfer Level
Implementation]: Design

General Terms: Design, algorithms

Additional Key Words and Phrases: Time-multiplexed constant multiplication, folded architecture, multiplierless design,
area optimization, finite impulse response filter, discrete cosine transforms, integer cosine transforms.

ACM Reference Format:
Levent Aksoy, Paulo Flores, José Monteiro, 2014. Multiplierless Design of Folded DSP Blocks. ACM Trans. Des. Autom.
Electron. Syst. 0, 0, Article 0 (0), 21 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Multiplication of constant(s) by input variable(s) is a ubiquitous operation in many DSP applica-
tions such as fast Fourier transforms (FFTs), FIR and infinite impulse response (IIR) filters, discrete
cosine transforms (DCTs), and integer cosine transforms (ICTs). Since the constants are fixed and
determined beforehand in these DSP blocks, the constant multiplications are generally realized un-
der a shift-adds architecture using only adders, subtractors, and shifts [Nguyen and Chatterjee 2000].
Note that shifts by a constant value can be realized using only wires which represent no hardware
cost. In the last two decades, efficient algorithms have been proposed for not only minimizing the
number of operations, but also for optimizing the gate-level area, delay, throughput, and power dis-
sipation of the shift-adds design of constant multiplications [Aksoy et al. 2008; Aksoy et al. 2010;
Aksoy et al. 2012; Boullis and Tisserand 2005; Dempster and Macleod 1995; Hartley 1996; Johans-
son et al. 2005; Johansson et al. 2011; Kang and Park 2001; Kumm et al. 2012; Thong and Nicolici
2010; Park and Kang 2001; Voronenko and Püschel 2007].

Over the years many design architectures, such as parallel, folded, bit-serial, and digit-serial,
have also been introduced addressing the area, latency, and energy consumption of DSP appli-

This work was supported by national funds through FCT, Fundação para a Ciência e a Tecnologia, under the project PEst-
OE/EEI/LA0021/2013.
Author’s addresses: L. Aksoy, P. Flores, J. Monteiro, INESC-ID, Rua Alves Redol, 9, 1000-029, Lisboa, Portugal.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax +1 (212) 869-0481, or permissions@acm.org.
c⃝ 0 ACM 1084-4309/0/-ART0 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0, Pub. date: 0.

0:2 L. Aksoy et al.

�

� �

� � ���
� � ��

� ��

� ��
� ��
���

� � ���

���

� �

� ���

�

	
�

�

�

� ��

�� �� ��

� � �

Fig. 1. TMCM architectures: (a) mux-mul; (b) mcm-mux; (c) mux-add.

cations [Parhi 1995; 1999]. The folded and digit-serial architectures are preferred to the parallel
architecture in DSP applications with stringent constraints on circuit area. However, since these ar-
chitectures need multiple clock cycles to obtain the result, they lead to designs with higher latency
and energy consumption with respect to the parallel architecture [Parhi 1999].

In the design of folded DSP blocks, TMCM is a fundamental operation. For example, single-input
single-output (SISO) and single-input multiple-output (SIMO) TMCM operations occur in folded
design of filters, recursive DCT kernels, and filter banks [Demirsoy et al. 2003; Demirsoy et al.
2004; Demirsoy et al. 2007]. Consider an SISO TMCM example with a set of n constants. As il-
lustrated in Fig. 1, it can be realized in three different ways: (i) the mux-mul architecture includes a
generic multiplier and an n-to-1 MUX, where the primary select input i with 0≤ i≤ n−1 determines
which constant is multiplied by the input variable x (Fig. 1a); (ii) the mcm-mux architecture uses
an n-to-1 MUX and a multiple constant multiplication (MCM) block which implements the con-
stant multiplications using adders and subtractors (Fig. 1b); (iii) the mux-add architecture includes
adders, subtractors, and adders/subtractors (determined by a select input) and MUXes (Fig. 1c).
The mux-add architecture increases the number of constants which a logic operator can generate
and provides the possible sharing of logic operators, yielding less complex TMCM designs when
compared to other architectures [Tummeltshammer et al. 2007].

In the last decade, many efficient algorithms were introduced for the minimization of the design
complexity in TMCM operations targeting the mux-add architecture and the application specific in-
tegrated circuit (ASIC) and field programmable gate arrays (FPGA) design platforms [Aksoy et al.
2013b; 2014; Chen and Chang 2009; Demirsoy et al. 2007; Sidahao et al. 2004; 2005; Tummelt-
shammer et al. 2007; Turner and Woods 2004]. However, the exact method of [Sidahao et al. 2004]
can only be applied to a small number of constants and the solution quality of the approximate
methods [Aksoy et al. 2013b; Chen and Chang 2009; Demirsoy et al. 2007; Sidahao et al. 2005;
Tummeltshammer et al. 2007; Turner and Woods 2004] depends heavily on the TMCM instance.
Recently, we introduced an approximate algorithm ORPHEUS [Aksoy et al. 2014] which combines
efficient heuristics from both MCM and TMCM techniques and yields better solutions than previ-
ously proposed algorithms. To the best of our knowledge, ORPHEUS is the only algorithm that can
handle both SISO and SIMO TMCM instances, targeting an ASIC design platform. In this article,
we describe ORPHEUS and explore its properties and performance in detail. Furthermore, we present
the fully folded realizations of FIR filters and linear DSP transforms. In order to explore the tradeoff
between area and latency in the fully folded and unfolded (parallel) realizations, we also consider the
partially folded design of these DSP blocks. We show how these fully and partially folded realiza-
tions can be efficiently obtained using the solutions of ORPHEUS. Experimental results include the
comparison of ORPHEUS with prominent TMCM algorithms, the comparison of different TMCM
architectures, the comparison of fully and partially folded designs of DSP blocks with their parallel
designs, and the exploration of the impact of design parameters on the area, latency, and energy
consumption of the DSP blocks.

The rest of the article proceeds as follows. Section 2 introduces the background concepts related
to the proposed TMCM algorithm ORPHEUS. Section 3 describes ORPHEUS and Section 4 presents
the details on the folded design of FIR filters and linear DSP transforms. Section 5 shows the exper-
imental results and finally, Section 6 concludes the article.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0, Pub. date: 0.

Multiplierless Design of Folded DSP Blocks 0:3

2. BACKGROUND
In this section, we give the background concepts, introduce the TMCM problem, and present an
overview on previously proposed TMCM algorithms. We note that since the common input variable
x is multiplied by multiple constants in MCM and TMCM, the implementation of constant multipli-
cations is in fact equal to the implementation of constants. For example, 3x realized as 3x= x≪ 1+x
can be rewritten as 3 = 1 ≪ 1+1 by removing the variable x from both sides. This terminology is
used interchangeably through this article.

2.1. Number Representation
The binary representation decomposes a number in a set of additions of powers of two. The signed
digit system makes the use of positive and negative digits. The canonical signed digit (CSD) rep-
resentation [Hartley 1996] has two main properties: (i) two nonzero digits are not adjacent; (ii) the
number of nonzero digits is minimum. The minimal signed digit (MSD) representation [Park and
Kang 2001] is obtained by dropping the first property of the CSD representation. Thus, a constant
may have several representations under MSD, but all with a minimum number of nonzero digits.

Consider 23 defined in six bits. Its binary representation, 010111, includes 4 nonzero digits. It
is represented as 101001 in CSD and both 101001 and 011001 denote 23 in MSD using 3 nonzero
digits, where 1 stands for −1.

2.2. 0-1 Integer Linear Programming (ILP)
The 0-1 ILP problem is the optimization of a linear objective function subject to a set of linear
constraints and is generally defined as follows1:

minimize wT ·x (1)
subject to A ·x ≥ b, x ∈ {0,1}k (2)

In the objective function of Eq. 1, wi in w is a weight value associated with each variable xi, where
1 ≤ i ≤ k. In Eq. 2, A ·x ≥ b denotes a set of j linear constraints, where b ∈ Z j and A ∈ Z j ×Zk.

2.3. Multiplierless Design of Constant Multiplications
The constant multiplications can be categorized in four classes:

(1) The single constant multiplication (SCM) operation realizes the multiplication of a single con-
stant r by a single variable x, i.e., y = rx. It is used in compilers [Bernstein 1986] and in the
design of FFTs [Qureshi and Gustafsson 2009] and fast DCTs [Thong and Nicolici 2010].

(2) The multiple constant multiplication (MCM) operation computes the multiplication of m con-
stants in a set R by a single variable x, i.e., y j = r jx with 1 ≤ j ≤ m. It occurs in the transposed
form FIR filters [Kang and Park 2001].

(3) The constant array-vector multiplication (CAVM) operation implements the multiplication of
a 1×n constant array R by an n×1 input vector X , i.e., y = ∑k rkxk with 1 ≤ k ≤ n. It appears
in IIR and direct form FIR filters [Hartley 1996].

(4) The constant matrix-vector multiplication (CMVM) operation realizes the multiplication of an
m× n constant matrix R by an n× 1 input vector X , i.e., y j = ∑k r jkxk with 1 ≤ j ≤ m and
1 ≤ k ≤ n. It is used in the design of linear DSP transforms [Boullis and Tisserand 2005].

A straightforward way of realizing constant multiplications under a shift-adds architecture, called
the digit-based recoding (DBR) technique [Ercegovac and Lang 2003], has two steps: (i) define the
constants under a particular number representation, namely, binary or CSD; (ii) for the nonzero
digits in the representation of constants, shift the input variables according to digit positions and
add/subtract the shifted variables with respect to digit values.

1A maximization objective can be easily converted to the minimization objective by negating the objective function. Less-
than-or-equal and equality constraints are respectively accommodated by the equivalences, A · x ≤ b ⇔ −A · x ≥ −b and
A ·x = b ⇔ (A ·x ≥ b)∧ (A ·x ≤ b).

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0, Pub. date: 0.

0:4 L. Aksoy et al.

�� � �� � �� �

�

�

�

�

�

�����������	

��

	��

��

�

� �

� �

	�� ��

�����

��� ��

�

�

� �

�� 	��

��

������

�

Fig. 2. Multiplierless designs of 23x and 49x: (a) DBR method [Ercegovac and Lang 2003]; (b) exact CSE algorithm [Ak-
soy et al. 2008]; (c) exact GB algorithm [Aksoy et al. 2010].

For an MCM example, consider 23x and 49x. Their decompositions under binary are as follows:

23x = (010111)binx = x ≪ 4+ x ≪ 2+ x ≪ 1+ x
49x = (110001)binx = x ≪ 5+ x ≪ 4+ x

which lead to a multiplierless design with 5 operations as shown in Fig. 2a.
Further reductions in the number of operations can be found by sharing the common partial

products among the constant multiplications. The proposed algorithms can be categorized in two
classes: (i) the common subexpression elimination (CSE) methods; (ii) the graph-based (GB) tech-
niques. The CSE methods [Aksoy et al. 2008; Boullis and Tisserand 2005; Hartley 1996; Park and
Kang 2001] define the constants under a number representation, such as, binary, CSD, or MSD.
Then, considering possible subexpressions, which can be extracted from the nonzero digits in the
representations of constants, the “best” subexpression, generally, the most common, is chosen to be
shared among the constant multiplications. Their main drawback is their dependency on a number
representation. The GB techniques [Aksoy et al. 2010; Dempster and Macleod 1995; Thong and
Nicolici 2010; Voronenko and Püschel 2007] are not restricted to any particular number representa-
tion and aim to find intermediate subexpressions which enable to realize the constant multiplications
with a minimum number of operations. They consider a larger number of realizations of a constant
and obtain better solutions than the CSE methods, but require more computational resources due
to a larger search space. Additionally, hybrid techniques combine methods from both CSE and GB
algorithms [Aksoy et al. 2012] and increase the number of implementations of a constant obtained
by a CSE method considering alternative realizations [Dempster and Macleod 2004; Ho et al. 2008].

For our MCM example, the exact CSE algorithm [Aksoy et al. 2008] finds a minimum solu-
tion with 4 operations when constants are defined under binary representation (Fig. 2b). The exact
GB method [Aksoy et al. 2010] obtains a minimum solution with 3 operations (Fig. 2c). In both
solutions, the partial product 3x is shared among the constant multiplications.

2.4. Time-Multiplexed Constant Multiplication
Considering both SISO and SIMO TMCM operations, we represent the constants of the TMCM
operation in an m×n matrix C, where m and n denote the number of outputs and time slots, respec-
tively. As a simple example, consider an SISO TMCM instance with a 1× 2 matrix C = [23 49].
This constant matrix indicates that 23x and 49x are required at the output of the TMCM design at
time slot 1 and 2 (in other words, when the primary select input i is equal to 0 and 1), respectively.
Note that in SISO TMCM instances, m is 1 and n is referred to the number of constants in an array.

Fig. 3a illustrates the TMCM design obtained by ORPHEUS on C = [23 49]. All possible values
at its output f under the select inputs of an MUX and an adder/subtractor are shown in Fig. 3b.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0, Pub. date: 0.

Multiplierless Design of Folded DSP Blocks 0:5

�� �� �

� �

�

�

�

�

� �

���

���

�	�

�
�

�
� �

���
���

� �

��
��

�

�

�� ���

�

�

�

��

� �� � �

�� � �

�

�� � �� �

��� �� �
���� �	� ����

����

�� � �� � �� �

Fig. 3. (a) Solution of ORPHEUS on C = [23 49]; (b) outputs of the TMCM design; (c) mapping of select inputs.

The adder/subtractor is assumed to act as an adder and a subtractor when its select input is 0 and 1,
respectively. Observe that the TMCM operation can also generate 25x and 47x. In order to obtain
the desired outputs, a combinational logic is required to map the primary select input i to the select
inputs of the MUX and the adder/subtractor (Fig. 3c).

Thus, the TMCM problem is defined as given the constant matrix C, find a set of logic operators,
i.e., adders, subtractors, adders/subtractors, and MUXes which realizes the TMCM operation and
leads to a TMCM design occupying minimum area.

2.5. Related Work
The TMCM algorithms of [Demirsoy et al. 2007; Sidahao et al. 2004; 2005; Turner and Woods
2004] target the FPGA design platform. In [Demirsoy et al. 2007; Turner and Woods 2004], the
basic structure consists of an adder, a subtractor, or an adder/subtractor, which may include a 2-to-1
MUX at one of its inputs that requires no additional hardware in an FPGA. The algorithm of [Turner
and Woods 2004] generates all possible configurations of the basic structure under the given FPGA
technology and maps the decompositions of constants to basic structures. The method of [Demirsoy
et al. 2007] can find the fewest basic structures by identifying the common partial products among
the constant multiplications. In [Sidahao et al. 2004; 2005], the basic structure is assumed to in-
clude a 4-to-1 MUX whose inputs are a, b, a+b, and 0, considering the Xilinx Virtex/Virtex-II slice
architecture. The exact algorithm of [Sidahao et al. 2004] formalizes the problem of minimizing
the number of basic structures as a 0-1 ILP problem. Since the size of the 0-1 ILP problem grows
exponentially as the number of constants in the TMCM operation increases, the algorithm of [Sida-
hao et al. 2004] can only be applied to TMCM instances with a small number of constants. In the
method of [Sidahao et al. 2005], first, the MCM solution of each array of constants is found, and
then, these graphs are merged, exploiting the common partial terms. Note that all these techniques
can target both SISO and SIMO TMCM operations.

In [Aksoy et al. 2013b; Chen and Chang 2009; Tummeltshammer et al. 2007], the SISO TMCM
operations are targeted under an ASIC design platform and the cost of a TMCM operation is com-
puted based on the area cost of each logic operator in a standard cell library. Given an array of con-
stants, the algorithm of [Tummeltshammer et al. 2007], called DAGfusion, finds the SCM graph of
each constant using the minimum number of addition and subtraction operations [Gustafsson et al.
2002]. Then, it obtains a TMCM solution by merging the SCM graphs using MUXes iteratively.
In [Chen and Chang 2009], first, the multiplierless realization of constant multiplications is found
using an MCM algorithm and second, a scheduling algorithm is applied to design the TMCM op-
eration. The algorithm of [Aksoy et al. 2013b] combines both the exploitation of the most common
partial terms and merging of SCM graphs which is realized by DAGfusion. In the algorithm of [Ak-
soy et al. 2013b], the problem of finding the basic structures including the most common partial
terms was formulated as a 0-1 ILP problem and the selection of basic structures among alternative
realizations was accomplished efficiently using a decision tree. To the best of our knowledge, only
ORPHEUS [Aksoy et al. 2014], which is presented in the following section, can target both SISO and
SIMO TMCM operations under an ASIC design platform. Note that any TMCM algorithm, which
can target only SISO TMCM instances, can be applied to each output of an SIMO TMCM instance
and its solutions can be combined to realize the SIMO TMCM instance. However, in this case, the
common logic operators among different outputs may not be extracted and shared properly.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0, Pub. date: 0.

0:6 L. Aksoy et al.

3. ORPHEUS: AN APPROXIMATE TMCM ALGORITHM
The main motivations behind the development of ORPHEUS are to combine efficient techniques pro-
posed for both MCM and TMCM operations in a single TMCM algorithm, to obtain better solutions
than existing TMCM algorithms using little computational resources, and to handle both SISO and
SIMO TMCM instances under the ASIC design architecture. ORPHEUS is designed as an iterative
method and includes two main parts: (i) optimal and (ii) heuristic. In its optimal part, the arrays of
constants, i.e., the rows of the constant matrix, which can be realized using a single logic operator
with available arrays of constants, are synthesized. Note that the input variable x and its shifted
versions are always available. If there still exist arrays of constants to be implemented, ORPHEUS
switches to its heuristic part. In this part, an array of constants is chosen, its three alternative imple-
mentations are found, and the one which has the smallest implementation cost is favored. ORPHEUS
iterates its optimal and heuristic parts until all rows of the constant matrix are synthesized.

The steps of ORPHEUS, which will be described in detail in following subsections, are given
below. In these steps, the set M, which initially consists of an input variable denoted by 1, will
include constants whose multiplications by the input variable will be realized under a shift-adds
architecture based on the solution of an efficient MCM algorithm [Voronenko and Püschel 2007].
Also, the matrix S, which initially consists of a single array of n 1s, will include the synthesized
arrays of constants. The set I will include logic operators realizing the TMCM operation.

(1) Given the constant matrix C of the TMCM operation, in a preprocessing phase, determine the
non-redundant target matrix T .

(2) For each row of T , Ti, search for an optimal realization. If such a realization exists, move Ti
from T to S, update M if necessary, and add this realization to I.

(3) If T is empty, go to Step 10.
(4) Select an array of constants from T , Ti.
(5) Find a realization of Ti using a single operation whose one of inputs is a row of S or its shifted

version and which has the smallest estimated cost ecost1.
(6) Find a realization of Ti under the mcm-mux architecture and compute its estimated cost ecost2.
(7) Find a realization of Ti using a single operation which has the minimum number of distinct

partial terms at its inputs and the smallest estimated cost ecost3.
(8) Among these three realizations, choose the one with the minimum cost value and update T , S,

I, and M.
(9) If T is not empty, go to Step 2.

(10) Synthesize the constants of M under a shift-adds architecture, update and return I.

In following subsections, these steps are described through an SIMO example with a 4×2 matrix
C=[5 5;2 1;12 10;92 196]. This TMCM instance has 4 outputs and 2 time slots. The constant matrix
C indicates that the first, second, third, and forth outputs compute 5x, 2x, 12x, and 92x at time slot
1, respectively. Also, at time slot 2, they compute 5x, x, 10x, and 196x, respectively We note that
the final realization of this TMCM operation found by ORPHEUS is presented in Fig. 6a, where the
select inputs of the MUX and adders/subtractors are not shown for the sake of clarity.

3.1. Step 1: Preprocessing Phase
The negative constants of C are converted to positive, because it is always assumed that the sign of a
constant is handled where the constant multiplication is required using an adder/subtractor. For each
row of C, Ci, its left shift, lsi, is found by dividing Ci by 2 until at least one of its constants is odd.
Then, Ci ·2−lsi is added to T without repetition. For our example, T is found as [5 5; 2 1; 6 5; 23 49].

3.2. Step 2: Searching for Optimal Realizations
First, we check each row of T , Ti, if it includes the same constant at its every time slot (column). If
such an array of constants exists, it is moved from T to S and this constant is added to M without
repetition. For our example, the row of T , [5 5], is moved from T to S and 5 is added to M.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0, Pub. date: 0.

Multiplierless Design of Folded DSP Blocks 0:7

Second, we check each Ti if its constants are 1 or its shifted versions so that it can be realized
using a single MUX. If there exists such an array of constants, it is moved from T to S and this MUX
is added to I. For our example, the row of T , [2 1], can be realized using a single MUX (Fig. 6a).

Third, we check each Ti if it can be realized using a single operation, i.e., an adder, a subtractor,
or an adder/subtractor, whose inputs are the rows of S or their shifted versions. While searching for
such realizations, the arrays of constants, Ds, are computed as follows:

D ·2lsd = Ti − (S j ·2ls j)⊙SA (3)

where lsd ≥ 0 denotes the left shift of D, ls j stands for the left shift of S j with 1 ≤ j ≤ |S| and
0 ≤ ls j ≤ mbc(Ti)−mbc(S j)+1 (where the mbc(A) function determines the maximum bitwidth of
constants in an array A), and SA is a 1×n sign array consisting of 1 and −1. Note that ⊙ denotes the
element-by-element product of arrays, e.g., in C = A⊙B, each entry in the array C is the product of
the corresponding entries in arrays A and B. Thus, Ds are found by searching all possible S j, ls j, and
sign arrays exhaustively. If D is equal to a row of S, then Ti can be realized using a single operation.
If SA consists of 1s, then the operation is an adder. If SA consists of -1s, then it is a subtractor.
Otherwise, it is an adder/subtractor. If such a realization is found, it is added to I and Ti is moved
from T to S. In our example, for the row of T , [6 5] as Ti, a D can be found as [1 1], which is a row
of S, with [1 1] ·22 = [6 5]− ([2 1] ·20)⊙ [1 1], where [2 1] standing for S j is another row of S. Thus,
the realization of [6 5], i.e., [1 1] ·22 +([2 1] ·20)⊙ [1 1], needs a single adder (Fig. 6a).

This procedure iterates until there is no such row of T satisfying the above checks. For our exam-
ple, at the end of this step, T , S, and M are [23 49], [1 1; 5 5; 2 1; 6 5], and {1,5}, respectively.

3.3. Step 4: Selection of an Array of Constants
At this point, there exist row(s) of T which require(s) intermediate arrays of constants to be synthe-
sized. ORPHEUS selects one row of T which has the minimum tnzd value, denoting the total number
of nonzero digits of constants in an array under CSD. An array with a smaller tnzd value roughly
indicates that it can be realized using a small number of logic operators. This metric is preferred
due to two reasons: (i) it may increase the sharing of logic operators, since ORPHEUS considers the
synthesized arrays of constants of S in the realization of a row of T (Steps 2, 5, and 7); (ii) it ensures
the convergence of each realization to an array consisting of 1 or its shifted versions (Step 5).

3.4. Step 5: First Alternative Realization
Note that every computation of D in Eq. 3 actually presents a possible realization of a row of T , Ti. To
find the promising one, whenever a new D is determined, we first check if its tnzd value is less than
that of Ti to ensure its convergence. If so, second, we determine the type of the operation realizing
Ti and compute its cost in a given standard cell library, costop. Third, we estimate the cost of D as if
it will be realized under the mcm-mux architecture as shown in Fig. 1b. Initially, we determine the
quantity of different constants of D, i.e., q. If q > 1, the cost of a q-to-1 MUX in a given standard
cell library, costmux, is computed. Otherwise, costmux is set to 0. Then, we convert each constant
of D to an odd constant, find the minimum number of operations required for its multiplication by
an input variable using the solutions of the algorithm of [Gustafsson et al. 2002], compute the cost
values of these operations assuming them as adders, and add them to costadd which was initially
set to 0. Note that the costadd value is computed without repeating the same odd constants. Thus,
the implementation cost of an operation realizing Ti is found as costop +costmux +costadd . Note that
the array of constants S j in Eq. 3 is already synthesized. After all possible realizations of Ti are
considered, we choose the one with the minimum cost value which is assigned to ecost1.

For the realization of the row of T , [23 49], [3 6] ·23 +([1 1] ·20)⊙ [−1 1] is found to be the one
with the minimum cost, requiring an adder/subtractor and the intermediate array of constants [3 6]
which is estimated to need a 2-to-1 MUX and an adder.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0, Pub. date: 0.

0:8 L. Aksoy et al.

23 =

101001 =

 100000+001001 = 32−9
001000+100001 =−8+31
000001+101000 =−1+24

011001 =

 010000+001001 = 16+7
001000+010001 = 8+15
000001+011000 =−1+24

49=

1010001 =

 1000000+0010001 = 64−15
0010000+1000001 =−16+65
0000001+1010000 = 1+48

0110001 =

 0100000+0010001 = 32+17
0010000+0100001 = 16+33
0000001+0110000 = 1+48

Fig. 4. Possible implementations of 23 and 49 under MSD.

� ��� � �� � ��� � �� � ��� � �� � ��� � �� � �� � ��� � �� � ��	 � ��	

�� �� �

�� �� �

�� �� �

�� ����

�� ����

�� �	��

�� ���	

�� �� �� ��

� �� � ��� � ���� ��� � ��	 � ��� � ���� ��� � ��� � ���

�� �� �	

�� �	 ��

�� ����

�� ����
�� �����

�� �����

�� �����

�� �����

Fig. 5. The Boolean network generated for the array of constants [23 49] under MSD.

3.5. Step 6: Second Alternative Realization
In this case, we consider the mcm-mux realization of Ti as shown in Fig. 1b. Its cost value is com-
puted exactly as described for the estimation of the cost of D in Step 5, except that the elements of M
are taken into account in this case. Meaning that if the odd version of a constant of Ti is an element
of M, then it is not considered in computation of costadd . Thus, ecost2 is found as costmux +costadd .
For our example, the estimated cost of [23 49] includes a 2-to-1 MUX and 4 adders.

3.6. Step 7: Third Alternative Realization
In this realization of Ti, we aim to find an implementation (an adder or a subtractor) for each constant
of Ti such that these operations include the minimum number of distinct partial terms at their inputs.
The reason behind this is that common partial terms reduce the sizes of MUXes and the number of
elements in the intermediate array of constants [Aksoy et al. 2013b]. This problem is formulated as
a 0-1 ILP problem which requires five steps as described in following.

First, we find all possible realizations of each constant of Ti by decomposing its nonzero digits
in two partial terms when it is defined under MSD. Since a constant may have alternative represen-
tations under MSD, the number of possible realizations is increased. For the row of T , [23 49], the
possible realizations of its constants are given in Fig. 4. Removing the same realizations of 23 and
49, i.e., −1+24 and 48+1, respectively, there are 5 realizations for both constants.

Second, we represent the realizations of constants in a Boolean network which includes only AND
and OR gates. For an adder, two AND gates, denoted as ANDp1+p2 and ANDp2+p1 , are generated.
For a subtractor, we assume that the first and second inputs are the partial terms with the positive
and negative signs, respectively and we generate an AND gate denoted as ANDp1−p2 . For each
constant of Ti, Ti[h], where 1 ≤ h ≤ n, an OR gate, ORTi[h], is generated to combine all realizations of
Ti[h]. Each partial term pk at the first or second input of an operation is denoted as an optimization
variable, O1|pk| or O2|pk|, respectively. Fig. 5 shows the network generated for the row of T , [23 49].

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0, Pub. date: 0.

Multiplierless Design of Folded DSP Blocks 0:9

Third, the objective function of the 0-1 ILP problem is obtained as a linear combination of opti-
mization variables whose weights are set to 1. Its constraints are obtained by finding the conjunctive
normal form (CNF) formulas of each gate and expressing each clause of the CNF formulas as a
linear inequality [Barth 1995]. For example, a 2-input AND gate, c = a∧b, is translated to CNF as
(a+c)(b+c)(a+b+c) and converted to linear constraints as a−c≥ 0, b−c≥ 0, −a−b+c≥−1.
The outputs of OR gates related to constants of Ti, ORTi[h], are set to 1 since they need to be realized.

Forth, a minimum solution is found using a 0-1 ILP solver. Based on the selected operations (the
outputs of AND gates set to 1 in the solution), the realization of Ti is formed as:

Ti = G1 ·2ls1 +(G2 ·2ls2)⊙SA (4)

where G1 (G2) includes the first (second) inputs of the selected operations for each constant of Ti,
ls1 (ls2) is the amount of left shift of G1 (G2), and SA denotes the sign array and is determined based
on the type of each operation, i.e., if Ti[h] is realized using an adder, then SA[h] is 1, otherwise, it is
-1. For our example, the operations 7+16 and 65−16 are respectively found for constants 23 and
49, and the realization of [23 49] is obtained as [7 65] ·20 +([1 1] ·24)⊙ [1 −1] according to Eq. 4.

Finally, we compute the cost of this realization as done in Step 5. To do so, we define the type of
operation based on SA and compute its cost, costop. For any of G1 and G2, if it is not included in S,
then we estimate its cost in terms of costmux and costadd . For our example, the type of operation is
adder/subtractor and only the cost of [7 65] is estimated which needs a 2×1 MUX and two adders.

This solution leads to an operation with common partial terms at the inputs. In order to include
an information about the design complexity into the 0-1 ILP problem, for each partial term pk,
we also take into account its bitwidth bw(pk) and number of nonzero digits under CSD nzd(pk).
Hence, we modify the objective function of the previous 0-1 ILP problem, where the weight of
each optimization variable, denoting a partial term pk at the inputs of operations, is assigned to
bw(pk) ·nzd(pk). In this case, 23 and 49 are implemented as 8+15 and 64−15, respectively. The
realization of [23 49] is found as [1 8] ·23+([15 15] ·20)⊙ [1 −1], requiring an adder/subtractor. The
intermediate arrays [1 8] and [15 15] are estimated to require a 2×1 MUX and an adder, respectively.

Among these two possible realizations, we determine the one with the minimum cost which is
assigned to ecost3. For our example, the second one has the minimum cost.

3.7. Step 8: Selection of the Realization with Minimum Cost
Among the realizations found in Steps 5, 6, and 7, if ecost1 is the minimum, we add the required
intermediate array of constants found in Step 5 to T . If ecost2 is the minimum, we add the odd
versions of constants in Ti to M without repetition and move Ti from T to S. Otherwise, we add the
required intermediate array(s) of constants found in Step 7 to T . In case of equality of cost values,
the realization found in Step 6 is favored first and then, the one found in Step 5. This is because the
sharing in the realizations of constants in M is larger than the sharing among the realizations of the
arrays of constants. For our example, ecost1 is the minimum cost value. Thus, [3 6] is added to T .

3.8. Step 9: Iterations in ORPHEUS
ORPHEUS iterates until T is empty. For our example, in Step 2 of the next iteration, [3 6] and [23 49]
are respectively realized as [5 5] ·20 +([2 1] ·20)⊙ [−1 1] and [3 6] ·23 +([1 1] ·20)⊙ [−1 1].

3.9. Step 10: Realization of the Constant Multiplications
If M includes constants other than 1, the MCM algorithm of [Voronenko and Püschel 2007] is
applied to find the fewest operations realizing these constant multiplications and these operations
are added to I. For each chosen mcm-mux realization, the necessary MUX is added to I.

The solution of ORPHEUS on our example C is presented in Fig. 6a. On the other hand, the
solution of the algorithm of [Demirsoy et al. 2007] which can target SIMO TMCM instances under
the FPGA design platform, is illustrated in Fig. 6b. Recall that the basic structure in [Demirsoy
et al. 2007] consists of an adder, a subtractor, or an adder/subtractor with a 2-to-1 MUX, as shown

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0, Pub. date: 0.

0:10 L. Aksoy et al.

�

�

� ��
� ��

�� � �

�� � �

��� �	 �

�
 � � ��� ��� �

�

�

�

�

�

� �
�

�

� ��� �	 �

�� � �

��� ��� �

�

� �� � �

�

�
�

��
 �

�� � �� �

�� �� � �

�� ��

�

�

��� ��� �

�

Fig. 6. Time-multiplexed realizations of C = [5 5;2 1;12 10;92 196]: (a) ORPHEUS; (b) algorithm of [Demirsoy et al. 2007].

in dashed blocks. Observe that such a restriction may disable the possibility of sharing common
partial terms and may yield a design of array of constants using a large number of logic operators
as in the realization of [2 1], leading to a design with a large area under the ASIC design platform.

To support this work with synthesis results, we developed a computer-aided design (CAD) tool
which can describe the TMCM operation obtained by ORPHEUS under the mux-add architecture in
VHDL. It can also describe a TMCM design under the mul-mux and mcm-mux architectures.

4. FOLDED DESIGN ARCHITECTURES FOR FUNDAMENTAL DSP BLOCKS
This section describes the folded design of FIR filters focusing on the transposed form and of linear
DSP transforms emphasizing on DCTs and ICTs. We note that the time-multiplexed design of filter
banks was described in [Demirsoy et al. 2007]. A TMCM architecture required for the design of
FFTs can be found in [Qureshi and Gustafsson 2009]. In [Karkala et al. 2010], the sum of products
in FFTs was considered in a folded architecture and an optimization algorithm, that exploits the
common nonzero digits of constants in order to reduce the design complexity, was introduced.

4.1. FIR Filters
Digital filtering is a ubiquitous operation in DSP applications and is realized using IIR or FIR
filters. Although an FIR filter requires a larger number of coefficients than an equivalent IIR filter,
it is preferred to the IIR filter due to its stability and phase linearity properties [Wanhammar 1999].
The output of an N-tap FIR filter, y(n), is computed as ∑N−1

k=0 rk ·x(n−k), where N is the filter length,
rk is the kth filter coefficient, and x(n− k) is the kth previous filter input with 0 ≤ k ≤ N −1. Fig. 7a
presents the parallel design of the transposed form FIR filter which requires N multipliers and N−1
registers and adders (the one having 0 as an input is not counted). The sizes of these logic operators
depend on the bitwidths of the filter input and filter coefficients.

Fig. 7b depicts the fully folded FIR filter of the transposed form of Fig. 7a using the mux-mul
architecture for the TMCM operation. Note that any architecture shown in Fig. 1 can be used for the
TMCM operation. In the folded design, the SISO TMCM operation realizes the multiplication of
the filter input by the absolute value of the filter coefficient determined by the output of a counter.
Note that pnk denotes the sign of the filter coefficient rk, i.e., positive (0) or negative (1). If the
sign values of all coefficients are positive (negative), only an adder (a subtractor) is required. Oth-
erwise, an adder/subtractor and an MUX as shown in Fig. 7b are needed2. Moreover, the counter is
⌈log2(N −1)⌉-bit wide and counts from N −1 to 0. It also generates the timing signal T S shown in
Fig. 7c using additional hardware, where CLK denotes the clock signal that is fed to all registers in
these circuits which was not shown for the sake of clarity. OUT R stands for cascaded N−1 registers

2Similarly, in the parallel design of the transposed form of Fig. 7a, if a coefficient is negative, its absolute value is used in
the MCM block and the related adder in the register-add block is converted to a subtractor.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0, Pub. date: 0.

Multiplierless Design of Folded DSP Blocks 0:11

� �� � � ��� �

��� �

	 �� �

�� � �� �

���

����
���� �� �

 � � ��

�

���

����

��

�

�

��
�

��

�� �

�� � �� � ��

��
 � ��� � ��� �� �

��

�� ���

� "	" #�$

�" �

� �% &$ �� ��' (() #�"*

� �� �

	 �� �

�
 ���

� � �

� ��� ��

�� �

���) #�"*���

���

���

Fig. 7. (a) Parallel (unfolded) transposed form FIR filter design; (b) its fully folded design; (c) the timing signal T S.

��� �

� �� �

�� �� ���

	

	

	

� � ��

���

����� ���� �

� �

����� ���� �

	���
��� �� �

� �� 	 ��� �

�

�

�

�

��� �

��

�

�� �

��� �

�

��� �

��� �

� ��

�

�

��� �

�

�� �

��
 �

�

� ��

	

�

��

	

�� � �� �

�

Fig. 8. (a) A hybrid form FIR filter obtained when N is 4 and s is 2; (b) corresponding partially folded filter.

and their sizes are equal to the bitwidth of the filter output bwo, computed as bwi+⌈log2 ∑N−1
k=0 |rk|⌉,

where bwi denotes the bitwidth of the filter input. The size of the adder/subtractor is bwo and the
bitwidth of the output of the TMCM operation is equal to bwi+ ⌈log2 maxk{|rk|}⌉. Note that the
filter input should not be altered in N clock cycles in order to compute the filter output accurately.

Although the complexity of the filter design under the fully folded architecture is reduced with
respect to the parallel design, the filter output is obtained in N clock cycles under the fully folded
architecture, increasing the latency and energy consumption. To explore this tradeoff, we consider
the hybrid form [Bougas et al. 2005] that is obtained by dividing the transposed form filter of Fig. 7a
into s subsections and moving the registers in between subsections from the output-line (the signal
path computing the filter output in Fig. 7a) to input-line (the signal path carrying the filter input
in Fig. 7a). In this form, each subsection includes ⌈N/s⌉ filter coefficients. If N is not multiple
of s, extra ⌈N/s⌉s−N coefficients equal to 0 are added. Fig. 8a shows the hybrid form FIR filter
generated from a 4-tap transposed form filter when s is 2. Each subsection can be regarded as a
transposed form filter including ⌈N/s⌉ coefficients with an additional input and output, except the
last subsection.

Thus, when each subsection of the hybrid form is realized under the fully folded architecture, as
shown in Fig. 8b for the hybrid filter in Fig. 8a, ⌈N/s⌉ clock cycles are required to obtain the filter
output. In each of s subsections of the partially folded design, there exist one TMCM operation
and ⌈N/s⌉− 1 cascaded registers. Note that the sizes of multipliers and MUXes may be smaller
than those in the fully folded design since a smaller number of coefficients is included in each
subsection. Additionally, there is one counter counting from ⌈N/s⌉−1 to 0. Note that the registers
between subsections, colored in gray, are triggered at the end of ⌈N/s⌉ clock cycles, since the inputs
of subsections fed from these registers should not be altered in this period.

The folded designs of direct form FIR filters can be found similarly. Our CAD tool was improved
to design the partially and fully folded FIR filters under any TMCM architecture shown in Fig. 1.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0, Pub. date: 0.

0:12 L. Aksoy et al.

� � � ���� � � ���� � � ��� � ��	
�� 	
�

� � � ���� � � ���� � � ��� � ��	
�� 	
�

� 	
� � �	
��� � � �	
��� � � ��� � �	
�	
�� 	
�

� �

�

�

�
�

��
�

	
�

�
�

��
�

���
���

��	
� 	
�

� �

� �

�

�

�
�

��
�

	 ��

	 ��

	 �	
� 	
�

�
�

��
�

���
���

��	
� 	
�

� �

� �

�

�

�
�

��
�

	 	
��

	 	
��

	 	
�	
� 	
�

�
�

��
�

�	
��
�	
��

�	
�	
� 	
�

� 	
�

� � 	
�

���
� � � � � 	
��

���	 �� �
�

����
���� ���� ���	

�� �

�� �

	 ��

	 ��

	 �	
�

�� �� �	
�

Fig. 9. (a) The outputs of a CMVM operation; (b) fully folded design of a CMVM operation.

4.2. Linear DSP Transforms
Over the years many fast and efficient algorithms for DCTs have been introduced [Chen et al. 1977;
Hou 1987]. DCTs are widely used in image data compression and video coding [Banerjee et al.
2007]. The n× n DCT matrix B is an orthonormal matrix, i.e., BBT = I, where I is the identity
matrix, and its floating-point entries bi j with 0≤ j≤n−1 are determined as follows.

bi j =

{ √
1/n i = 0

(
√

2/n) · cos(π(j+0.5)i/n) 1 ≤ i ≤ n−1
(5)

The complexity of DCTs is dominated by the floating-point multipliers. Hence, ICTs were pro-
posed to be alternative to DCTs [Cham 1989]. The n×n ICT matrix E is an orthogonal matrix, i.e.,
EET = K, where K is a diagonal matrix and includes integer values. Due to the orthogonality and
boundary constraints, and the similarity relations with the entries of the DCT matrix B that an ICT
matrix must satisfy, there exist many ICTs [Cham 1989; Cheung et al. 1991; Aksoy et al. 2013a].

Considering the DCT and ICT matrices as an n×n constant matrix R, the computation of DCTs
and ICTs can be regarded as a CMVM operation as given in Fig. 9a. The parallel design of this
CMVM operation requires n2 multipliers and n2 −n adders, where the sizes of the multipliers and
adders depend on the bitwidth of the input variables and constants, and the order of summations.
Fig. 9b presents the fully folded realization of the CMVM operation under the assumption that its
each output is required to be computed simultaneously. Although the TMCM operation is depicted
under the mux-mul architecture, it can be realized under the mcm-mux or mux-add architecture. In
Fig. 9b, pn jk with 0 ≤ j,k ≤ n− 1 denotes the sign of the entry r jk, i.e., positive (0) or negative
(1) of the constant matrix R. The SIMO TMCM operation realizes the multiplications of an input
variable by all entries of each column of R determined by a counter. It requires n multipliers and
n-to-1 MUXes. The fully folded design additionally needs n adders/subtractors and accumulator
registers, n+1 n-to-1 MUXes, and one counter. Assuming that the bitwidths of input variables are
equal to bwi, the size of the relevant output of the TMCM operation f j is bwi+ ⌈log2maxk(r jk)⌉
and the sizes of the relevant adder/subtractor and accumulator register required for the computation
of the output y j are bwi+ ⌈log2 ∑n−1

k=0 |r jk|⌉. Also, the counter is ⌈log2(n−1)⌉-bit wide and counts
from 0 to n−1. The computation of each output of the CMVM operation y j requires n clock cycles.
Although it is not shown in this circuit, the counter also generates a signal similar to the T S signal
in Fig. 7c to reset the accumulator registers after each n clock cycles.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0, Pub. date: 0.

Multiplierless Design of Folded DSP Blocks 0:13

�� �� �

��� ��
� ��

�

�
	�� �

�	��

��

�� �� �

��� ��
� ��

�

�
	�� �

�	��

��

�� �� �

��� ��
� ��

�

�
	�� �

�	��

��

�� �� �

��� ��
� ��

�

�
	�� �

�	��

��

�

� �

�

� �

�� �� �

��� ��
� ��

�

�
	�� �

�	��

��

�� �� �

��� ��
� ��

�

�
	�� �

�	��

��

�� �� �

��� ��
� ��

�

�
	�� �

�	��

��

�� �� �

��� ��
� ��

�

�
	�� �

�	��

��

�

� �

�

� �

�

�

�

�

�
���� �� 	
�

� �

� �

� �

� �

� � � 	��� � � 	��� � � 	��� � � 	��� �

� � � 	��� � � 	��� � � 	��� � � 	��� �

� � � 	��� � � 	��� � � 	��� � � 	��� �

� � � 	��� � � 	��� � � 	��� � � 	��� �

�� � 	��� � � 	��� �

�� � 	��� � � 	��� �

�� � 	��� � � 	��� �

�� � 	��� � � 	��� �

�� � 	��� � � 	��� �

�� � 	��� � � 	��� �

�� � 	��� � � 	��� �

�� � 	��� � � 	��� �

� � �
�� �
��
� � �
�� �
��
� � �
�� �
��
� � �
�� �
��

�� �

�� �

���� � ���� �

Fig. 10. (a) Partitioning of the outputs of a 4×4 CMVM operation when g is 2; (b) corresponding partially folded design.

The partially folded design of the CMVM operation, which requires less number of clock cycles
than the CMVM operation under the fully folded architecture, can be obtained in three steps. First,
the n input variables are split into g= ⌈n/v⌉ groups, each consisting of v variables. Second, the sums
of products associated with these groups of input variables are implemented under the fully folded
architecture. Third, the relevant outputs of these designs are summed to obtain the outputs of the
CMVM operation. Thus, the number of clock cycles required to compute the outputs of the CMVM
operation is reduced to v. Note that if n is not multiple of v, vg−n input variables are added into the
CMVM operation and the relevant entries in the constant matrix R are filled with 0. As an example,
consider a 4×4 constant matrix and assume that v is 2. Also, suppose that one group consists of x0
and x1, and the other consists of x2 and x3. The computations of the outputs of the CMVM operation
and their partially folded design are given in Fig. 10.

The partially folded design includes g subcircuits, each including a single SIMO TMCM op-
eration, n adders/subtractors and accumulator registers, and n + 1 v-to-1 MUXes. Each TMCM
operation consists of n multipliers and v-to-1 MUXes. Also, a counter, that counts from 0 to v−1,
is required to synchronize the computation and to reset the accumulator registers for the next com-
putation. Finally, for each output of the CMVM operation, g− 1 adders are needed to obtain the
output. Although the number of logic operators increases as g increases (v decreases), in this case,
their sizes may decrease since a small number of constants are considered in each group.

In this work, our CAD tool was enhanced to design the partially and fully folded CMVM opera-
tions under the mux-mul, mcm-mux, and mux-add architectures.

Similarly, the given folded architectures can be applied to IIR filters, filter banks, and other linear
DSP transforms such as the Reed-Muller transform and error correcting codes.

5. EXPERIMENTAL RESULTS
This section is divided into two subsections. In the first, we present the results of ORPHEUS and
compare them with those of prominent TMCM algorithms. In the second, we present the gate-level
implementations of SIMO TMCM instances under the mux-mul, mcm-mux, and mux-add architec-
tures and of FIR filters and linear DSP transforms under the unfolded, partially folded, and fully
folded architectures. ORPHEUS was written in MATLAB and its results were obtained on a PC with

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0, Pub. date: 0.

0:14 L. Aksoy et al.

Table I. Summary of results of algorithms on SISO TMCM instances.

mbc n 2 6 10 14 18

6

#BS 27 19 21 24 29
Min Gain (%) -4.78 -19.85 -18.19 -16.91 -1.94
Avg Gain (%) 9.16 4.20 6.75 9.94 17.03
Max Gain (%) 30.30 31.90 28.98 28.21 32.75
CPU DAGfusion (s) 0.76 2.90 8.08 11.29 19.34
CPU ORPHEUS (s) 0.94 0.33 1.07 1.50 2.15

8

#BS 24 16 20 18 26
Min Gain (%) -9.46 -13.52 -19.95 -16.14 -7.98
Avg Gain (%) 8.20 2.93 4.51 5.98 12.71
Max Gain (%) 25.54 26.02 22.71 25.25 34.46
CPU DAGfusion (s) 0.84 4.84 11.41 15.55 20.42
CPU ORPHEUS (s) 1.39 1.75 2.24 2.83 4.19

10

#BS 22 15 16 19 24
Min Gain (%) -23.26 -14.75 -12.85 -12.91 -15.97
Avg Gain (%) 6.99 1.27 0.75 7.59 7.81
Max Gain (%) 28.48 27.66 22.96 28.51 27.75
CPU DAGfusion (s) 0.83 7.18 20.97 113.34 99.28
CPU ORPHEUS (s) 1.94 2.86 3.84 5.55 8.57

12

#BS 25 18 18 24 19
Min Gain (%) -12.06 -19.22 -14.69 -21.54 -20.33
Avg Gain (%) 13.88 3.17 4.17 6.80 4.75
Max Gain (%) 43.23 39.97 23.96 27.91 24.52
CPU DAGfusion (s) 1.00 23.54 65.72 276.09 515.20
CPU ORPHEUS (s) 2.85 4.89 7.12 8.68 13.42

14

#BS 23 21 19 19 24
Min Gain (%) -12.49 -24.13 -15.55 -25.02 -15.90
Avg Gain (%) 10.10 4.64 4.12 6.37 8.93
Max Gain (%) 37.23 24.26 27.72 28.21 25.27
CPU DAGfusion (s) 1.15 12.12 39.97 53.53 48.93
CPU ORPHEUS (s) 4.98 7.82 11.15 15.17 22.53

Intel Xeon at 2.4GHz and 10GB memory. It uses the 0-1 ILP solver SCIP (http://scip.zib.de/). The
Synopsys Design Compiler was used as the synthesis tool with the UMCLogic 0.18-µm Generic
II library. In the synthesis script, relaxed timing constraints were used in order to provide more
freedom to the synthesis tool to optimize area. The functionality of designs was verified on 10,000
randomly generated input signals in simulation, from which we obtained the switching activity in-
formation that was used by the synthesis tool to compute the power dissipation.

5.1. Comparisons of TMCM algorithms
For the comparison of ORPHEUS with DAGfusion [Tummeltshammer et al. 2007], we used ran-
domly generated 1× n TMCM instances, where the maximum bitwidth of constants (mbc) ranges
from 6 to 14 in steps of 2 and n ranges between 2 and 18 in steps of 4. For each group, 30 instances
were generated. Table I presents the results of algorithms, where #BS denotes the number of better
solutions that ORPHEUS found against DAGfusion in terms of area which is computed using the
0.18-µm standard cell library when the bitwidth of the input variable (bwi) was 16 as described
in [Tummeltshammer et al. 2007]. In DAGfusion, the exhaustive search on all possible orderings of
SCM graphs was limited to 10,000 orderings since it may take enormous CPU time. In this table,
Min Gain, Avg Gain and Max Gain are the minimum, average, and maximum gain in percentage
found by ORPHEUS over DAGfusion, respectively. Average runtime of both methods is in seconds.

Observe from Table I that ORPHEUS obtains better solutions than DAGfusion (#BS) on more than
half of the total number of TMCM instances, i.e. 30, in each group, except that including 10-bit
6 constants. Its maximum gain over DAGfusion is greater than 20% on every group of instances,
reaching up to 43.23% on a TMCM instance with 12-bit 2 constants. Note that this value is higher
than DAGfusion’s maximum gain over ORPHEUS on every group of instances and its average gain

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0, Pub. date: 0.

Multiplierless Design of Folded DSP Blocks 0:15

Table II. Area Estimation for C = [256 162 50 26 15 8 4 2 1].

Method Add Sub Add/Sub MUX Cost

[Tummeltshammer et al. 2007] 0 0 1 (12-bit) 1 (14-bit) 3-to-1 47041 (14-bit) 1 (16-bit) 7-to-1

[Demirsoy et al. 2007] 1 (10-bit) 1 (12-bit)

1 (8-bit) 2-to-1

9578

1 (10-bit) 1 (9-bit) 2-to-1
2 (11-bit) 2 (10-bit) 2-to-1
1 (12-bit) 1 (11-bit) 2-to-1
1 (16-bit) 1 (12-bit) 2-to-1

1 (16-bit) 2-to-1

[Chen and Chang 2009] 0 0
1 (12-bit) 1 (14-bit) 3-to-1

46481 (14-bit) 1 (11-bit) 4-to-1
1 (16-bit) 4-to-1

ORPHEUS 1 (14-bit) 0 1 (15-bit) 1 (14-bit) 4-to-1 44521 (15-bit) 6-to-1

Table III. Area Estimation for C = [362 392 473].

Method Add Sub Add/Sub MUX Cost

[Tummeltshammer et al. 2007] 1 (19-bit) 1 (16-bit) 1 (12-bit)

2 (12-bit) 2-to-1

63651 (19-bit) 2-to-1
1 (16-bit) 3-to-1
1 (20-bit) 3-to-1

[Demirsoy et al. 2007]
1 (11-bit)

0 1 (11-bit)
3 (11-bit) 2-to-1

50741 (12-bit) 1 (14-bit) 2-to-1
1 (17-bit)

[Chen and Chang 2009] 1 (17-bit)

1 (11-bit)

0

1 (14-bit) 2-to-1

59861 (12-bit) 1 (16-bit) 2-to-1
1 (14-bit) 1 (17-bit) 2-to-1

1 (18-bit) 3-to-1

ORPHEUS 1 (10-bit) 1 (15-bit) 0 1 (11-bit) 3-to-1 40361 (17-bit) 1 (12-bit) 3-to-1

reaches up to 17.03% on instances consisting of 6-bit 18 constants. Also, ORPHEUS requires less
CPU time than DAGfusion on TMCM instances with n ≥ 6. However, ORPHEUS cannot always find
the best solution. This is primarily because ORPHEUS is an approximate algorithm developed as an
iterative method, including efficient heuristics. Thus, in ORPHEUS, a decision made in an earlier
iteration has a significant impact on the quality of the final solution. In turn, DAGfusion aims to
consider all possible merging of SCM graphs exhaustively. Secondarily, ORPHEUS was developed
to handle both SISO and SIMO TMCM instances, whereas DAGfusion only targets SISO TMCM
instances. However, taking into account an increase in its runtime, the solution quality of ORPHEUS
can be increased by considering not only one realization of an array of constants in each iteration,
but a few and by including the unique merging technique of DAGfusion in ORPHEUS.

For the comparison of ORPHEUS with prominent TMCM algorithms, we also used two benchmark
sets given in [Chen and Chang 2009]. Tables II-III present the results of algorithms, where Cost,
denoting area, was computed using the 0.18-µm standard cell library when bwi was 8. The results
of other TMCM algorithms were taken from [Chen and Chang 2009]. Observe that ORPHEUS finds
a TMCM design with the least complexity, where the gain over the second best solution in Tables II
and III is 4.21% and 20.45%, respectively.

5.2. Comparisons of Design Architectures
This subsection presents the gate-level results of TMCM operations, FIR filters, DCTs, and ICTs.

5.2.1. TMCM. For this experiment, we used randomly generated m×n matrices, where m was 2,
4, 6, and 8, n was 4, 6, 8, 10, 12, 14, and 16. For each group, 30 instances were generated with
12-bit constants. Fig. 11 presents the average gate-level area (in µm2) of the TMCM designs under
the mux-mul, mcm-mux, and mux-add architectures when bwi was 16 and 24. Note that the MCM

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0, Pub. date: 0.

0:16 L. Aksoy et al.

a)

4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

x 10
4 m = 2 and bwi = 16

Number of time slots (n)

A
ve

ra
ge

 a
re

a

mux−mul
mcm−mux
mux−add

b)

4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4 m = 2 and bwi = 24

Number of time slots (n)

A
ve

ra
ge

 a
re

a

mux−mul
mcm−mux
mux−add

c)

4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
4 m = 4 and bwi = 16

Number of time slots (n)

A
ve

ra
ge

 a
re

a

mux−mul
mcm−mux
mux−add

d)

4 6 8 10 12 14 16
0

1

2

3

4

5

6

7
x 10

4 m = 4 and bwi = 24

Number of time slots (n)
A

ve
ra

ge
 a

re
a

mux−mul
mcm−mux
mux−add

e)

4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

x 10
4 m = 6 and bwi = 16

Number of time slots (n)

A
ve

ra
ge

 a
re

a

mux−mul
mcm−mux
mux−add

f)

4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

10
x 10

4 m = 6 and bwi = 24

Number of time slots (n)

A
ve

ra
ge

 a
re

a

mux−mul
mcm−mux
mux−add

g)

4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

x 10
4 m = 8 and bwi = 16

Number of time slots (n)

A
ve

ra
ge

 a
re

a

mux−mul
mcm−mux
mux−add

h)

4 6 8 10 12 14 16
0

2

4

6

8

10

12

x 10
4 m = 8 and bwi = 24

Number of time slots (n)

A
ve

ra
ge

 a
re

a

mux−mul
mcm−mux
mux−add

Fig. 11. Gate-level area results on SIMO TMCM operations: a) m=2 and bwi=16; b) m=2 and bwi=24; c) m=4 and
bwi=16; d) m=4 and bwi=24; e) m=6 and bwi=16; f) m=6 and bwi=24; g) m=8 and bwi=16; h) m=8 and bwi=24;.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0, Pub. date: 0.

Multiplierless Design of Folded DSP Blocks 0:17

Table IV. Specifications of FIR filters.

Filter N pass stop Q
1 15 0.1 0.2 12
2 51 0.07 0.12 16

designs in the mcm-mux architecture were obtained by the exact MCM algorithm of [Aksoy et al.
2010] and mux-add designs were found by ORPHEUS.

Observe that the number of time slots (n) has a significant impact on the area of the mux-add
designs, since the number of logic operators in the solutions of ORPHEUS generally increases as n
increases. However, it has a slight impact on the area of the mux-mul designs, since it affects only
on the size of the MUXes which occupy smaller area than multipliers. As the number of outputs
(m) and the bitwidth of the input variable (bwi) increase, the mux-add designs are becoming less
complex when compared to the mux-mul designs. This is due to the fact that as m is increased, the
number of multipliers in the mux-mul architecture is increased and as bwi is increased, the size of
the multipliers is increased. Observe that both m and n have a significant impact on the area of
the mcm-mux designs, since the number constants in the MCM block is increased as m and n are
increased. However, this architecture may lead to TMCM designs occupying less area than those
designed under the mux-mul architecture when n is decreased. Furthermore, as bwi increases, the
complexity of a TMCM design also increases.

We also observed that the delay in TMCM operations under the mux-add architecture is generally
higher than those designed under the mux-mul architecture, since the solutions of ORPHEUS include
a large number of logic operators in series.

5.2.2. FIR Filters. To make a fair comparison between filter architectures, we used two low-pass
FIR filters with asymmetric coefficients which were obtained using the firgr function of MATLAB
with the minphase option. Table IV presents their specifications, where N is the filter length, pass
and stop denote the normalized passband and stopband frequencies, respectively, and Q is the quan-
tization value used to convert the floating-point coefficients to integers.

Table V presents the gate-level results of the transposed form parallel, partially folded, and fully
folded filters whose constant multiplications are realized using generic multipliers (GM) and using
the solutions of optimization algorithms under the shift-adds (SA) architecture. For the partially and
fully folded designs, GM and SA respectively indicate that the TMCM operations are realized under
the mux-mul architecture and the mux-add architecture based on the solutions of ORPHEUS. For the
parallel designs under the SA architecture, their multiplier blocks are realized using the solution
of the exact MCM algorithm of [Aksoy et al. 2010]. In this experiment, the bitwidth of the filter
input bwi was 16 and the partially folded filters were generated with three different s values. In this
table, CA, NCA, and TA stand respectively for combinational, non-combinational and total area in
mm2. Also, D and L denote respectively the critical path delay and latency (computed as D× cc,
where cc is the number of clock cycles required to obtain the filter output) both in ns. P and E are
respectively the power dissipation in mW and energy consumption in pJ (computed as P×L). The
minimum values on total area, latency, and energy consumption are shown in bold.

First, consider the parallel, partially folded, and fully folded architectures. For filters using generic
multipliers, their area is decreased using the folded architecture, but their latency and energy con-
sumption are increased. For Filter 2, while the area ratio between the parallel and fully folded
realizations is 3.9, the latency and energy consumption ratio between the fully folded and parallel
realizations are 78.1 and 23.8, respectively. This is simply due to 51 clock cycles required to obtain
the filter output in the fully folded design. Moreover, the partially folded filters have area, latency,
and energy consumption values in between the values of the parallel and fully folded filters. For
the filters under the shift-adds architecture, this is also true, except that the parallel realizations may
have less complexity than the partially folded filters. For example, while the parallel realization of
Filter 1 occupies less area than its all partially folded realizations in Table V, the parallel design
of Filter 2 has less area than the partially folded designs when s is 17 and 9. This is due to more

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0, Pub. date: 0.

0:18 L. Aksoy et al.

Table V. Results of transposed form FIR filters using 16-bit filter input.

Filter Architecture CA NCA TA D L P E

1

Parallel GM 31.4 6.3 37.7 7.2 7.2 4.0 28.8
SA 16.7 6.3 23.0 7.1 7.1 2.5 17.5

Partially Folded GM 26.1 5.8 31.9 8.6 25.8 1.7 43.9
s = 5 SA 22.5 5.8 28.3 8.0 24.0 1.6 38.4
Partially Folded GM 23.0 6.5 29.5 8.4 33.6 1.7 57.1
s = 4 SA 22.1 6.5 28.6 9.3 37.2 1.8 67.0
Partially Folded GM 18.8 6.3 25.1 8.1 40.5 1.8 72.9
s = 3 SA 19.6 6.3 25.9 8.8 44.0 1.9 83.6

Fully Folded GM 7.3 7.0 14.3 8.5 127.5 1.5 191.3
SA 8.6 7.0 15.6 9.4 141.0 1.6 225.6

2

Parallel GM 139.3 26.0 165.3 8.1 8.1 17.7 143.4
SA 69.2 26.0 95.2 9.1 9.1 9.8 89.2

Partially Folded GM 107.1 22.2 129.3 11.6 34.8 5.4 187.9
s = 17 SA 99.3 22.2 121.5 10.1 30.3 5.5 166.7
Partially Folded GM 67.9 25.8 93.7 10.4 62.4 6.6 411.8
s = 9 SA 70.5 25.8 96.3 11.3 67.8 6.8 461.0
Partially Folded GM 26.8 26.2 53.0 10.4 176.8 5.3 937.0
s = 3 SA 34.9 26.2 61.1 10.5 178.5 5.6 999.6

Fully Folded GM 14.3 28.2 42.5 12.4 632.4 5.4 3415.0
SA 18.3 28.2 46.5 12.7 647.7 5.5 3562.2

Table VI. Results of the transposed form Filter 2 using 24-bit filter input.

Architecture CA NCA TA D L P E

Parallel GM 195.3 32.8 228.1 9.9 9.9 25.1 249.5
SA 90.8 32.8 123.6 10.6 10.6 14.1 150.1

Partially Folded GM 149.9 29.0 178.9 12.4 37.2 7.2 266.3
s = 17 SA 133.4 29.0 162.4 11.9 35.7 7.2 257.8
Partially Folded GM 95.0 33.0 128.0 12.2 72.9 8.6 628.8
s = 9 SA 94.3 33.0 127.3 12.7 76.5 8.9 677.0
Partially Folded GM 36.8 33.0 69.8 12.2 207.0 6.8 1408.9
s = 3 SA 46.6 33.0 79.6 12.3 209.8 7.1 1494.8

Fully Folded GM 18.7 35.0 53.7 14.5 738.3 6.9 5088.2
SA 23.7 35.0 58.7 14.7 748.0 7.0 5257.5

possible sharing of partial products in parallel designs than those in partially folded designs and the
number of filter coefficients. Note that as s increases, the number of TMCM operations increases
and the number of cascaded registers in the OUTR blocks decreases in the partially folded filters.
Thus, as s increases, the NCA values increase and the CA values decrease, with an exception on
Filter 1 when s is 4 which is because N is not multiple of s and an extra coefficient is added.

Second, consider different realizations of constant multiplications in FIR filters, i.e., GM and
SA. For parallel designs, filters designed using generic multipliers occupy larger area and consume
more power than those designed under the shift-adds architecture. For the fully folded designs,
they are better in terms of area, delay, and power dissipation than those realized under the shift-
adds architecture. This is because as the number and size of coefficients increase, the area of the
TMCM design under the shift-adds architecture increases. Thus, for the partially folded designs, as
s increases, since the number of coefficients in the TMCM operation is decreased, the area of filter
designs under the shift-adds architecture decreases and becomes better than those using generic
multipliers. We note that the delay and power dissipation of filters under the shift-adds architecture
are strongly related to the gate-level area and the number of logic operators in series.

To explore the impact of bwi on the FIR filter designs, Table VI presents the results of Filter 2
when it is 24. Observe that as bwi is increased, the values of the gate-level parameters also increase,
since the sizes of logic operators in these designs increase.

5.2.3. Linear DSP Transforms. For this experiment, we used a 16×16 DCT whose floating-point
constants are converted to integers with a quantization value 8 and a 16× 16 ICT matrix, i.e., the
ICT 163 of [Aksoy et al. 2013a], that includes 6-bit constants. The linear DSP transforms were

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0, Pub. date: 0.

Multiplierless Design of Folded DSP Blocks 0:19

Table VII. Results of linear DSP transforms using 16-bit inputs.

Transform Architecture CA NCA TA D L P E

DCT

Parallel GM 437.0 7.3 444.3 7.3 7.3 40.0 290.2
SA 94.2 7.3 101.5 8.0 8.0 9.7 77.9

Partially Folded GM 359.4 46.4 405.8 7.9 15.7 23.8 374.5
g = 8 SA 269.2 46.4 315.7 7.8 15.7 19.2 300.5
Partially Folded GM 287.9 27.0 314.9 8.7 35.0 19.2 671.8
g = 4 SA 156.6 27.0 183.6 8.6 34.6 12.9 446.1
Partially Folded GM 205.6 14.2 219.8 9.6 76.9 12.4 953.5
g = 2 SA 81.9 14.2 96.1 9.2 73.5 6.7 492.4

Fully Folded GM 151.2 7.5 158.7 10.3 165.3 9.3 1537.0
SA 41.8 7.5 49.3 9.5 151.7 4.4 667.5

ICT

Parallel GM 191.6 6.4 197.9 6.9 6.9 18.8 129.8
SA 68.1 6.4 74.5 7.0 7.0 8.3 57.9

Partially Folded GM 186.5 24.7 211.2 6.7 13.4 11.2 150.3
g = 8 SA 170.5 24.7 195.2 7.0 14.0 10.3 144.0
Partially Folded GM 167.7 21.6 189.4 8.0 32.1 12.2 391.5
g = 4 SA 121.0 21.6 142.7 7.9 31.6 9.8 309.2
Partially Folded GM 120.9 12.3 133.2 8.6 68.6 7.9 542.3
g = 2 SA 64.1 12.3 76.3 9.4 75.4 5.3 399.7

Fully Folded GM 92.4 6.5 98.8 9.3 148.1 6.3 932.7
SA 32.9 6.5 39.4 8.9 141.8 3.6 510.3

Table VIII. Results of the 16×16 ICT using 24-bit inputs.

Architecture CA NCA TA D L P E

Parallel GM 273.8 8.5 282.3 8.8 8.8 28.7 252.5
SA 96.3 8.5 104.8 8.6 8.6 12.0 102.8

Partially Folded GM 263.9 34.5 298.4 8.9 17.8 16.0 285.6
g = 8 SA 239.6 34.5 274.1 8.8 17.6 14.6 257.4
Partially Folded GM 236.8 29.8 266.6 9.5 38.1 17.1 651.3
g = 4 SA 168.5 29.8 198.3 9.2 36.8 13.7 504.3
Partially Folded GM 174.7 16.6 191.3 10.3 82.7 11.4 943.0
g = 2 SA 88.4 16.6 105.0 10.5 84.1 7.5 630.6

Fully Folded GM 134.2 8.6 142.9 11.5 183.3 9.0 1650.1
SA 45.3 8.6 54.0 10.6 170.3 5.0 851.6

designed under the parallel, partially folded, and fully folded architectures. For a fair comparison
between the architectures, the parallel design of a linear DSP transform was described as a sequen-
tial circuit, where the registers were added to the outputs of the combinational circuit that compute
the linear DSP transform. In designs using generic multipliers, the summations of constant multi-
plications are described as in a binary tree so that the delay of these designs is reduced. For their
multiplierless designs, the state-of-art CMVM algorithm [Aksoy et al. 2012] was used to find the
fewest operations under the minimum number of adder-steps, i.e., the maximum number of opera-
tions in series. Note that the algorithm of [Aksoy et al. 2012] finds very similar solutions to those of
matrix decomposition techniques [Chen et al. 1977; Dong and Ngan 2006] in terms of the number of
operations and the butterfly structure. In the partially folded designs, the groups of input variables
were formed considering the symmetric property of the DCT and ICT matrices [Banerjee et al.
2007] and three different g values were used. Table VII shows the results on linear DSP transforms
obtained when the bitwidth of input variables bwi was 16. The parameters given in Table VII have
the same descriptions explained for Table V.

Observe from Table VII that the realization of linear DSP transforms under the shift-adds archi-
tecture leads to designs occupying less area and consuming less power with respect to those imple-
mented using generic multipliers. Note that it was opposite for all fully folded and some partially
folded filter designs presented in Table V. This is because the linear DSP transforms have a larger
number of outputs and require more multipliers than FIR filters. The fully folded designs have less
complexity with respect to the parallel designs, but larger latency since 16 clock cycles are needed
to compute the linear DSP transforms. As g is increased, decreasing the number of variables in each
group, the latency and energy consumption of the design decrease. However, the area of the design

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0, Pub. date: 0.

0:20 L. Aksoy et al.

increases in this case. When g is greater than 2, all the partially folded linear DSP transforms under
the shift-adds architecture, occupy larger area than their relevant parallel designs. This is because
the algorithm of [Aksoy et al. 2012] exploits a large number of common partial products than those
achieved in the partially folded designs by ORPHEUS.

Table VIII presents the results of the 16×16 ICT designed under the parallel, partially folded, and
fully folded architectures when bwi was 24. Observe that an increase in bwi leads to an increase in
area, delay, latency, power and energy consumptions, since it increases the sizes of logic operators.

6. CONCLUSIONS
This article presented an efficient approximate algorithm ORPHEUS developed for the optimization
of design complexity in TMCM operations and described the multiplierless design of folded DSP
blocks including the transposed form FIR filters, DCTs, and ICTs. Experimental results on TMCM
algorithms showed that ORPHEUS generally finds better solutions than existing algorithms, although
it cannot always guarantee the best solution. Experimental results on TMCM architectures indicated
that the use of mux-add architecture and the solutions of ORPHEUS becomes more efficient with
respect to the mux-mul architecture on m×n TMCM instances with a large m and a small n value.
However, there still exist TMCM instances on which the mux-mul architecture leads to TMCM
designs with the least area. Experimental results on FIR filters and linear DSP transforms showed
that the fully and partially folded architectures present alternative circuits so that a designer can
choose the one that fits best in an application. It was indicated that the folded design of DSP blocks
including a small number of outputs and a small number of multipliers may occupy less area when
realized using generic multipliers rather than its design under the shift-adds architecture.

REFERENCES
L. Aksoy, E. Costa, P. Flores, and J. Monteiro. 2008. Exact and Approximate Algorithms for the Optimization of Area and

Delay in Multiple Constant Multiplications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 27, 6 (2008), 1013–1026.

L. Aksoy, E. Costa, P. Flores, and J. Monteiro. 2012. Multiplierless Design of Linear DSP Transforms. In VLSI-SoC: Ad-
vanced Research for Systems on Chip, S. Mir, C.-Y. Tsui, R. Reis, and O. Choy (Eds.). Springer, Chapter 5, 73–93.

L. Aksoy, E. Costa, P. Flores, and J. Monteiro. 2013a. Exploration of Tradeoffs in the Design of Integer Cosine Transforms
for Image Compression,. In Proceedings of IEEE European Conference on Circuit Theory and Design. 1–4.

L. Aksoy, P. Flores, and J. Monteiro. 2013b. Towards the Least Complex Time-Multiplexed Constant Multiplication. In
Proceedings of IFIP/IEEE International Conference on Very Large Scale Integration. 328–331.

L. Aksoy, P. Flores, and J. Monteiro. 2014. Optimization of Design Complexity in Time-Multiplexed Constant Multiplica-
tions. In Proceedings of Design, Automation and Test in Europe Conference. 1–4.

L. Aksoy, E. Gunes, and P. Flores. 2010. Search Algorithms for the Multiple Constant Multiplications Problem: Exact and
Approximate. Elsevier Journal on Microprocessors and Microsystems 34, 5 (2010), 151–162.

N. Banerjee, G. Karakonstantis, and K. Roy. 2007. Process Variation Tolerant Low Power DCT Architecture. In Proceedings
of Design Automation and Test in Europe. 630–635.

P. Barth. 1995. A Davis-Putnam Based Enumeration Algorithm for Linear Pseudo-Boolean Optimization. Technical Report.
Max-Planck-Institut Fur Informatik.

R. Bernstein. 1986. Multiplication by Integer Constants. Software: Practice and Experience 16, 7 (1986), 641–652.
P. Bougas, P. Kalivas, A. Tsirikos, and K. Pekmestzi. 2005. Pipelined Array-Based FIR Filter Folding. IEEE Transactions

on Circuits and Systems 52, 1 (2005), 108–118.
N. Boullis and A. Tisserand. 2005. Some Optimizations of Hardware Multiplication by Constant Matrices. IEEE Transac-

tions on Computers 54, 10 (2005), 1271–1282.
W.-K Cham. 1989. Development of Integer Cosine Transforms by the Principle of Dyadic Symmetry. IEE Proceedings I

Communications, Speech and Vision 136, 4 (1989), 276–282.
J. Chen and C.-C. Chang. 2009. High-Level Synthesis Algorithm for the Design of Reconfigurable Constant Multiplier.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 28, 12 (2009), 1844–1856.
W. Chen, C. Smith, and S. Fralick. 1977. A Fast Computational Algorithm for the Discrete Cosine Transform. IEEE Trans-

actions on Communications 25, 9 (1977), 1004–1009.
K.-M. Cheung, F. Pollara, and M. Shahshahani. 1991. Integer Cosine Transform for Image Compression. The Telecommu-

nications and Data Acquisition Progress Report 42-105. Jet Propulsion Laboratory, California, Pasadena. 45–60 pages.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0, Pub. date: 0.

Multiplierless Design of Folded DSP Blocks 0:21

S. Demirsoy, R. Beck, A. Dempster, and I. Kale. 2003. Reconfigurable Implementation of Recursive DCT Kernels for
Reduced Quantization Noise. In Proceedings of IEEE International Symposium on Circuits and Systems. 289–292.

S. Demirsoy, A. Dempster, and I. Kale. 2004. Efficient Implementation of Digital Filters Using Novel Reconfigurable Mul-
tiplier Blocks. In Proceedings of Asilomar Conference on Signals, Systems and Computers. 461–464.

S. Demirsoy, I. Kale, and A. Dempster. 2007. Reconfigurable Multiplier Constant Blocks: Structures, Algorithm and Appli-
cations. Springer Circuits, Systems and Signal Processing 26, 6 (2007), 793–827.

A. Dempster and M. Macleod. 1995. Use of Minimum-Adder Multiplier Blocks in FIR Digital Filters. IEEE Transactions
on Circuits and Systems II 42, 9 (1995), 569–577.

A. Dempster and M. Macleod. 2004. Digital Filter Design using Subexpression Elimination and All Signed-Digit Represen-
tations. In Proceedings of IEEE International Symposium on Circuits and Systems. 169–172.

J. Dong and K. N. Ngan. 2006. 16× 16 Integer Cosine Transform for HD Video Coding. In Proceedings of the 7th Pacific
Rim Conference on Advances in Multimedia Information Processing. 114–121.

M. Ercegovac and T. Lang. 2003. Digital Arithmetic. Morgan Kaufmann.
O. Gustafsson, A. Dempster, and L. Wanhammar. 2002. Extended Results for Minimum-adder Constant Integer Multipliers.

In Proceedings of IEEE International Symposium on Circuits and Systems. 73–76.
R. Hartley. 1996. Subexpression Sharing in Filters Using Canonic Signed Digit Multipliers. IEEE Transactions on Circuits

and Systems II 43, 10 (1996), 677–688.
Y.-H. Ho, C.-U. Lei, H.-K. Kwan, and N. Wong. 2008. Global Optimization of Common Subexpressions for Multiplierless

Synthesis of Multiple Constant Multiplications. In Proceedings of Asia and South Pacific Design Automation Confer-
ence. 119–124.

H. Hou. 1987. A Fast Recursive Algorithm for Computing the Discrete Cosine Transform. IEEE Transactions on Acoustics,
Speech and Signal Processing 35, 10 (1987), 1455–1461.

K. Johansson, O. Gustafsson, L. DeBrunner, and L. Wanhammar. 2011. Minimum Adder Depth Multiple Constant Multipli-
cation Algorithm for Low Power FIR Filters. In Proceedings of IEEE International Symposium on Circuits and Systems.
1439–1442.

K. Johansson, O. Gustafsson, and L. Wanhammar. 2005. A Detailed Complexity Model for Multiple Constant Multiplication
and an Algorithm to Minimize the Complexity. In Proceedings of IEEE European Conference on Circuit Theory and
Design. 465–468.

H-J. Kang and I-C. Park. 2001. FIR Filter Synthesis Algorithms for Minimizing the Delay and the Number of Adders. IEEE
Transactions on Circuits and Systems II: Analog and Digital Signal Processing 48, 8 (2001), 770–777.

V. Karkala, J. Wanstrath, T. Lacour, and S. P. Khatri. 2010. Efficient Arithmetic Sum-of-Product (SOP) based Multiple
Constant Multiplication for FFT. In Proceedings of International Conference on Computer-Aided Design. 735–738.

M. Kumm, P. Zipf, M. Faust, and C.-H. Chang. 2012. Pipelined Adder Graph Optimization for High Speed Multiple Constant
Multiplication. In Proceedings of IEEE International Symposium on Circuits and Systems. 49–52.

H. Nguyen and A. Chatterjee. 2000. Number-Splitting with Shift-and-Add Decomposition for Power and Hardware Opti-
mization in Linear DSP Synthesis. IEEE Transactions on Very Large Scale Integration Systems 8, 4 (2000), 419–424.

K. Parhi. 1995. High-Level Algorithm and Architecture Transformations for DSP Synthesis. Journal of VLSI Signal Pro-
cessing 9, 1 (1995), 121–143.

K. Parhi. 1999. VLSI Digital Signal Processing Systems: Design and Implementation. John Wiley & Sons.
I-C. Park and H-J. Kang. 2001. Digital Filter Synthesis Based on Minimal Signed Digit Representation. In Proceedings of

Design Automation Conference. 468–473.
F. Qureshi and O. Gustafsson. 2009. Low-Complexity Reconfigurable Complex Constant Multiplication for FFTs. In Pro-

ceedings of IEEE International Symposium on Circuits and Systems. 24–27.
N. Sidahao, G. Constantinides, and P. Cheung. 2004. Multiple Restricted Multiplication. In Proceedings of International

Conference on Field-Programmable Logic and Applications. 374–383.
N. Sidahao, G. Constantinides, and P. Cheung. 2005. A Heuristic Approach for Multiple Restricted Multiplication. In Pro-

ceedings of IEEE International Symposium on Circuits and Systems. 692–695.
J. Thong and N. Nicolici. 2010. A Novel Optimal Single Constant Multiplication Algorithm. In Proceedings of Design

Automation Conference. 613–616.
P. Tummeltshammer, J. Hoe, and M. Püschel. 2007. Time-Multiplexed Multiple-Constant Multiplication. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems 26, 9 (2007), 1551–1563.
R. Turner and R. Woods. 2004. Highly Efficient, Limited Range Multipliers for LUT-based FPGA Architectures. IEEE

Transactions on Very Large Scale Integration Systems 12, 10 (2004), 1113–1117.
Y. Voronenko and M. Püschel. 2007. Multiplierless Multiple Constant Multiplication. ACM Transactions on Algorithms 3, 2

(2007).
L. Wanhammar. 1999. DSP Integrated Circuits. Academic Press.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0, Pub. date: 0.

