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Abstract 
Co-design tools represent an effective solution for re- 

ducing costs and shortening time-to-market, when Sys- 
tem-on-Chip design is considered. In a top-down design 
flow, designers would greatly benefit fiom the availabil- 
ity of tools able to automatically generate test se- 
quences, which can be reused during the following de- 
sign steps, from the system-level specification to the 
gate-level description. This would significantly increase 
the chance of identihing testability problems early in the 
design flow, thus reducing the costs and increasing the 
final product quality. The paper proposes an approach 
for integrating the ability to generate test sequences into 
an existing co-design tool. Preliminary experimental 
results are reported, assessing the feasibility of the pro- 
posed approach. 

1. Introduction 
In the last years, new technologies allowed to inte- 

grate entire systems on a single chip, called System-on- 
Chip (SOC). SOC products represent a real challenge 
not just from the manufacturing point of view, but even 
when design issues are concerned. 

To cope with SOC designers requirements, research- 
ers developed co-design environments, whose main 
characteristic is to allow the designer to quickly evaluate 
the costs and benefits of different architectures, includ- 
ing both hardware and software components. In these 
environments it is also possible to automatically synthe- 
size both the hardware and software modules imple- 
menting the desired system behavior. 

While the design practice is quickly moving toward 
higher levels of abstraction, test issues are still consid- 
ered only when a detailed description of the design is 
available, typically at the gate-level for test sequence 
generation purposes and register transfer (RT)-level for 
design for testability structures insertion. 

In the past years, intensive research efforts have been 
devoted to devise solutions tackling test sequence gen- 
eration since the early design phases, mainly the RT- 
level and several approaches have been proposed. Most 
of them are usually able to generate test patterns of good 
quality, sometimes comparable or even better than gate- 
level ATPG tools. However, lacking of general applica- 
bility, these approaches are still not accepted by indus- 
tries. The different approaches are based on different 
assumptions and on a wide spectrum of distinct algo- 
rithmic techniques. Some are based on extracting from a 
behavioral description the corresponding control ma- 
chine [l] or the symbolic representation based on binary 
decision diagrams 121, while others also synthesize a 
structural description of the data path [3]. Some ap- 
proaches rely on a direct examination of the HDL de- 
scription [4], or exploit the knowledge of the gate-level 
implementation 151. Some others combine static analysis 
with simulation 161. 

Most of the cited approaches rely on high-level fault 
models for behavioral HDL descriptions that have been 
developed by the current practice of software testing [7] 
and extending them to cope with hardware descriptions. 
In this sense, the high-level fault model corresponds to a 
metric that measures the goodness of a given sequence 
of input vectors. Some of the difficulties that make de- 
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veloping a good metric for hardware descriptions much 
more difficult than for software are: the large amount of 
concurrency that dramatically degrades the usefulness of 
the widely used path coverage or similar metrics; the 
combined presence of behavioral and structural descrip- 
tion styles that prevents the use of techniques suitable 
for control-oriented or data-oriented circuits only; the 
complexity of timing schemes (multiple clock circuits 
are difficult to handle, as they were at the gate-level); the 
difficulty of modeling faulty behavior observation (since 
software metrics only consider reachability of condi- 
tions, that corresponds to fault controllability). 

In this work, we propose an approach that targets the 
system-level of abstraction, allowing performing test 
sequence generation at the same level of abstraction the 
design is carried out. We propose an approach that ad- 
dresses systems described at the behavioral-level and 
that computes test sequences attaining high fault cover- 
age when applied to the corresponding gate-level model 
of the systems. 

The approach is inspired to the ones described in [8] 
and [9]. The main contributions of this work are: 

the adoption of a high level fault model used to 
represent gate-level faults while at the behavioral- 
level; 
the development of a behavioral-level fault simula- 
tor to evaluate system behaviors in presence of 
faults. 

Given a behavioral-level fault model and a fault 
simulator supporting it, we can evaluate the goodness of 
input stimuli from a testability point of view while rea- 
soning at the behavioral-level, before a gate-level 
description is available. By exploiting this feature, we 
developed a behavioral-level test pattern generator (BL- 
TPG) and, to assess its feasibility, we compared the fault 
coverage of the sequences it produces while working at 
the behavioral-level with the one obtained by a commer- 
cial gate-level automatic test pattern generator. 

Preliminary results show that input sequences com- 
puted at a higher level of abstraction could be exploited 
as test sequences at the lower level of abstraction. The 
results also show some weak points of the current im- 
plementation of our approach that demand further im- 
provements. 

The paper is organized as follows. Section 2 de- 
scribes the adopted fault model, while Section 3 de- 
scribes the behavioral-level fault simulator. Section 4 
describes the BL-TPG tool. Finally, experimental results 

are presented in Section 5 and some conclusions are 
drawn in Section 6. 

2. Fault model discussion 
The effectiveness of test vectors is usually measured 

resorting to a gate-level description of the system under 
test and a fault simulation supporting one of the avail- 
able gate-level fault models. One of the most popular 
fault models is the permanent single stuck-at one, rhus 
we adopted it to measure how effective sequences are 
while at the gate-level. 

When developing a behavioral-level test pattern gen- 
erator we assume that, even if computed at a higher level 
of abstraction, the usefulness of the generated vectors is 
evaluated at the gate-level. Therefore, the behavioral- 
level test generator should adopt a behavioral-level fault 
model with a good correlation with respect to the 
adopted gate-level one. Moreover, the behavioral-level 
fault model should be consistent with the description of 
the system the design tool provides. 

In our work we addressed the POLIS [lo] co-design 
environment, and developed a fault model that mimics 
the permanent single stuck-at fault model while at the 
behavioral level. 

In the following subsections we recall the system 
representation POLIS offers and then we present the 
behavioral fault model. 

2.1. System representation: network of CFSMs 
In POLIS the system is represented as a network of 

interacting Codesign Finite State Machines (CFSMs). 
CFSMs extend Finite State Machines with arithmetic 
computations without side effects on transition edges. 
The communication edges between CFSMs are events, 
which may or may not carry values. A CFSM can exe- 
cute a transition only when an input event has occurred. 

A CFSM network operates in a Globally Asynchro- 
nous Locally Synchronous fashion, where each CFSM 
has its own clock, modeling the fact that different re- 
sources (e.g., HW or SW) can operate at widely different 
speeds. CFSMs communicate via non-blocking depth- 
one buffers. Initially there is no relation between local 
clocks and physical time that gets defined later by a 
process called architectural mapping. 

This involves allocating individual CFSMs to compu- 
tation resources and assigning a scheduling policy to 
shared resources. CFSMs implemented in hardware have 
local clocks that coincide with the hardware clocking. 
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CFSMs implemented in software have local clocks with 
a variable period, that depends both on the execution 
delay of the code implementing each transition and on 
the chosen scheduling policy (e.g., allowing task pre- 
emption). 

2.2. Behavioral fault model 
A behavioral fault model that approximates the stuck- 

at one can be defined by analyzing the synthesis rules 
exploited by POLIS to produce a gate-level model from 
a behavioral-level one. We reported in Table 1 the corre- 
spondence existing between the two levels. 

Behavioral-level Gate-level 

Table 1 : Correspondence between 
behavioral-level and gate-level 

Given the correspondence reported in Table 1 ,  we 
adopted permanent single stuck-at in events and vari- 
ables of behavioral descriptions as the behavioral-level 
fault model. Figure 1 represents the relation between the 
set of gate-level (GL) faults and the behavioral-level 
(BL) one. 

faults 

Figure 1: Gate- vs. Behavioral-level faults 

We can observe that a one-to-one relation exists be- 
tween GL and BL faults affecting memory elements. At 
the same time GL faults exist that cannot be represented 
at the BL, e.g., faults in the combinational logic. As a 
consequence, the set of BL faults is a subset of the GL 
one, where faults in the combinational logic are ne- 
glected. 

While reasoning on the system behavior we adopted 
the BL fault model as a rough approximation of the GL 
model. 

3. Behavioral-level fault simulator 
The behavioral-level fault simulator has been devel- 

oped in order to support the BL fault model previously 
described. It operates as a serial fault simulator and 
interacts with the simulation model POLIS provides. 

Figure 2 shows an example of the representation that 
POLIS uses to model the behavior of each CFSM. 

An S-Graph has a straightforward and efficient im- 
plementation as sequential code on a processor. There- 
fore, the behavior of a model composed of several inter- 
acting CFSMs can be simulated as a software program 
executed by a host workstation. 

Figure 2: An S-Graph example 

We exploited this approach and developed a fault 
simulator resorting to a source level debugger. In par- 
ticular, given a bit B in the variable V of CFSM C as the 
current fault location, we set a breakpoint in every loca- 
tion of the source code for C where V is read. Then, 
during the simulation, every time a breakpoint is trig- 
gered, we modify the bit B in V according to the speci- 
fied fault (either stuck-at-0 or stuck-at-1). 

As far as response analysis is concerned, we dump on 
a file the output trace for the fault-free and the faulty 
behaviors, then after the simulation completion, we 
check if the two outputs match. 

This approach, despite its simplicity, is very effective 
in allowing the simulation of faulty behavior. As a draw- 

- 
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back, by operating in serial fashion, fault simulation 
could require significant CPU time for large models. 

4. Test sequence generation 
The purpose of the behavioral-level test pattern gen- 

. eration (BL-TPG) tool is to compute input sequences 
that maximize the fault coverage with respect to the BL 
fault model. 

We adopted a heuristic approach that, starting from a 
given set of input vectors (e.g., manually developed 
input sequences), produces a sequence that maximizes 
the BL fault coverage (BL FC). 

In our approach a test sequence is a set of vectors to 
be applied to the system. Each vector is a set of events 
that are concurrently applied to the system input at a 
given time. We coded the sequence as a matrix of bits, 
where SEQUENCE-LENGTH is the number of rows in 
the matrix and thus it represents the number of vectors to 
be applied on the system inputs. Conversely, 
N-INPUTS is the number of system inputs and thus the 
number of columns in the matrix. The number of bits 
used to represent an input event e is selected as follows: 

0 1 bit if e is an input event without value 
0 logzn bits, where n is the number of different 

values associated to the event e, if e is an input 
event with value. 

The algorithm we developed is described in Figure 3. 
For each faultfin the fault list (which comprises all the 
single permanent stuck-at faults in all the bit variables of 
every CFSM in the system) we executed a random muta- 
tion hill climber (RMHC) algorithm that randomly 
modifies an initial input sequence looking for a new one 
that detectsf, i.e., a sequence for which the outputs of 
the faulty machine and the fault-free one differ. The 
RMHC exploits an evaluation function that measures 
how far a new sequence is from detecting the fault$ The 
function comprises two major terms: 

1. the activity the sequence produces within each 
CFSM in the system, measured as the number of 
the statements coding the CFSM behavior that are 
executed by the sequence. To compute this infor- 
mation the techniques already described in [8] and 
[9] are exploited; 

2. the number of CFSMs outputs in the faulty system 
(i.e., that system affected by the target fault) that 
hold a value not equal to the corresponding output 
in the fault-free system. 

The first term is intended to traverse most of the sys- 
tem specification in order to excite the target fault, while 
the second term is used to reward those sequences that 
propagate a fault from the faulty site (a variable in a 
CFSM) to the CFSM outputs and possibly to the system 
outputs. The RMHC is stopped when the target fault is 
detected, or a maximum number of iterations has been 
performed. 

In the current implementation of the algorithm the 
value of S EQUENCE-LENGTH is specified by the user. 

void ATPG( sequence initial-s, 
faultlist F, 
int n-fault ) 

{ 
int i, j ;  
sequence S; 

for( i = 0; i < n-fault; i++ ) 
{ 

S = initial-s; 
if( RMHC( F[i], S ) == DETECTED ) 

save-sequence ( S ) ; 
I 

Figure 3: Adopted test sequence generation algorithm 

5. Experimental results 
To assess the effectiveness of the proposed approach, 

we implemented a prototypical version of BL-TPG that 
amounts to 750 lines of C code (including the behav- 
ioral-level fault simulator). We run some experiments on 
three simple benchmarks whose number of CFSMs, 
number of statements coding the CFSMs behavior, num- 
ber of primary inputs (PIS), number of primary outputs 
(POs), number of flip-flops (FFs) and number of gates 
are summarized in Table 2; all the CFSMs composing 
the benchmarks have been implemented as hardware 
modules. The benchmarks are the Traffic Light Control- 
ler (TLC), the seat belt controller (BELT) and a part of 
the dashboard (DASH) benchmark distributed with 
POLIS (we neglected the CFSMs containing trigonomet- 
ric functions). 
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Name I CFSMs I Statements I PIs I POs I FFs I Gates 

Name 

Table 2: Benchmarks characteristics 

BL-TPG 1 Random 
FC I Len I FC I Len 

We run BL-TPG on a Sun UltraSparc 51300 equipped 
with 256 MBytes of RAM to compute a set of test se- 
quences for the behavioral descriptions of the adopted 
benchmarks. Then we fault simulated the attained vec- 
tors with the gate-level implementation of the bench- 
marks. We obtained the gate-level model of each bench- 
mark by synthesizing its RTL-VHDL description 
(generated by POLIS) resorting to the Synopsys synthe- 
sis tool. 

To evaluate the effectiveness of BL-TPG, we com- 
pared the fault coverage, FC, figures attained by the 
sequences it produces with the ones of random se- 
quences of the same length, Len. Results in Table 3 
shows that BL-TPG vectors are more effective than 
random generated ones. 

Table 3: BL-TPG vs. random vectors 

Moreover, in Table 4 we compared the gate-level 
fault coverage figures BL-TPG attains with the ones of a 
commercial gate-level automatic test sequence generator 
(ATPG). Table 4 also reports the CPU required by test 
generation and fault simulation. 

BL-TPG I Commercial ATPG 
FC I Len I CPU I FC I Len I CPU 

Table 4: BL-TPG vs. gate-level ATPG 

By observing this preliminary results the following 

1. fault coverage: for the smallest benchmarks, BL- 
TPG produces results comparable to the ones a 
commercial ATPG produces; conversely BL-TPG 
falls short on the largest benchmark. This can be 
explained by considering that in the current im- 
plementation, our algorithm does not take into ac- 
count the observability problem [6], and thus low 
fault coverage figures are attained; 

2. test length: BL-TPG produces test sequences much 
longer than those a commercial ATPG produces. 
This is mainly due to the fact that the current im- 
plementation of BL-TPG does not support fault 
dropping; 

3. CPU time: being based on a more abstract model 
than the gate-level one, BL-TPG requires less CPU 
time than the commercial ATPG In particular, for 
the two benchmarks where similar fault coverage 
results are obtained, BL-TPG is 4 times faster than 
the adopted gate-level ATPG 

considerations arise: 

6. Conclusions 
An approach to perform test sequence generation 

while at the behavioral-level has been proposed. The 
approach relies on a high-level fault model to map gate- 
level faults on the behavioral description of the system 
under test. A fault simulator supporting the behavioral- 
level fault model and a test generation tool have been 
developed and some experiments have been carried out 
to assess the feasibility of the proposed approach. 

Experimental results show that when observability 
problems can be neglected, our approach is comparable 
to a commercial ATPG tool. The results are promising, 
but more work has to be done in order to consider ob- 
servability during the test generation phase. Moreover, 
the BL fault model should be improved in order to con- 
sider also faults in the combinational logic. 
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