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Automated Software Test Data Generation 
BOGDAN KOREL, MEMBER, lEEE 

Abstract-Test data generation in program testing is the process of 
identifying a set of test data which satisfies given testing criterion. Most 
of the existing test data generators 161, IS], 1101, 1161, [30] use symbolic 
evaluation to derive test data. However, in practical programs this 
technique frequently requires complex algebraic manipulations, espe- 
cially in the presence of arrays. In this paper we present an alternative 
approach of test data generation which is based on actual execution of 
the program under test, function minimization methods, and dynamic 
data flow analysis. Test data are developed for the program using ac- 
tual values of input variables. When the program is executed, the pro- 
gram execution flow is monitored. If during program execution an un- 
desirable execution flow is observed (e.g., the “actual” path does not 
correspond to the selected control path) then function minimization 
search algorithms are used to automatically locate the values of input 
variables for which the selected path is traversed. In addition, dynamic 
data flow analysis is used to determine those input variables responsi- 
ble for the undesirable program behavior, leading to significant speed- 
up of the search process. The approach of generating test data is then 
extended to programs with dynamic data structures, and a search 
method based on dynamic data flow analysis and backtracking is pre- 
sented. In the approach described in this paper, values of array in- 
dexes and pointers are known at each step of program execution, and 
this approach exploits this information to overcome difficulties of array 
and pointer handling; as a result, the effectiveness of test data gener- 
ation can be significantly improved. 

Zndex Terms-Automated test generation, dynamic data flow analy- 
sis, function minimization, software testing, symbolic evaluation. 

I. INTRODUCTION 
OFTWARE testing is very labor-intensive and expen- S sive; it accounts for approximately 50% of the cost of 

a software system development [ 11, [28]. If the testing 
process could be automated, the cost of developing soft- 
ware should be reduced significantly. Of the problems in- 
volved in testing software, one is of particular relevance 
here: the problem of developing test data. Test data gen- 
eration in software testing is the process of identifying 
program input data which satisfy selected testing cri- 
terion. A test data generator is a tool which assists a pro- 
grammer in the generation of test data for a program. 
There are three types of test data generators: pathwise test 
data generators [6], [8], [lo], [ 161, [30], data specifica- 
tion generators [3], [19], [24], [25] ,  and random test data 
generators [7]. This paper focuses on pathwise test data 
generators which are tools that accept as input a computer 
program and a testing criterion (e.g., total path coverage, 
statement coverage, branch coverage, etc.) and then au- 
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tomatically generate test data that meet the selected cri- 
terion. The basic operation of the pathwise generator con- 
sists of the following steps: program control flow graph 
construction, path selection, and test data generation. The 
path selector automatically identifies a set of paths (e.g., 
near-minimal set of paths) to satisfy selected testing cri- 
terion. Once a set of test paths is determined, then for 
every path in this set the test generator derives input data 
that results in the execution of the selected path. 

Most of the pathwise test data generators [6], [8], [ 101, 
[16], [30] use symbolic evaluation to derive input data. 
Symbolic evaluation involves executing a program using 
symbolic values of variables instead of actual values. 
Once a path is selected, symbolic evaluation is used to 
generate a path constraint, which consists of a set of 
equalities and inequalities on the program’s input vari- 
ables; this path constraint must be satisfied for the path to 
be traversed. A number of algorithms have been used for 
the inequality solution. As pointed out in [18], [27], sym- 
bolic evaluation is a promising approach; however, there 
are still several problems which require additional re- 
search, e.g., the problem of array element determination. 
This problem occurs when the index of an array depends 
on input values; in this case, the array element that is 
being referenced or defined is unknown. This problem oc- 
curs frequently during symbolic evaluation. Inefficient so- 
lutions exist, for in the worst case all possible index val- 
ues can be enumerated. Though there has been some work 
on this problem [30] and a related problem for record 
structures [27], the results are still unsatisfactory. 

In this paper we present an alternative approach of test 
data generation, referred to as a dynamic approach of test 
data generation, which is based on actual execution of a 
program under test, dynamic data flow analysis, and func- 
tion minimization methods. Test data are developed using 
actual values of input variables. When the program is ex- 
ecuted on some input data, the program execution flow is 
monitored. If, during program execution, an undesirable 
execution flow at some branch is observed then a real- 
valued function is associated with this branch. This func- 
tion is positive when a branch predicate is false and neg- 
ative when the branch predicate is true. Function min- 
imization search algorithms are used to automatically 
locate values of input variables for which the function be- 
comes negative. In addition, dynamic data flow analysis 
is used to determine input variables which are responsible 
for the undesirable program behavior, leading to signifi- 
cant speed-up of the search process. In this approach, ar- 
rays and dynamic data structures can be handled precisely 
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because during program execution all variables values, 
including array indexes and pointers, are known; as a re- 
sult, the effectiveness of the process of test data genera- 
tion can be significantly improved. 

The organization of this paper is as follows. In the next 
section basic concepts and notations are introduced. Sec- 
tion 111 shows that the test data generation problem can be 
reduced to the sequence of subgoals where each subgoal 
can be solved using function minimization search tech- 
niques. The basic search procedure for solving subgoals 
is presented in Section IV. Dynamic data flow concepts 
and their application in the test data generation process 
are discussed in Section V. In Section VI, the test data 
generation is then extended onto programs with dynamic 
data structures. Finally, in the Conclusions further re- 
search is outlined. 

11. BASIC CONCEPTS 
Ajow graph of program Q is a directed graph C = (N, 

A, s, e )  where 1) N is a set of nodes, 2) A is a binary 
relation on N ( a  subset of N x N ), referred to as a set of 
edges, and 3) s and e are, respectively, unique entry and 
unique exit nodes, s, e E N .  

For the sake of simplicity, we restrict our analysis to a 
subset of structured Pascal-like programming language 
constructs, namely: sequencing, if-then-else, and while 
statements. A node in N corresponds to the smallest sin- 
gle-entry, single-exist executable part of a statement in Q 
that cannot be further decomposed; such a part is referred 
to as an instruction. A single instruction corresponds to 
an assignment statement, an input or output statement, or 
the <expression> part of an if-then-else or while state- 
ment, in which case it is called a test instruction. 

An edge (n,, nJ) E A corresponds to a possible transfer 
of control from instruction n, to instruction nJ. For in- 
stance, (2, 3), (6, 7), and (6, 8) are edges in the program 
of Fig. 1. An edge (n,, n,) is called a branch if n, is a test 
instruction. Each branch in the control flow graph can be 
labeled by a predicate, referred to as a branch predicate, 
describing the conditions under which the branch will be 
traversed. For example, in the program of Fig. 1 branch 
(5, 6) is labeled “i < high,” branch (6, 7) is labeled 
“max < A [ i ] , ”  and branch (6, 8) is labeled “max I 
A [ i ] . ”  

An input variable of a program Q is a variable which 
appears in an input statement, e.g., read(x), or it is an 
input parameter of a procedure. Input variables may be of 
different types, e.g., integer, real, boolean, etc. Let I 
= (x l r  x 2 ,  , x , )  be a vector of input variables of 
program Q. The domain D ,  of input variable x ,  is a set of 
all values which x, can hold. By the domain D of the pro- 
gram Q we mean a cross product, D = D,, X D,? X - - - 
x Ox,,, where each D,, is the domain for input variable n, . 
A single point x in the n-dimensional input space D,  x E 
D, is referred to as a program input. 

A path P in a control flow graph is a sequence P = 
< nh,, nkz, - * , nk, > of instructions, such that nk, = s, 
and for all i, 1 I i < q,  ( nh,, nh,, ,) E A.  A path is feasible 

V U  
A: array[l..lOO] of integer; 
low,high,step: integer, 
min,max: integer, 
i: integer ; 

begin 
1 ‘“put OOW~gh,StePAA) ; 
2 rmn:=A[low]; 
3 max:=A[low]; 
4 i := low + step ; 
5 while i < high do 

6.7 
8 9  
10 

< A[i] then max := A[i]; 
if min > A[i] then min := A[i]; 
i := i + step ; 

end; 
1 1  output (min,max); 

end ; 
Fig. 1 .  A sample program. 

if there exists a program input x for which the path is 
traversed during program execution, otherwise the path is 
infeasible. 

111. A TEST DATA GENERATION PROBLEM 
, nk, > be a path in the pro- 

gram. The goal of the test data generation problem is to 
find a program input x E D on which P will be traversed. 
We shall show that this problem can be reduced to a se- 
quence of subgoals where each subgoal is solved using 
function minimization search techniques. 

Without loss of generality, we assume that the branch 
predicates are simple relational expressions (inequalities 
and equalities). That is, all branch predicates are of the 
following form: 

Let P = < nkl, nkz, 

El O P  E2 
where E, and E2 are arithmetic expressions, and op is one 
of { <, I, >, 1, =, # }. In addition, it is assumed 
that predicates do not contain AND’s, OR’s or other bool- 
ean operators. 

Each branch predicate E, op E2 can be transformed to 
the equivalent predicate of the form 

F re1 0 

where F and re1 are given in Table I. 
F is a real-valued function, referred to as a branchfinc- 

rim, which is 1) positive (or zero if re1 is <) when a 
branch predicate is false or 2) negative (or zero if re1 is 
= or 5) when the branch predicate is true. It is obvious 
that F is actually a function of program input x. Symbolic 
evaluation can be used to find explicit representation of 
the F ( x )  in terms of the input variables. However, in 
practical programs this technique frequently requires 
complex algebraic manipulations, especially in the pres- 
ence of arrays. For this reason, we shall consider the al- 
ternative approach in which the branch function is eval- 
uated for any input data by executing the program. For 
instance, the true branch of a test “if y > z then . . .” 
has a branch function F, whose value can be computed 
for a given input by executing the program and evaluating 
the z-y expression. 
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TABLE I 

Branch Branch 
R c d i C a t e  FunctionF rcl 

Let xo be the initial program input (selected randomly) 
on which the program is executed. If P is traversed, xo is 
the solution to the test data generation problem; if not, we 
have to solve the first subgoal. Let T = < fPl ,  f,,?, - - , 
r,,: > be a program path traversed on xo, and let P I  = 
< nkl, nk2, * ’ * , nk, > be the longest subpath of P, re- 
ferred to as a successful subpath of P on xo, such that for 
all j ,  1 I j I i, nk, = t,,,. PI represents a successfully 
traversed part of P on input xo; the branch violation oc- 
curs on execution of branch ( n k , ,  r ~ ~ , + ~ ) .  Let F , ( x )  be a 
branch function of branch ( n k , ,  f l k , + I ) .  The first subgoal, 
now, is to find a value of x which will preserve the tra- 
versal of PI and cause F , ( x )  to be negative (or zero) at 
f l k , ;  as a result, ( n k , ,  f l k , + , )  will be successfully executed. 
More formally, we want to find a program input x E D 
satisfying 

F j ( x )  relj 0 

subject to the constraint: 

PI is traversed on x, 

where rel, is one of { <, I, = }. 
This problem is similar to the minimization problem 

with constraints because the function F, (x )  can be mini- 
mized using numerical techniques for constrained min- 
imization [12], [13] until F , ( x )  becomes negative (or 
zero, depending on rel,). The search procedure for solv- 
ing subgoals is presented in Section IV. 

Let XI be the solution to the first subgoal. Now, either 
the selected path P is traversed (as a consequence, XI is 
the solution to the main goal), or the second subgoal must 
be solved. In the latter case, let P2 = < nk, ,  nh2, * , 
nk,, nkgt  1 9  . , nk,,, > be the successful subpath of P tra- 
versed on XI. Let F,fl ( x )  be the branch function of branch 
(nk,,, ,  nk,,,+ The second subgoal is to find a program in- 
put x which satisfies F,,,(x) rel,fl 0, subject to the con- 
straint: P2 is traversed on x. This process of solving 
subgoals is repeated until the solution to the main goal is 
found, or one of the subgoals cannot be solved. In the 
latter case, the search procedure fails to solve the test data 
generation problem. 

IV. BASIC SEARCH PROCEDURE 
We now turn our attention to the question of how to 

conduct a search to find the solution to a subgoal. Because 
of a lack of assumptions about the branch function and 
constraints, we have selected direct-search methods [ 121, 

[13], which progress towards the minimum using a strat- 
egy based on the comparison of branch function values 
only. The main advantage of these search methods is that 
they do not require regularity and continuity of the branch 
function and the existence of derivatives. The most sim- 
ple strategy of this form is that known as the alternating 
variable method which consists of minimizing with re- 
spect to each input variable in turn. We start searching for 
a minimum with the first input variable xI  (using a one- 
dimensional search procedure) while keeping all the other 
input variables constant until the solution is found (the 
branch function becomes negative) or the positive mini- 
mum of the branch function is located. In the latter case, 
the search continues from this minimum with the next in- 
put variable x2. The search proceeds in this manner until 
all input variables x I ,  * , x,, are explored in turn. After 
completing such a cycle, the procedure continuously 
cycles around the input variables until the solution is found 
or no progress (decrement of the branch function) can be 
made for any input variable. In the latter case, the search 
process fails to find the solution even if the positive min- 
imum of the branch function is located. 

Now we shall briefly describe the one-dimensional 
search procedure for solving, for instance, the first 
subgoal. The one-dimensional search procedure [ 131 con- 
sists of two major phases, an “exploratory search” and a 
“pattern search. ” In the exploratory search, the selected 
input variable xl is increased and decreased by a small 
amount, while the remaining input variables are held con- 
stant. These are called the exploratory moves. For each 
variable change, the program is executed and the con- 
straint is checked for possible violation by comparing suc- 
cessful subpath PI with the path which is actually being 
traversed. If PI has been traversed, branch function F, ( x )  
is evaluated for the new input. On the other hand, if PI 
has not been traversed, the constraint violation is re- 
ported. In these exploratory moves, the value of the 
branch function is compared to the value of the branch 
function for the previous input. In this way, it is possible 
to indicate a direction in which to proceed, that is, to make 
a larger move. If the branch function is improved (de- 
creased) when x, is decreased, the search should proceed 
in the direction of decreasing x l .  If, on the other hand, the 
branch function is improved when x, is increased, the 
search should proceed in the direction of increasing x,. If 
both the decrement and the increment of xl do not cause 
the improvement of the branch function, the exploratory 
search fails to determine the direction for the search; in 
this case, the next input variable is selected for consid- 
eration. 

Assuming that the exploratory moves are able to indi- 
cate a direction in which to proceed, a larger move called 
a pattern move (pattern search) is made. After a pattern 
move, the program is executed and the constraint is 
checked for possible violation. If the constraint violation 
has not occurred and branch ( n h , ,  n h , + l )  has not been 
taken, the branch function is evaluated and its value is 
compared to the value of the branch function for the pre- 
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vious input. If branch function F , ( x )  is improved for the 
given step, then the new value of the branch function re- 
places the old one, and another larger move is made in 
the same direction. A series of pattern moves is made 
along this direction as long as the branch function is im- 
proved by each pattern move. The magnitude of the step 
for the pattern move is roughly proportional to the number 
of successful steps previously encountered. However, if 
the branch function is not improved, then the old value of 
the branch function is retained. If, after a succession of 
successful moves, a pattern move fails because the value 
of the branch function is not improved, then exploratory 
moves would be made to indicate a new direction. If a 
pattern move fails because of a constraint violation, the 
search would continue in this direction, with a reduction 
of the step size as necessary, until a successful move is 
made. At this point, we would again make exploratory 
moves to indicate a new direction. 

This process continues until the branch function be- 
comes negative (or zero) or no progress (decrement of the 
branch function) can be made for any input variable dur- 
ing the exploratory search. In the latter case, the search 
procedure fails to find the solution to the test data gener- 
ation problem. 

Example 1 
We work through a simple example to illustrate the 

basic approach of test data generation. Consider the pro- 
gram of Fig. 1 which is supposed to determine minimum 
and maximum values for selected elements of array A (de- 
termined by input variables low, step, and high). 

Given is the following path P = < s, 1 ,  2, 3, 4, 5 ,  6, 
8, 10, 5 ,  6, 8, 9, 10, 5, 1 1  >, the goal of the test data 
generation is to find a program input x (i.e.,  values for 
the input variables: low, high, step, A [  11, A [2], - * , 
A [ 1 0 0 1  ) which will cause P to be traversed. In the first 
step, all input variables receive initial values; suppose the 
following values have been assigned: low = 39, high = 
93, step = 12, A[1] = 1 ,  A[2] = 2, * * , A [  1001 = 
100. The program is executed on this input, and the fol- 
lowing successful subpath PI = < s, 1 ,  2, 3, 4, 5, 6 > 
of P is traversed; the violation occurs at branch (6, 8).  
Let F , ( x )  be a branch function of branch (6, 8), where 
values of Fl( x )  can be evaluated by computing the “A [ i ]- 
max” expression at 6. Note that the branch predicate of 
branch (6, 8) is max 1 A [ i 1. Our first subgoal is to find 
a program input x such that F l ( x )  I 0, subject to the 
constraint: PI is traversed on x. 

Suppose that input variables are ordered in the follow- 
ing way: A [ 1 ] ,  A [ 2 ] ,  - * * , A[100], high, step, low. 
The direct search starts with input variable A [ 1 1 .  In the 
exploratory move, A [  1 1  is increased by one, while the 
remaining variables are kept constant. It should be noted 
that because A [ 1 3 is declared as integer, the minimal in- 
crement of A [ 1 ] is one. The program is executed on this 
input and the value of FI (x )  is evaluated at 6; the value 
of branch function F l ( x )  is unchanged. A [ 1 ] is decreased 
by one, but the value of F , ( x )  is unchanged. The next 

input variable A [ 21 is selected. The exploratory moves 
for A[2], A [ 3 ] ,  - , A[38] do not cause any change 
in the value of F , ( x ) .  The increment of A[39] by one 
causes the decrement in the value of F , ( x ) .  This step de- 
fines a promising direction for search. Suppose that the 
value of A [ 391 is increased by 100 in the pattern move, 
i.e., A [ 391 = 139. On this input, subpath P, is traversed 
and branch (6, 8) is taken. As a result, this input is the 
solution to the first subgoal. 

When the program is executed on this input, the follow- 
ing successful subpath P2 = < s, 1 ,  2, 3 ,  4, 5 ,  6, 8 > of 
P is traversed; the violation occurs at branch (8, 10). Let 
F 2 ( x )  be a branch function of branch (8, lo), where val- 
ues of F 2 ( x )  can be evaluated by computing the “min- 
A [ i 1’’ expression at 8. The second subgoal is to find a 
program input x such that F 2 ( x )  I 0, subject to the con- 
straint: P ,  is traversed on x. 

Suppose that input variables are ordered in the same 
manner as for the first subgoal. Exploratory moves for 
A [  1 3 ,  - * * , A [ 381 do not cause any improvement in the 
value of branch function F 2 ( x ) .  The decrement of A [ 391 
by one causes the decrement in the value of F 2 ( x ) .  This 
step defines a direction for search. By performing the se- 
ries of exploratory and pattern moves on A[39] and re- 
ducing the size of the pattern move, the value of A[39] 
= 51 can be found. This input is the solution to the sec- 
ond subgoal, i.e., subpath P2 is traversed and branch (8, 
10) is taken. 

When the program is executed on this input, the follow- 
ing successful subpath P3 = < s, 1 ,  2, 3, 4, 5 ,  6, 8, 10, 
5, 6 > of P is traversed. The violation occurs on the sec- 
ond execution of branch (6, 8). Let F 3 ( x )  be a branch 
function of branch (6, 8), where values of F 3 ( x )  can be 
evaluated by the “A [ i 1-max” expression. The third 
subgoal is to find a program input x such that F 3 ( x )  5 0, 
subject to the constraint: P3 is traversed on x. 

- , A [ 62 ] do not cause 
any improvement in the value of branch function F 3 ( x ) .  
Observe that the exploratory moves for A [ 391 cause the 
constraint violation, i.e., P3 is not traversed. Only the 
decrement of A [ 631 causes the improvement of branch 
function F 3 ( x ) .  Suppose that the value of A [63] is de- 
creased by 100 in the pattern move, i.e., A[63] = -37. 
This move finds the solution to the third subgoal. 

When the program is executed on this input, the follow- 
ing successful subpath P4 = < s, 1 ,  2, 3,  4, 5 ,  6, 8, 10, 
5 ,  6, 8,  9, 10, 5 > of P is traversed. The violation occurs 
on the branch (5, 1 1 ) .  Let F4(x) be a branch function of 
branch (5, l l ) ,  where values of F 4 ( x )  can be evaluated 
by the “high-i” expression. The fourth subgoal is to find 
a program input x such that F4(x) I 0, subject to the 
constraint: P4 is traversed on x. 

In the first step all elements of array A are tried out. 
However, none of the exploratory moves for array ele- 
mentsA[ 1 1 ,  - * , A [ 1001 cause an improvement in the 
value of branch function F4(x). Only the decrement of 
input variable high causes the improvement of branch 
function F4( x).  This exploratory move defines a direction 

Exploratory moves for A [ 1 1 ,  
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for the change of the variable high. The sequence of the 
pattern moves can determine the final value of high = 67. 
The solution, high = 67, A[39] = 51, A[63] = -37 
(where the rest of the input variables have the initial val- 
ues), to the fourth subgoal is also the solution to the test 
generation problem. 

V. DYNAMIC DATA FLOW BASED SEARCH 
In this section, we present a heuristic approach, based 

on dynamic data flow analysis, which can significantly 
speedup the search process presented in the previous sec- 
tion. It originated during experiments with a recently im- 
plemented prototype of the automated test data generation 
system TESTGEN [23]. 

For many programs the evaluation of the branch func- 
tion is the most time-consuming portion of the search. It 
is felt that it would be more efficient to keep the number 
of evaluations to a minimum. One of the most essential 
factors deciding about the reduction of branch function 
evaluations is the arrangement of input variables for con- 
sideration. For instance, the arrangement of input vari- 
ables in Example 1 is rather rigid and in a sense “blind.” 
It does not give any preference to a variable that has a 
very good chance of moving toward the solution quickly. 
For example, when subgoal 4 in Example 1 is considered, 
selection of variable high, as the first variable, will 
quickly lead to the solution. However, the “blind” rule 
requires that all array elements be evaluated before vari- 
able high is considered. It should be obvious that a dif- 
ferent arrangement of input variables for consideration can 
lead to the different performance of the search process. 
This is essential when we deal with programs with a large 
number of input variables, e.g., programs with large in- 
put arrays (hundreds or even thousands of array ele- 
ments). 

Thus, the important question arises as to which are the 
most promising input variables to explore. The approach 
which we propose in this paper is based on dynamic data 
flow analysis which allows determining those input vari- 
ables which are responsible for the current value of the 
branch function on the given program input. 

We now introduce the basic concepts of dynamic data 
flow analysis [21], [22], [2], that is, those concerned with 
data flow along the path which has been traversed during 
program execution. We shall later show how to use this 
information to guide the search process. 

* , nk, > be a path that is tra- 
versed on a program input x. A use of variable v in T is 
an instruction nk, in which this variable is referenced. A 
definition of variable v in T is an instruction nk, which 
assigns a value to that variable. Let u(nk , )  be a set of 
variables whose values are used in nk, and D( nk, ) be a set 
of variables whose values are defined in nk,.  To illustrate 
these concepts consider the following assignment instruc- 
tion 

Y: a [ i  + j ]  := b [ j  + 31 + U - a[k - 31; 

Let T = < nk , ,  nk2, 

at some point of program execution. Since it is possible 
to determine, by instrumentation, values of array indexes 
during program execution, we can determine which array 
elements are used or defined. For example, assume that 
i = 2, j = 3, and k = 4 just before Y is executed. In this 
case, the particular array elements b[6]  and a [  11 are 
used; also, the scalar variables v, i ,  j, and k are all used 
in Y. By the same token, the only variable defined in Y is 
array element a [ 5 1. 

In what folows we introduce the concept of data flow 
influence (dependence) between instructions in T. 

Dejinition I: Let nk,, and nk, be two instructions in T. 
We say that nk,, directly influences nk, by variable v ,  p < 
t, iff 

1) U E V ( n , , ) ,  
2) E D(nk,,) ,  and 
3) for all j ,  p < j < t ,  v @ D(nk,). 

This influence describes a situation where one instruc- 
tion assigns a value to an item of data and the other in- 
struction uses that value. The influences between instruc- 
tions in T can be represented graphically as an influence 
network, where each link between instructions represents 
direct influence between them. The example of an influ- 
ence subnetwork is presented in Fig. 2. In this subnet- 
work, for instance, instruction 3 directly influences in- 
struction 6 by variable max. 

Definition 2: We say that an input variable x, influences 
instruction nkr in T iff there is a sequence < n,,, nrz, 
. . .  , n,,, > of instructions from T such that: 

1) n,., is an input instruction which defines x , ,  

3) n,, directly influences n,.? by x , ,  and 
4) for all j ,  1 < j < w ,  there exists a variable U such 

From the influence subnetwork of Fig. 2 it is easy to 
determine that input variable A [ 391 influences instruction 
6 because input instruction 1 directly influences instruc- 
tion 3 by A [ 391 and instruction 3 directly influences in- 
struction 6 by variable max. By the same token, we can 
determine that input variables A [ 5 1 1, low, and step influ- 
ence test instruction 6. Consequently, these input vari- 
ables influence branch function F , ( x )  in subgoal 1 of Ex- 
ample 1. In the same manner, we can determine that input 
variables A [ 391, A [ 5 1 1, low, and step influence F2( x )  in 
subgoal 2; input variables A [ 391, A [ 63 1, low, and step 
influence F 3 ( x )  in subgoal 3; input variables high, low, 
and step influence branch function F 4 ( x )  in subgoal 4. 

This information can be used to speed up the search 
during the solution of subgoals by considering only those 
input variables which have influence on a given branch 
function. As a result, the possibility of a fruitless search 
can be significantly reduced. For instance, while solving 
the fourth subgoal, we are effectively removing two 
hundred (2*100) evaluations of branch function F 4 ( x ) ;  if 
the number of elements in A had been, for example, one 

2, nr,, = nkr- 

that n, directly influences n , ,  , by U .  
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INPUTVARIABLES: 

. A11001 

input(l0WJli~A) 

min:=A[low] P min:=A[39] */ 

max:=A[low] P max:=A[39] Y 

i:=low+step 

i <high 

max < A[i] P max:=A[Sl] */ 

V 
i L; means i directly influences j by v. 

Fig. 2.  The influence subnetwork for subpath P ,  from Example 1 

thousand then two thousand evaluations could have been 
saved. 

Further improvement of the search process can be 
gained by reducing the number of constraint violations. 
The difficulty with the search method, presented in the 
previous section, is that when repeatedly encountering a 
constraint violation it is necessary to reduce the size of a 
pattern step until the constraint is satisfied. After many 
such withdrawals the search will be quite slow. We can 
reduce the number of constraint violations during the 
search by finding those input variables which have mini- 
mal effect, or no effect at all, on the constraint, i.e., those 
input variables which have minimal or no influence on 
branch predicates of a successful subpath. For instance, 
while solving the third subgoal of Example 1 ,  input vari- 
able A[39] influences, in subpath P3, predicates of 
branches (6, 8) and (8, 10); input variables low and step 
influence predicates of branches ( 5 ,  6), (6, 8), (8, lo), 
and (5, 6); input variable A[63] does not influence any 
of the branch predicates in P 3 .  It is obvious that A [ 631 
should be selected as the first variable for consideration 
because changing A [ 63 J will not cause any constraint 
violation. Similarly, solving the fourth subgoal, variables 
low and step influence six branch predicates in P4, 
whereas variable high influences two branch predicates. 
Input variable high should be selected as a first variable 
to explore because by changing the value of high the risk 
of constraint violation is minimized. 

* , nk, > be a successful subpath 
of P on a given program input x. With every input vari- 
able xj which influences branch function F ( x )  of branch 
(nk,,  nk, + I ) associated is the integer r (xi), referred to as a 
risk factor, equal to the number of branch predicates in P’ 
which are influenced by xi.  On this basis, input variables 
influencing F ( x )  are sorted with respect to r ( x j )  in the 
ascending order. The major presumption of this heuristic 
is that the lower r (xi), the lower the risk of constraint 
violation while changing xi. 

Let P’ = < nkl, nkz, * 

Thus the input variables in Example 1 are arranged in 
the following way: 

This arrangement of input variables leads to the solu- 
tion in 21 trials (program executions). On the other hand, 
the “blind” arrangement of variables from Example 1 re- 
quires 497 trials to find the solution. 

During the search, special attention should be paid to 
input variables that influence array indexes, that is, those 
input variables that influence the selection of the array 
elements during program execution. For example, sup- 
pose that while solving the first subgoal in Example 1 in- 
put variables are ordered in the following way: low, 
A [ 391, A [ 5 1 ] , step, and suppose that during the explo- 
ration of variable low its value has been modified, e.g., 
low = 20. If the search continues from this point with 
input variable A [ 391, then the search will fail because 
A [ 391 and A [ 51 ] do not influence F , ( x )  any more. It is 
easy to see that array elements A[20] and A[32] now 
influence branch function F , ( x ) .  Therefore each time an 
input variable receives a new value and this variable in- 
fluences the index variable, a new set of input variables 
influencing a branch function should be derived. 

VI. DYNAMIC DATA STRUCTURES 
The next extension of the automated test data genera- 

tion involves records and pointers. Records provide a 
grouping facility for data items. A record is a collection 
of data items, each of which is said to occupy a “field” 
of the record. A distinct name is associated with each 
field, and access to individual items within a record is via 
these field identifiers. Consequently, every field in a rec- 
ord can be treated as a separate variable. 

Pointers, however, create unique problems since the 
pointer variable actually represents two variables: the 
pointer itself and the record pointed at. A nameless record 
of a given type is created by calling the standard proce- 
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dure new(p).  Storage is reserved for the record but no 
value is assigned to it. Once the dynamic record has been 
created, it can be referenced by pointers. 

In our approach, we treat every record, created dynam- 
ically by the Pascal procedure new, as a separate variable 
[9]. For this purpose, a list of dynamic records is created 
and manipulated during program execution. In this way, 
it is possible to determine not only which dynamic records 
are pointed to by pointer variables at every point of pro- 
gram execution, but also which fields in every dynamic 
record are referenced or modified. To distinguish between 
dynamic records, a unique name must be assigned to each 
of them. For the purpose of the presentation, the follow- 
ing notation will be used: rec;. The first execution of the 
new procedure assigns the name recl to the first dynamic 
record created. The next execution of new assigns the 
name rec2 to the next record. Every subsequent execution 
of new increases the value of i by one. In this manner, a 
unique name for every dynamic record is guaranteed. 
Consequently, every field in a dynamic record is uniquely 
identified by rec;.field-name. 

We now turn our attention to the question of how to 
generate test data in the presence of pointers. The search 
method based on dynamic data flow analysis and back- 
tracking will be illustrated in the following example. 

Example 2 

Consider the Pascal procedure FIND of Fig. 3. This 
procedure accepts as input an integer element y and a dy- 
namic data structure pointed to by pointer variable L. The 
goal of test data generation is to find a program input 
which will cause the traversal of the following path P = 
< s ,  1 , 2 , 3 , 4 , 7 , 8 , 3 , 4 , 7 , 9 , 3 , 4 , 5 , 6 , 3 > .  

One of the main problems of the test data generation, 
in this case, is to find a shape of the input data structure 
which will cause traversal of the selected path. In this 
example we assume that the search procedure doesn’t have 
any knowledge about the desired shape or a class of shapes 
of the input data structure (e.g., a binary tree, a double 
linked list, a directed graph etc). Since the only infor- 
mation available is the declaration part of the dynamic 
record, it is assumed that the input dynamic data structure 
is a directed graph. 

The brute force approach to find an input data structure 
would be to search systematiclaly through the space of all 
possible input data structure ‘‘shapes” until the solution 
is found. The search method presented in this paper yields 
the same answer with far fewer trials. Its basic idea is to 
use dynamic data flow analysis and backtracking. In this 
method, the goal of finding the input data structure to 
traverse a selected path is achieved by solving a sequence 
of subgoals, where subgoals are divided into two cate- 
gories: arithmetic and pointer subgoals. If the given 
subgoal is of arithmetic type then the branch function is 
constructed and the direct search method described in the 
previous section is applied. On the other hand, if the given 
subgoal is of pointer type, then the search procedure based 

%&Pointer = “Node; 
Node = record 

data : integer ; 
left : NodePointer ; 
right: NodePOitcr. 

ud; 

pmdm FIND (L: Nodcpointa; y: i n t e w ,  var q: NodePointer); 

p: NodePointer : 
var 

p:=L; 
2 q:=nil; 

pfi 
3 while p o nil do 

4 be$?y = p“.data then 
begin 

end 

5 q : = p ;  
6 p := nil; 

else 
7.8 if y < pA..data then p := p“.left 
9 else p : = f i g h t ;  

ad; 
end (FIND); 

Fig. 3 .  A sample Pascal procedure 

on dynamic data flow analysis and backtracking is ap- 
plied. 

A subgoal of pointer type, for instance the first subgoal, 
is solved by using, initially, dynamic data flow analysis 
to determine those input pointer variables which influence 
this subgoal (pointer branch predicate). Then the search 
procedure determines subgoal solution by systematically 
assigning possible values for those variables (note that a 
branch function cannot be constructed from the branch 
predicate of pointer type). When the first subgoal has been 
solved, the search procedure attempts to solve the next 
subgoal (if necessary). If the next subgoal cannot be 
solved within the constaints of the current solution of the 
first subgoal, then a new solution for the first subgoal is 
sought. Clearly, when it is realized at some point 
(subgoal) that a certain value of an input pointer variable 
can in no way lead to a solution, then the search procedure 
must backtrack to the previous subgoal to assign a new 
value to this input variable. If a new solution is found, 
again the search procedure attempts to solve the next 
subgoal, constrained of course by the new solution. The 
search procedure will continue attempting to solve the 
subgoals, backtracking again and again when necessary, 
until the solution to the main goal is found or no way to 
consistently solve the subgoals can be found. 

We now show, in more detail, how dynamic data flow 
analysis and backtracking are used to guide the process of 
finding the shape of the input data structure. Suppose that 
the following initial input has been generated: 

Y’5 

n i l n i l  

left right 

Procedure FIND from Fig. 3 is executed on this input, 
and the successful subpath P I  = < s, 1 ,2 ,  3 , 4 ,  7, 8, 3 > 
of P shown in Fig. 4 is traversed. 
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INPUT: 
recl 

data 

left right 
L 

1 

2 

3 

4 

ltC,.ldl ee P P  7 3 

Y 

p := L 

q := NI 

p <> nil 

y := p.data P y:=nc,.data */ 

y<p.daa  PYCreC,.data *I 

p := pA.left /* p:=rec ,.left */ 

p <> nil 

Fig. 4. The influence subnetwork for subpath P ,  from Example 2.  

The violation occurs on the second execution of branch 
(3, 4). The first subgoal is to find values for input vari- 
ables y, L, rec,.data, recl.left, and rec,.right such that PI 
is traversed and branch (3, 4) is taken. 

Dynamic data flow analysis (see Fig. 4) determines that 
recl .left influences the branch predicate of (3,4). It should 
be clear that the only meaningful values which can be as- 
signed to recl.left at this moment are nil and adr(rec,), 
where adr( recl) is an address of rec,. In addition, a new 
record rec2 can be created, and adr( rec2) can be assigned 
to rec2.1eft. For the sake of simplicity, we assume that the 
input data structure (directed graph) cannot contain a rec- 
ord pointing to itself. As a result, a new record rec2 is 
created and adr( rec2) is assigned to rec, .left. It should be 
noted that each time a new record is created by the search 
procedure, the nil-value is assigned to all pointer fields of 
the record and all integer (or real) fields receive random 
value. Thus rec2.data receives a random value 3; rec2.right 
and rec2.1eft receive nil-values. Consequently, the fol- 
lowing input data structure is created: 

. y =5 
recl 

Procedure FIND is executed on this input, and the fol- 
lowing successful subpath P, = < s, 1, 2, 3, 4, 7, 8, 3, 
4,  7, 9, 3 > of P is traversed. The violation occurs on the 

third execution of branch (3 ,4) .  The second subgoal is to 
find values for input variables y, L, rec, .data, rec, .left, 
recl .right, rec2.data, rec2.1eft, and rec2.right such that P2 
is traversed and branch (3, 4) is taken. 

Dynamic data flow analysis determines that rec2. right 
influences the branch predicate of (3, 4). The only values 
which can be assigned to rec2.right at this point are 
adr( recl ) or adr( rec,), where rec3 is a new dynamic rec- 
ord. In the first attempt the search procedure assigns 
adr( recl ) to rec2.right, and the following input data struc- 
ture is created: 

Procedure FIND is executed on this input, and the fol- 
lowing successful subpath Pi = < s, 1, 2, 3, 4, 7, 8, 3 ,  
4 ,  7 ,  9, 3, 4 > of P is traversed. The violation occurs on 
the execution of branch (4, 5). Since the branch predicate 
of branch (4, 5) contains an arithmetic expression, we can 
apply the search procedure described in the previous sec- 
tion to solve the third subgoal. However, this procedure 
fails to find the solution to this subgoal. It should be ob- 
vious that the selected path P cannot be traversed for this 
shape of the input data structure. For this reason, we have 
to backtrack to the second subgoal and assign the second 
possible value to rec2.right. Thus a new record rec3 is cre- 
ated and adr( rec3) is assigned to rec2.right; rec3.data re- 
ceives a random value 67. The following input data struc- 
ture is created: 

y =5 

"Fret' I 

rec3 
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Procedure FIND is executed, and the following suc- 
cessful subpath P3 = < s, 1, 2, 3, 4, 7, 8, 3, 4, 7, 9, 3, 
4 > of P is traversed. The violation occurs on the exe- 
cution of branch (4, 5). Let F 3 ( x )  be a branch function of 
branch (4, 5 ) ,  where values of F 3 ( x )  can be evaluated by 
the abs( y-p”.data) expression. Thus the third subgoal is 
to find a program input x such that F 3 ( x )  = 0 subject to 
the constraint: P; is traversed on x. 

Dynamic data flow analysis determines that input vari- 
ables rec3.data and y influence branch function F 3 ( x ) .  
Using the search procedure described in the previous sec- 
tion, the value of rec3.data can be found equal to 5 .  The 
following solution to the third subgoal is also the solution 
to the test data generation problem: 

y =5 b , 

I 

L 

VII. CONCLUSIONS 
The test data generation approach described in this pa- 

per is based on program execution, dynamic data flow 
analysis, and the function minimization methods. It has 
been shown that the test data generation problem can be 
reduced to a sequence of subgoals. Function minimization 
methods are used to solve these subgoals. Moreover, dy- 
namic data Row analysis is applied to speed up the search 
process by identifying those input variables that influence 
undesirable program behavior; as a result, the number of 
fruitless tries can be significantly reduced. The potential 
value of this approach is exhibited, for instance, by the 
fact that the efficiency of the search does not depend upon 
the size of input arrays. The approach of test data gener- 
ation has then been extended to programs with dynamic 
data structures, and the search method, which uses dy- 
namic data flow analysis and backtracking to determine 
the shape of the input dynamic data structure, has been 
presented. In the approach described in this paper, values 
of array indexes and pointers are known at each step of 
program execution, and this approach exploits this infor- 
mation to overcome difficulties of array and pointer han- 
dling in the process of test data generation. 

Several attempts to use “actual” program execution to 
derive test data has been reported in the literature [4], 
[26], [29]. One technique of test data generation for a 
selected path was described by Miller and Spooner [26]; 

this technique requires, in the first step, to find by hand a 
partial solution to the test data generation problem, in- 
volving all nonfloating-point input variables. On the basis 
of this partial solution, a straight-line program, which 
corresponds to the selected path, is derived from the orig- 
inal program. A real-valued function for the whole path 
is chosen which is negative when at least one of the branch 
predicates is false and positive when all the branch pred- 
icates are true. Test data are derived by executing the 
straight-line program and applying a numerical optimi- 
zation algorithm to maximize this function. No test data 
generator which uses this techniques has been reported. 
Another technique described by Benson [4] uses execut- 
able assertions in conjunction with optimum search al- 
gorithms in order to test program automatically. In this 
technique the error function, which relates the number of 
assertions violated during program execution to the values 
of the input variables, is introduced. The optimum search 
techniques are used to find the values of the input vari- 
ables for which the maximum number of assertions are 
violated. 

The approach presented in this paper makes no claim 
of optimality. It opens, rather, the way for a wide spec- 
trum of test data generation methods based on the pro- 
gram execution and dynamic data flow analysis. The main 
extensions should go into the generality and robustness of 
this approach for use in the real world. Moreover, to fully 
understand the power and limitations of the dynamic ap- 
proach of test data generation additional research is re- 
quired. We now highlight some directions for further re- 
search. 

A .  Static Analysis 

One direction of the further research is to incorporate 
static analysis (e.g., dependence analysis [5], [15], [20]) 
in the process of test data generation. For example, for 
the program of Fig. 1 static analysis can determine that 
input variables low, high, and step always influence pred- 
icate “i < high.” Consequently, there is no need to ap- 
ply dynamic data flow analysis (to determine influencing 
input variables) while solving subgoals related to this 
predicate. This can speed up the search, especially when 
there is a significant number of subgoals associated with 
this predicate along the selected path. In addition, static 
analysis can be used to reduce the amount of information 
recorded during program execution, which is required to 
perform dynamic data flow analysis, e.g., used/defined 
variables. For example, for subgoals associated with the 
predicate ” max < A [ i 1’’ in the program of Fig. 1, static 
analysis can determine that, in order to find the influenc- 
ing input variables, no recording of used/defined vari- 
ables in the “if min > A [ i 3 then min : = A [ i 1’’ state- 
ment is required. We should stress, however, that static 
analysis can be expensive, especially in the presence of 
procedures; therefore, more research is required to deter- 
mine a tradeoff between dynamic data flow analysis and 
static analysis in the test data generation process. 
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B. Symbolic Evaluation 
One of the problems of the dynamic approach of test 

data generation is its very limited ability to detect path 
infeasibility. If the selected path is infeasible and the in- 
feasibility is not detected, a large number of attempts can 
be performed before the search procedure terminates and 
a lot of effort can be wasted. Symbolic evaluation, on the 
other hand, is capable of detecting, to a certain extent, 
path infeasibility. We, therefore, believe that combina- 
tion of both techniques for test data generation can be ad- 
vantageous. For example, symbolic evaluation can be 
used to check path consistency before dynamic approach 
of test data generation is used. In addition, application of 
symbolic evaluation over mixtures of actual and symbolic 
data [ 171 in the test data generation process should be in- 
vestigated. 

C. Procedures 
To be of practical value, the dynamic approach of test 

data generation has to be extended to programs with pro- 
cedures. This does not seem to pose difficulties because 
it is possible by instrumentation to identify variables that 
are used or defined in a procedure call for the actual ex- 
ecution; as a result, dynamic data flow analysis can pre- 
cisely determine influencing input variables in the pres- 
ence of procedure calls. On the other hand, static analysis, 
in general case, fails to identify the used/defined variables 
in the procedure call. 
D. Global Optimization 

The function minimization algorithm applied in our ap- 
proach of test data generation is based on the direct search 
method published in [ 121, [ 131. One of the problems of 
this method is that it allows only to find a local minimum. 
In many cases this can prevent solving subgoals, espe- 
cially for branch functions with several local minimums. 
There exists an extensive research in the area of global 
optimization, e.g., [31], and several techniques have been 
developed to find a global optimum. The research is 
needed to investigate the application of those techniques 
in the dynamic approach of test data generation. 
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