
Miami: A]Hardware Software Co-Simulation Environment

Russell Klein
Mentor Graphics Corporation

Abstract

Increasing time to market pressures, greater dcsign
complexity and increasing software content are driving
systems designers to look towards new ways of
performing system validation. Hardware and software
design teams are using separate tools to develop difJerent
components that will work closely together in a system.
Combining these design environments holds the promise
offinding problems earlier in the design cycle. The key to
a successful integration of these technologies is to provide
sufficient performance to run reasonable amounts of
software.

This paper describes a system which integrates an event
driven hardware simulator with an instruction set
simulator. This system allows dynamic partitioning of the
code and data space between the hardware and software
simulators. This capability provides performance
sufficient for running software withoul sacrificing the
accuracy required by the hardware simulator.

Introduction

Systems designers are facing two trends in the
electronics industry: increasing design complexity and
increasing software content in those designs. These trends
are compounding the problems related to the integration of
the hardware and software. Toda:y, the hardware and
software that make up a complex embedded system need to
be validated as a system. Hardware simulators allow the
hardware to be validated, but they do not have sufficient
performance to allow software lo be validated. Running
software on a design in a hardware simulator will typically
run at about 10 instructions per second. The consequence
of this is that most designs are performed in a serial
fashion, that is, the hardware is designed, validated, and
prototyped. Then the software is debugged and integrated
on that prototype. The problem with this approach is that
once the hardware is prototyped any changes are expensive
and time consuming to implement.

A hardware software co-simulation environment
would alleviate this problem. There are a number of
systems that achieve higher performance by moving slome
or all of the code and data space of the program into the
software domain, partitioning the design. In this manner,
the memory references related to the reading and writing of

0-8186-7603-5/96 $5.00 0 1996 IEEE:
173

data in the software domain are not simulated in the
hardware simulator. Removing this work from the
hardware simulator can greatly improve the performance of
the system. The problem is that the effect of those
memory references cannot be seen in the hardware
simulation. While most of the time the presumption that
code and data references are uninteresting is correct, there
are times when all bus activity is significant from the
perspective of the hardware simulation.

We have developed a system, which we have internally
called "Miami", that maintains comparable levels of
performance but provides greater simulation accuracy. It
does this by allowing the designer to dynamically
repartition the memory. When memory references and
their effect is uninteresting, the designer can map those
memory references in the software domain. At a later time
in the same simulation, those memory references can be
re-mapped into the hardware domain. This allows the
designer to make trade-offs between the level of
performance and the level of detail in the hardware
simulation. This paper chronicles our experiments in
combining hardware and software simulators as we worked
towards developing this system.

HardwareISoftware Integration

The typical electronic system development project can
be divided into three major phases: system level design,
design and implementation, and system integration.
During the system level design the overall architecture of
the system is determined, and the system is partitioned out
into hardware and software components.

During the design and implementation phase of the
project, separate organizations address the hardware and
software components of the design. The hardware and
software design and implementation efforts typically start
at the same time and ideally end at the same time. In
reality, the software team is limited in what it can
complete without a physical prototype of the target
design. They can complete the high level design of the
software and do some of the algorithm development and
validation. Certainly, some of the software will be
independent of the underlying hardware, and can be
completed and tested outside of the context of the target
system. But the much of the debug and integration work
cannot even begin until a hardware prototype is available.

In theory, the integration phase is a final series of
checks prior to the shipment of the system. In practice, it
is the first time that the "completed" hardware and
independently developed software come together as a
system. At this time numerous issues surface, namely:
the effects of misinterpretations of interface definitions,
out-of-date specifications, and poorly communicated
changes.

As problems are uncovered in the integration phase,
developers look for the fastest and most inexpensive ways
to fix those problems. Given time and cost required to
change the hardware, problems are often fixed by changing
the software. Unfortunately, only so much can be done in
software and the functionality or performance goals of the
product may be compromised with a software patch.
Occasionally, there may be programmable logic elements
in the circuit that can be reprogrammed to work around
hardware problems, but again, this is working around the
problem, not fixing it.

To fix these problems without incurring the time and
expense of changing the hardware, these problems must be
discovered before hardware prototypes are created. To do
this the software must be run on the hardware while it is
still in simulation, that is, a virtual prototype. Two
things are necessary before virtual prototyping can be
accomplished. The first is the ability to simulate the
hardware at speeds sufficient to make software execution
feasible. I n most cases, this means that the overall
simulation performance must be increased by a factor of at
least 1000 over the current execution speeds of hardware
oriented simulation products. The second is the need to
bring the debug and development environments for the
hardware and software closer together. Hardware simulator
waveform traces do not provide a natural way for a
software engineer to debug high level code. The original
source form for both the software and hardware must be
maintained within a single unified debugging
environment.

Current Solutions

Today, the hardware designer has a hardware simulator,
such as VHDL or Verilog, that can emulate the behavior
of a given target design. The design is entered in a
hardware description language, or through a schematic
entry tool. The design consists of a set of component
models and their connectivity. Often, the microprocessor
or controller is modeled by using what is called a bus
functional model. The bus functional model does n o t
model the complete behavior of the microprocessor, but
just models the different bus cycles that the processor can
execute. The model is controlled by a script that directs it
to drive a given set of bus cycles against the design being
simulated. In this way the hardware designer can construct
a test that would, for example, write to and then read from
each of the memory components in the design.

To run software on the simulated design, the hardware
designer would need a fully functional model of the

processor. However, writing a program that completely
emulates the behavior of, say, a Pentium is a nearly
impossible task. To obtain a full functional model of a
processor, a device called a hardware modeler is most often
used. A hardware modeler is a device that contains much
of the circuitry of a semiconductor tester and is interfaced
to a hardware simulator. The hardware simulator passes to
the hardware modeler the values on the input pins of the
processor, the hardware modeler then drives these values
onto the input pins of the actual chip plugged into a
socket on the hardware modeler. The hardware modeler
samples the output pins of the actual processor and returns
these values to the hardware simulator. Modeling the
processor in this manner usually results in speeds of 1 to
10 instructions per second being executed on the simulated
design. This method is being described here because it will
be used as a point of comparison for some of our results
later in this paper.

The software designer has a compiler and a debugger
running on a general purpose computer for performing
software design and algorithm development. Often, an
instruction set simulator will be used for running
assembly and machine code and for determining software
performance at a gross level. These instruction set
simulators often have facilities for generating interrupts
and U 0 data streams to simulate the effects of the external
hardware of the target design. Instruction set simulators
run at speeds of ten thousand to several hundred thousand
instructions per second, based on their level of detail and
the performance of the host computer that they are being
run on.

The hardware simulator and the instruction set
simulator appear to provide an interesting opportunity for
integration. The remainder of this paper summarizes our
efforts in performing such an integration that meets the
requirements of virtual prototyping.

The Reference Design

We set out to determine the feasibility of constructing
a system that combined hardware and software simulation
capabilities, while providing a reasonable tradeoff between
performance and accuracy. We decided to build a prototype
system and characterize its performance and functionality
over a variety of conditions. To accurately assess the
performance, we would need a target design that could be
modeled both using this new approach and using
traditional modeling techniques. Ideally, we would also
have a working physical implementation that could be
used as a reference for functionality and performance.

In addition, the target design needed to meet a number
of criteria: we needed to be able to obtain or create a bus
functional model, a hardware model, and an instruction set
simulator (or as it is referred to through much of this
paper, an instruction set model). We also needed access to
a reasonable set of realistic software for the target design.
Given the requirement that realistic code be available for
the target system, it was obvious that a general purpose

174

computer would best meet our needs. With our resource
constraints, we decided to mlodel a 280 CP/M computer.
Creation of an instruction set model ablle to be integrated
into a hardware simulator could be completed fairly
quickly and easily. The team had access to a hardware
model for the 280 for perforrning traditional event (driven
simulations. The design was simple enough to be easily
understood andl implemented in simulation. Also, one of
team members had a Z80 based CP/M machine still in
working order, with significant amounts of commercial
software.

The Instruction Set Siminlator

The first task was to create an instruction set model
that could be integrated into a hardware simulation
environment. The primary molivation for writing this on
our own was that in the conlext of the hardware
simulation the instruction set model would need to be
advanced by one half clock cycle at a time, returniing the
thread of control to the hardware simulator between clock
events. Writing and validating the instruction set imodel
took about 6 weeks. The instruction sei model contained
rudimentary debug capabilities, displaying ranges of
memory and contents of registers, etc. Running on an HP-
735/99 workstation it ran at about 300,000 instructions
per second. The actual CP/M computer runs at about
40,000 instructions per second.

The next task was to get CP/M up and running in the
instruction set model. For this particular computer the
operating system was broken up into 4 sections. One that
was contained in a 16 K ROM in the computer, the others
were stored on the system tracks of the boot floppy disc.
The operating system executable images were extracted off
the CP/M machine and loadeld onto the instruction set
model that we had created. The. instruction set model was
modified so that it could properly handle keyboard input
and screen output. We placed traps at the operating system
entry points for these functions and redirected them
through the standard UNIX input and output streams. In
this manner we were able to1 "run" the virtual CP/M
machine using the keyboard and screen of the HP
workstation.

A cross compiler would have made life easier at this
point. We created a number of simple assembler test
programs that rnade calls into the operating system. The
goal was to validate that the instruction set simulator was
correctly running the operating systern. The programs
were assembled and run on tlhe CIWM machine and then
run in the instruction set model on the HP workstation
and the results compared. After about 2 weelks of
debugging and lesting we werle satisfied that the operating
system was being run in thla instruction set simulator
correctly. Finally, we added the Microsoft BASIC
language interpreter to the simulation. This gave us the
ability to quickly generate and run a wide variety of
programs on the virtual target. Being an interFreted
language, it would not require IUS to go through the

compile, link, and load steps that a compiler or assembler
would require.

Performance Results

At this point we integrated the instruction set model
into a bus interface model for the 280. The bus interface
model is the interface between the event driven simulator
and the instruction set model. It translates bus cycles and
other information from the instruction set model into pins
changes in the hardware simulator. It also captures
interrupts and other input pin stimulus from the circuit in
the hardware simulator and passes them to the instruction
set model. It has much of the same functionality of the
bus functional model described earlier, but it does not get
the bus cycles to be generated from a script, instead it gets
them from the instruction set model. In doing this we
moved the memory image for the target system out of the
instruction set model and into the memory instances of
the circuit in the hardware simulator. All memory and VO
accesses for the instruction set model were actually run
against the virtual prototype in the hardware simulator.

To evaluate the performance of the system we ran the
initial 10,452 instructions of the Microsoft BASIC
interpreter. It is difficult to say exactly what the software
is doing during this start-up period, as we did not have the
source code for this program. We do know that it makes
several hundred operating system calls, initializes some
data structures and prints the copyright banner for the
product. The copyright banner consists of 106 characters,
and consumes about 5000 instructions. The reason that we
limited our performance test to the initial 10,452
instructions is that the hardware modeler in our reference
design limits our total simulation to 256K evaluations of
the processor hardware model. Without going into too
much detail, a hardware modeler is limited by physical
pattern memory as to how many model evaluations can be
performed in a given simulation. These 10,452
instructions consume approximately 120,000 clock
cycles, the processor model is evaluated on each clock
edge, giving us 240,000 processor model evaluations in
our simulation.

We measured the performance of the integrated hardware
simulator and instruction set model to be 454 instructions
per second. (10,452 instructions in 23 seconds). Keeping
the software configuration exactly the same and replacing
the instruction set model/bus interface model with a
hardware model for the 280, we re-ran the simulation.
This configuration is typical of what engineers are
currently using the run software on simulated hardware. In
this configuration we measured the performance to be 1.3
instructions per second (10,452 instructions i n 8040
seconds). This is consistent with the performance that is
seen by most hardware engineers using this technique to
run software on hardware designs. Typically, CISC
processor designs run at 1 to 3 instructions per second and
RISC processor designs may run up to 10 or 15
instructions per second. It is the clocks per second in the

175

hardware simulation that remains somewhat proportional
to design size and complexity.

These performance numbers are interesting, but
somewhat academic, as the hardware design is
approximately 15 years old. We increased the hardware
content of the design artificially by adding approximately
140,000 ASIC library instances to the design. This is
comparable to adding about 500,000 gates of custom
hardware to the design. This brought the design to a level
of complexity comparable to the high end of what is
being designed today. When we did this, the performance
of the system using the instruction set model was reduced
to 32.5 instructions per second. The performance of the
hardware model system was reduced to 1.28 instructions
per second. These results were completely expected. From
this experiment we validated our assumption that a simple
integration of an instruction set simulator and a hardware
simulator is not sufficient for addressing the performance
requirements of virtual prototyping.

Even with a more efficient method of modeling the
processor, the hardware simulator remains the bottleneck.
Event driven hardware simulator performance is determined
by the number of events that need to be processed in the
simulation multiplied by the number of events per second
that the simulator can process. This is, of course, an
oversimplification, but to have a significant impact on the
overall simulation performance either the number of
events needs to be reduced, or the speed at which the
events are processed must be increased.

A Fixed Partition System

Our next experiment was to move all of the code and
data space for the target design into the instruction set
model. We had read about a number of systems that have
taken this approach to increasing the performance for this
type of integration. At the start of the simulation the
designer defines the addresses of memory space that will
be modeled in the hardware simulator and the addresses
that be modeled in the instruction set model. If a memory
access is in the space defined to be in the instruction set
model, then the access is completed, without advancing
the hardware simulator. The hardware simulator is only
advanced only when a bus cycle is used to access some
portion of the design simulated in hardware. This approach
effectively reduces the number events that the hardware
simulator must process for a given simulation. In this
configuration our simulation of the virtual CP/M
computer ran in excess of 10,000 instructions per second.

Although the software performance in this case was
impressive, the effect on the hardware simulation was
somewhat disconcerting. Instruction fetches and most data
references were completely eliminated from the hardware
simulation. Although code fetches are often uninteresting,
during certain critical points of simulation they can be
extremely important. This type of optimization works
well if the microprocessor is in control of the entire
system or the synchronization of the system is

accomplished through polling mechanisms initiated by the
processor. The example of the CP/M microcomputer
actually worked quite well, however had the keyboard been
serviced by hardware interrupts, the system may not have
worked at all. Further, removing some of the memory
accesses from the hardware simulation would significantly
distort the operation of the system through performance
critical code segments, such as a device driver.
Fundamentally, the problems that are most interesting to
observe with a tool like this are the ones that are distorted
the most by this type of optimization.

We realized that most of the time, memory accesses are
uninteresting. That is, exercising them on the virtual
prototype provides no additional insight into the
correctness of the design. However, at certain times in the
execution of the virtual prototype, the effect of any bus
cycle from the processor can be vitally important. A
successful tool will allow the designer the dynamically
define what bus cycles are executed against the design and
what bus cycles are optimized.

Miami Prototype

Our next experiment was to build a memory image
server. This program was designed to hold the memory
image for the design and serve it to either the hardware
simulator or the instruction set model. Keeping the data
for the target design in one place ensures that there will
not be out of date memory contents in either the hardware
simulator or the instruction set model. In the bus interface
model we defined 3 methods for the access of a bus cycle.
The first is to access the memory image server. This
access method makes the memory reference look like it is
contained internally to the instruction set processor, no
hardware simulation takes place on this type of access.
The second is to access the data from the memory image
server, and drive a null bus cycle. In this case, the data
transfer for the bus cycle is performed quickly, but the
hardware and software remain synchronized. The null bus
cycle is a cycle that executes the pin changes to acquire
the bus, but does not transfer data across it. The null cycle
holds the address and data buses for amount of time that it
would have taken to complete the data transfer. The third
access type is to run the bus cycle completely in the
hardware simulator on the virtual prototype. The bus
interface model was enhanced to allow the designer to run
these different access methods on different address spaces.
For example, memory access from Ox0000-0x00FF and
OxCOOO to OxFFFF could he run as complete bus cycles,
as this is where the device drivers and the operating
system are located, and addresses from Ox0100 to OxAOOO
could be run in the most optimal fashion, as this is the
application code. This "access map" can be dynamically
redefined as the simulation proceeds. As critical sections
of the simulation are reached, the map can be redefined to
drive all bus cycles and pin changes against the hardware
simulation.

176

The performance of the CPllM machine over our
standard section of code ranged from 452 instructions per
second for a configuration of running all of the bus cycles
through the hardware simulator to 15,867 instructicins per
second executing only the L I O cycles to the screen and
keyboard. Whiie running null bus cycles against the target
design to keep the hardware and software synchronized, but
accessing memories using the memory image server we
attained 1,534 iinstructions per second. Even with 500,000
gates of ASIC modeled as part of tlhe hardware simulation,
we were still able to reach speeds of 1,307 instructions per
second. An RTL representation of the ASIC would have
resulted in even greater performance. In other words, for
today's large designs this represents an increase in
performance of over 1000 limes faster than current
hardware simulation technology.

External Interfaces

Our next step was to generalize this solution, to allow
it to be tested against a wider variety of designs. One of
the critical problems that we faced was the creation of
instruction set models. It seerned fbolish to recreate these
for each microprocessor or controller that we were
interested in modeling, when the,y are readily available
commercially. The crux of the problem was that we
needed the instruction set models to advance by one half
clock cycle and then return the control thread lo the
hardware simulator. Most instruction set modells are
written to advance at least one instruction at a time, and to
keep the thread of control. Existing APIs did not provide
enough information or control to allow the type of
integration that we required.

One of the ideas that we had for solving this problem
was to run the instruction set model as a separate process,
using an IPC communication channel to pass bus cycles
and data between the instruction set simulator and the bus
interface model. In doing this, we were able to separaie the
clock cycle accurate requirements of the hardware
simulation from the typic ally bus cycle accurate
instruction set models. Interrupts processed on bus cycle
boundaries are handled rather naturally, as a return status
from the bus cycle as it is completed. Additional
mechanisms were put in placle to handle those interrupts
that need to be serviced during thle prcicessing of a bus
cycle. The development of this API was central to the
continuation of the project Interestingly, it is very
different from any API that we had seen in any instruction
set model. This API may be ithe topic of a future paper,
and clearly represents an opportunity for standardizatiton.

The concepts of this API were validated by taking the
gnu 2-8000 instruction set model and modifying it to run
with in our virtual prototyping tool. These modifications
were successful and we had a simple Z-8000 design up and
running as a virtual prototype in a few weeks. This
integration did not require a wholesale rewrite of the
instruction set simulator, but irequired some simple code
changes in seveiral key areas. Oiur 280 example was, also

rewritten to use this interface. The performance using this
API was comparable to the performance numbers reported
earlier.

The latest and most ambitious development in this
project was to incorporate a commercial instruction set
simulator and symbolic debugger into our system. Since
the API requires modification of the instruction set
simulator, we would need the cooperation of a software
tools development company. Our idea was presented to
several embedded software tools companies. Through a
business alliance, we ultimately performed this integration
with the X-RAY simulator and debugger from Microtec
Research Incorporated. The integration proved to be fairly
easy and is currently being tested.

Our next step in the project is to run this tool on
several commercial designs. We are working with various
partners to acquire these designs. The results obtained
from the work we have done so far has been very
encouraging. But the proof will be running this tool on
state of the art designs in a commercial environment. By
the time this paper is presented, we expect to able to
discuss some of our results in this area

Conclusion

Trends in the embedded systems market: time to market
pressures, increasing software content, and increasing
design complexity are driving designers to look at new
ways of validating their systems. We all know about the
studies that show how much more expensive it is to fix a
problem later in a project. Virtual prototyping offers the
promise of finding integration problems much sooner in
the design cycle. Integrating hardware and software design
tools will provide this functionality. Our experiments
have shown that a simple integration between a hardware
simulator and an instruction set simulation is inadequate
in terms of software simulation performance. The obvious
performance optimization, removing code space from the
hardware simulation, allows functional verification of
some types of systems, but is quite limited in terms of
hardware debug and analysis. Our system, that gives the
designer the ability to make the trade-offs between detail
and performance at different times during the simulation,
offers an opportunity for performing virtual prototyping.

177

