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Abstract 

Increasing time to market pressures, greater dcsign 
complexity and increasing software content are driving 
systems designers to look towards new ways of 
performing system validation. Hardware and software 
design teams are using separate tools to develop difJerent 
components that will work closely together in a system. 
Combining these design environments holds the promise 
offinding problems earlier in the design cycle. The key to 
a successful integration of these technologies is to provide 
sufficient performance to run reasonable amounts of 
software. 

This paper describes a system which integrates an event 
driven hardware simulator with an instruction set 
simulator. This system allows dynamic partitioning of the 
code and data space between the hardware and software 
simulators. This capability provides performance 
sufficient for  running software withoul sacrificing the 
accuracy required by the hardware simulator. 

Introduction 

Systems designers are facing two trends in the 
electronics industry: increasing design complexity and 
increasing software content in those designs. These trends 
are compounding the problems related to the integration of 
the hardware and software. Toda:y, the hardware and 
software that make up a complex embedded system need to 
be validated as a system. Hardware simulators allow the 
hardware to be validated, but they do not have sufficient 
performance to allow software lo be validated. Running 
software on a design in a hardware simulator will typically 
run at about 10 instructions per second. The consequence 
of this is that most designs are performed in a serial 
fashion, that is, the hardware is designed, validated, and 
prototyped. Then the software is debugged and integrated 
on that prototype. The problem with this approach is that 
once the hardware is prototyped any changes are expensive 
and time consuming to implement. 

A hardware software co-simulation environment 
would alleviate this problem. There are a number of 
systems that achieve higher performance by moving slome 
or all of the code and data space of the program into the 
software domain, partitioning the design. In this manner, 
the memory references related to the reading and writing of 
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data in the software domain are not simulated in the 
hardware simulator. Removing this work from the 
hardware simulator can greatly improve the performance of 
the system. The problem is that the effect of those 
memory references cannot be seen in the hardware 
simulation. While most of the time the presumption that 
code and data references are uninteresting is correct, there 
are times when all bus activity is significant from the 
perspective of the hardware simulation. 

We have developed a system, which we have internally 
called "Miami", that maintains comparable levels of 
performance but provides greater simulation accuracy. It 
does this by allowing the designer to dynamically 
repartition the memory. When memory references and 
their effect is uninteresting, the designer can map those 
memory references in the software domain. At a later time 
in the same simulation, those memory references can be 
re-mapped into the hardware domain. This allows the 
designer to make trade-offs between the level of 
performance and the level of detail in the hardware 
simulation. This paper chronicles our experiments in 
combining hardware and software simulators as we worked 
towards developing this system. 

HardwareISoftware Integration 

The typical electronic system development project can 
be divided into three major phases: system level design, 
design and implementation, and system integration. 
During the system level design the overall architecture of 
the system is determined, and the system is partitioned out 
into hardware and software components. 

During the design and implementation phase of the 
project, separate organizations address the hardware and 
software components of the design. The hardware and 
software design and implementation efforts typically start 
at the same time and ideally end at the same time. In 
reality, the software team is limited in what it can 
complete without a physical prototype of the target 
design. They can complete the high level design of the 
software and do some of the algorithm development and 
validation. Certainly, some of the software will be 
independent of the underlying hardware, and can be 
completed and tested outside of the context of the target 
system. But the much of the debug and integration work 
cannot even begin until a hardware prototype is available. 



In theory, the integration phase is a final series of 
checks prior to the shipment of the system. In practice, it 
is the first time that the "completed" hardware and 
independently developed software come together as a 
system. At this time numerous issues surface, namely: 
the effects of misinterpretations of interface definitions, 
out-of-date specifications, and poorly communicated 
changes. 

As problems are uncovered in the integration phase, 
developers look for the fastest and most inexpensive ways 
to fix those problems. Given time and cost required to 
change the hardware, problems are often fixed by changing 
the software. Unfortunately, only so much can be done in 
software and the functionality or performance goals of the 
product may be compromised with a software patch. 
Occasionally, there may be programmable logic elements 
in the circuit that can be reprogrammed to work around 
hardware problems, but again, this is working around the 
problem, not fixing it. 

To fix these problems without incurring the time and 
expense of changing the hardware, these problems must be 
discovered before hardware prototypes are created. To do 
this the software must be run on the hardware while it is 
still in simulation, that is, a virtual prototype. Two 
things are necessary before virtual prototyping can be 
accomplished. The first is the ability to simulate the 
hardware at speeds sufficient to make software execution 
feasible. I n  most cases, this means that the overall 
simulation performance must be increased by a factor of at 
least 1000 over the current execution speeds of hardware 
oriented simulation products. The second is the need to 
bring the debug and development environments for the 
hardware and software closer together. Hardware simulator 
waveform traces do not provide a natural way for a 
software engineer to debug high level code. The original 
source form for both the software and hardware must be 
maintained within a single unified debugging 
environment. 

Current Solutions 

Today, the hardware designer has a hardware simulator, 
such as VHDL or Verilog, that can emulate the behavior 
of a given target design. The design is entered in a 
hardware description language, or through a schematic 
entry tool. The design consists of a set of component 
models and their connectivity. Often, the microprocessor 
or controller is modeled by using what is called a bus 
functional model. The bus functional model does n o t  
model the complete behavior of the microprocessor, but 
just models the different bus cycles that the processor can 
execute. The model is controlled by a script that directs it 
to drive a given set of bus cycles against the design being 
simulated. In this way the hardware designer can construct 
a test that would, for example, write to and then read from 
each of the memory components in the design. 

To run software on the simulated design, the hardware 
designer would need a fully functional model of the 

processor. However, writing a program that completely 
emulates the behavior of, say, a Pentium is a nearly 
impossible task. To obtain a full functional model of a 
processor, a device called a hardware modeler is most often 
used. A hardware modeler is a device that contains much 
of the circuitry of a semiconductor tester and is interfaced 
to a hardware simulator. The hardware simulator passes to 
the hardware modeler the values on the input pins of the 
processor, the hardware modeler then drives these values 
onto the input pins of the actual chip plugged into a 
socket on the hardware modeler. The hardware modeler 
samples the output pins of the actual processor and returns 
these values to the hardware simulator. Modeling the 
processor in this manner usually results in speeds of 1 to 
10 instructions per second being executed on the simulated 
design. This method is being described here because it will 
be used as a point of comparison for some of our results 
later in this paper. 

The software designer has a compiler and a debugger 
running on a general purpose computer for performing 
software design and algorithm development. Often, an 
instruction set simulator will be used for running 
assembly and machine code and for determining software 
performance at a gross level. These instruction set 
simulators often have facilities for generating interrupts 
and U 0  data streams to simulate the effects of the external 
hardware of the target design. Instruction set simulators 
run at speeds of ten thousand to several hundred thousand 
instructions per second, based on their level of detail and 
the performance of the host computer that they are being 
run on. 

The hardware simulator and the instruction set 
simulator appear to provide an interesting opportunity for 
integration. The remainder of this paper summarizes our 
efforts in performing such an integration that meets the 
requirements of virtual prototyping. 

The Reference Design 

We set out to determine the feasibility of constructing 
a system that combined hardware and software simulation 
capabilities, while providing a reasonable tradeoff between 
performance and accuracy. We decided to build a prototype 
system and characterize its performance and functionality 
over a variety of conditions. To accurately assess the 
performance, we would need a target design that could be 
modeled both using this new approach and using 
traditional modeling techniques. Ideally, we would also 
have a working physical implementation that could be 
used as a reference for functionality and performance. 

In addition, the target design needed to meet a number 
of criteria: we needed to be able to obtain or create a bus 
functional model, a hardware model, and an instruction set 
simulator (or as it is referred to through much of this 
paper, an instruction set model). We also needed access to 
a reasonable set of realistic software for the target design. 
Given the requirement that realistic code be available for 
the target system, it was obvious that a general purpose 
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computer would best meet our needs. With our resource 
constraints, we decided to mlodel a 280 CP/M computer. 
Creation of an instruction set model ablle to be integrated 
into a hardware simulator could be completed fairly 
quickly and easily. The team had access to a hardware 
model for the 280 for perforrning traditional event (driven 
simulations. The design was simple enough to be easily 
understood andl implemented in simulation. Also, one of 
team members had a Z80 based CP/M machine still in 
working order, with significant amounts of commercial 
software. 

The Instruction Set Siminlator 

The first task was to create an instruction set model 
that could be integrated into a hardware simulation 
environment. The primary molivation for writing this on 
our own was that in the conlext of the hardware 
simulation the instruction set model would need to be 
advanced by one half clock cycle at a time, returniing the 
thread of control to the hardware simulator between clock 
events. Writing and validating the instruction set imodel 
took about 6 weeks. The instruction sei model contained 
rudimentary debug capabilities, displaying ranges of 
memory and contents of registers, etc. Running on an HP- 
735/99 workstation it ran at about 300,000 instructions 
per second. The actual CP/M computer runs at about 
40,000 instructions per second. 

The next task was to get CP/M up and running in the 
instruction set model. For this particular computer the 
operating system was broken up into 4 sections. One that 
was contained in a 16 K ROM in the computer, the others 
were stored on the system tracks of the boot floppy disc. 
The operating system executable images were extracted off 
the CP/M machine and loadeld onto the instruction set 
model that we had created. The. instruction set model was 
modified so that it could properly handle keyboard input 
and screen output. We placed traps at the operating system 
entry points for these functions and redirected them 
through the standard UNIX input and output streams. In 
this manner we were able to1 "run" the virtual CP/M 
machine using the keyboard and screen of the HP 
workstation. 

A cross compiler would have made life easier at this 
point. We created a number of simple assembler test 
programs that rnade calls into the operating system. The 
goal was to validate that the instruction set simulator was 
correctly running the operating systern. The programs 
were assembled and run on tlhe CIWM machine and then 
run in the instruction set model on the HP workstation 
and the results compared. After about 2 weelks of 
debugging and lesting we werle satisfied that the operating 
system was being run in thla instruction set simulator 
correctly. Finally, we added the Microsoft BASIC 
language interpreter to the simulation. This gave us the 
ability to quickly generate and run a wide variety of 
programs on the virtual target. Being an interFreted 
language, it would not require IUS to go through the 

compile, link, and load steps that a compiler or assembler 
would require. 

Performance Results 

At this point we integrated the instruction set model 
into a bus interface model for the 280. The bus interface 
model is the interface between the event driven simulator 
and the instruction set model. It translates bus cycles and 
other information from the instruction set model into pins 
changes in the hardware simulator. It also captures 
interrupts and other input pin stimulus from the circuit in 
the hardware simulator and passes them to the instruction 
set model. It has much of the same functionality of the 
bus functional model described earlier, but it does not get 
the bus cycles to be generated from a script, instead it gets 
them from the instruction set model. In doing this we 
moved the memory image for the target system out of the 
instruction set model and into the memory instances of 
the circuit in the hardware simulator. All memory and VO 
accesses for the instruction set model were actually run 
against the virtual prototype in the hardware simulator. 

To evaluate the performance of the system we ran the 
initial 10,452 instructions of the Microsoft BASIC 
interpreter. It is difficult to say exactly what the software 
is doing during this start-up period, as we did not have the 
source code for this program. We do know that it makes 
several hundred operating system calls, initializes some 
data structures and prints the copyright banner for the 
product. The copyright banner consists of 106 characters, 
and consumes about 5000 instructions. The reason that we 
limited our performance test to the initial 10,452 
instructions is that the hardware modeler in our reference 
design limits our total simulation to 256K evaluations of 
the processor hardware model. Without going into too 
much detail, a hardware modeler is limited by physical 
pattern memory as to how many model evaluations can be 
performed in a given simulation. These 10,452 
instructions consume approximately 120,000 clock 
cycles, the processor model is evaluated on each clock 
edge, giving us 240,000 processor model evaluations in 
our simulation. 

We measured the performance of the integrated hardware 
simulator and instruction set model to be 454 instructions 
per second. (10,452 instructions in 23 seconds). Keeping 
the software configuration exactly the same and replacing 
the instruction set model/bus interface model with a 
hardware model for the 280, we re-ran the simulation. 
This configuration is typical of what engineers are 
currently using the run software on simulated hardware. In 
this configuration we measured the performance to be 1.3 
instructions per second (10,452 instructions i n  8040 
seconds). This is consistent with the performance that is 
seen by most hardware engineers using this technique to 
run software on hardware designs. Typically, CISC 
processor designs run at 1 to 3 instructions per second and 
RISC processor designs may run up to 10 or 15 
instructions per second. It is the clocks per second in the 
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hardware simulation that remains somewhat proportional 
to design size and complexity. 

These performance numbers are interesting, but 
somewhat academic, as the hardware design is 
approximately 15 years old. We increased the hardware 
content of the design artificially by adding approximately 
140,000 ASIC library instances to the design. This is 
comparable to adding about 500,000 gates of custom 
hardware to the design. This brought the design to a level 
of complexity comparable to the high end of what is 
being designed today. When we did this, the performance 
of the system using the instruction set model was reduced 
to 32.5 instructions per second. The performance of the 
hardware model system was reduced to 1.28 instructions 
per second. These results were completely expected. From 
this experiment we validated our assumption that a simple 
integration of an instruction set simulator and a hardware 
simulator is not sufficient for addressing the performance 
requirements of virtual prototyping. 

Even with a more efficient method of modeling the 
processor, the hardware simulator remains the bottleneck. 
Event driven hardware simulator performance is determined 
by the number of events that need to be processed in the 
simulation multiplied by the number of events per second 
that the simulator can process. This is, of course, an 
oversimplification, but to have a significant impact on the 
overall simulation performance either the number of 
events needs to be reduced, or the speed at which the 
events are processed must be increased. 

A Fixed Partition System 

Our next experiment was to move all of the code and 
data space for the target design into the instruction set 
model. We had read about a number of systems that have 
taken this approach to increasing the performance for this 
type of integration. At the start of the simulation the 
designer defines the addresses of memory space that will 
be modeled in the hardware simulator and the addresses 
that be modeled in the instruction set model. If a memory 
access is in the space defined to be in the instruction set 
model, then the access is completed, without advancing 
the hardware simulator. The hardware simulator is only 
advanced only when a bus cycle is used to access some 
portion of the design simulated in hardware. This approach 
effectively reduces the number events that the hardware 
simulator must process for a given simulation. In  this 
configuration our simulation of the virtual CP/M 
computer ran in excess of 10,000 instructions per second. 

Although the software performance in this case was 
impressive, the effect on the hardware simulation was 
somewhat disconcerting. Instruction fetches and most data 
references were completely eliminated from the hardware 
simulation. Although code fetches are often uninteresting, 
during certain critical points of simulation they can be 
extremely important. This type of optimization works 
well if the microprocessor is in control of the entire 
system or the synchronization of the system is 

accomplished through polling mechanisms initiated by the 
processor. The example of the CP/M microcomputer 
actually worked quite well, however had the keyboard been 
serviced by hardware interrupts, the system may not have 
worked at all. Further, removing some of the memory 
accesses from the hardware simulation would significantly 
distort the operation of the system through performance 
critical code segments, such as a device driver. 
Fundamentally, the problems that are most interesting to 
observe with a tool like this are the ones that are distorted 
the most by this type of optimization. 

We realized that most of the time, memory accesses are 
uninteresting. That is, exercising them on the virtual 
prototype provides no additional insight into the 
correctness of the design. However, at certain times in the 
execution of the virtual prototype, the effect of any bus 
cycle from the processor can be vitally important. A 
successful tool will allow the designer the dynamically 
define what bus cycles are executed against the design and 
what bus cycles are optimized. 

Miami Prototype 

Our next experiment was to build a memory image 
server. This program was designed to hold the memory 
image for the design and serve it to either the hardware 
simulator or the instruction set model. Keeping the data 
for the target design in one place ensures that there will 
not be out of date memory contents in either the hardware 
simulator or the instruction set model. In the bus interface 
model we defined 3 methods for the access of a bus cycle. 
The first is to access the memory image server. This 
access method makes the memory reference look like it is 
contained internally to the instruction set processor, no 
hardware simulation takes place on this type of access. 
The second is to access the data from the memory image 
server, and drive a null bus cycle. In this case, the data 
transfer for the bus cycle is performed quickly, but the 
hardware and software remain synchronized. The null bus 
cycle is a cycle that executes the pin changes to acquire 
the bus, but does not transfer data across it. The null cycle 
holds the address and data buses for amount of time that it 
would have taken to complete the data transfer. The third 
access type is to run the bus cycle completely in the 
hardware simulator on the virtual prototype. The bus 
interface model was enhanced to allow the designer to run 
these different access methods on different address spaces. 
For example, memory access from Ox0000-0x00FF and 
OxCOOO to OxFFFF could he run as complete bus cycles, 
as this is where the device drivers and the operating 
system are located, and addresses from Ox0100 to OxAOOO 
could be run in the most optimal fashion, as this is the 
application code. This "access map" can be dynamically 
redefined as the simulation proceeds. As critical sections 
of the simulation are reached, the map can be redefined to 
drive all bus cycles and pin changes against the hardware 
simulation. 
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The performance of the CPllM machine over our 
standard section of code ranged from 452 instructions per 
second for a configuration of running all of the bus cycles 
through the hardware simulator to 15,867 instructicins per 
second executing only the L I O  cycles to the screen and 
keyboard. Whiie running null bus cycles against the target 
design to keep the hardware and software synchronized, but 
accessing memories using the memory image server we 
attained 1,534 iinstructions per second. Even with 500,000 
gates of ASIC modeled as part of tlhe hardware simulation, 
we were still able to reach speeds of 1,307 instructions per 
second. An RTL representation of the ASIC would have 
resulted in even greater performance. In  other words, for 
today's large designs this represents an increase in 
performance of over 1000 limes faster than current 
hardware simulation technology. 

External Interfaces 

Our next step was to generalize this solution, to allow 
it to be tested against a wider variety of designs. One of 
the critical problems that we faced was the creation of 
instruction set models. It seerned fbolish to recreate these 
for each microprocessor or controller that we were 
interested in modeling, when the,y are readily available 
commercially. The crux of the problem was that we 
needed the instruction set models to advance by one half 
clock cycle and then return the control thread lo the 
hardware simulator. Most instruction set modells are 
written to advance at least one instruction at a time, and to 
keep the thread of control. Existing APIs did not provide 
enough information or control to allow the type of 
integration that we required. 

One of the ideas that we had for solving this problem 
was to run the instruction set model as a separate process, 
using an IPC communication channel to pass bus cycles 
and data between the instruction set simulator and the bus 
interface model. In doing this, we were able to separaie the 
clock cycle accurate requirements of the hardware 
simulation from the typic ally bus cycle accurate 
instruction set models. Interrupts processed on bus cycle 
boundaries are handled rather naturally, as a return status 
from the bus cycle as it is completed. Additional 
mechanisms were put in placle to handle those interrupts 
that need to be serviced during thle prcicessing of a bus 
cycle. The development of this API was central to the 
continuation of the project Interestingly, it is very 
different from any API that we had seen in any instruction 
set model. This API may be ithe topic of a future paper, 
and clearly represents an opportunity for standardizatiton. 

The concepts of this API were validated by taking the 
gnu 2-8000 instruction set model and modifying it to run 
with in our virtual prototyping tool. These modifications 
were successful and we had a simple Z-8000 design up and 
running as a virtual prototype in a few weeks. This 
integration did not require a wholesale rewrite of the 
instruction set simulator, but irequired some simple code 
changes in seveiral key areas. Oiur 280 example was, also 

rewritten to use this interface. The performance using this 
API was comparable to the performance numbers reported 
earlier. 

The latest and most ambitious development in this 
project was to incorporate a commercial instruction set 
simulator and symbolic debugger into our system. Since 
the API requires modification of the instruction set 
simulator, we would need the cooperation of a software 
tools development company. Our idea was presented to 
several embedded software tools companies. Through a 
business alliance, we ultimately performed this integration 
with the X-RAY simulator and debugger from Microtec 
Research Incorporated. The integration proved to be fairly 
easy and is currently being tested. 

Our next step in the project is to run this tool on 
several commercial designs. We are working with various 
partners to acquire these designs. The results obtained 
from the work we have done so far has been very 
encouraging. But the proof will be running this tool on 
state of the art designs in a commercial environment. By 
the time this paper is presented, we expect to able to 
discuss some of our results in this area 

Conclusion 

Trends in the embedded systems market: time to market 
pressures, increasing software content, and increasing 
design complexity are driving designers to look at new 
ways of validating their systems. We all know about the 
studies that show how much more expensive it is to fix a 
problem later in a project. Virtual prototyping offers the 
promise of finding integration problems much sooner in 
the design cycle. Integrating hardware and software design 
tools will provide this functionality. Our experiments 
have shown that a simple integration between a hardware 
simulator and an instruction set simulation is inadequate 
in terms of software simulation performance. The obvious 
performance optimization, removing code space from the 
hardware simulation, allows functional verification of 
some types of systems, but is quite limited in terms of 
hardware debug and analysis. Our system, that gives the 
designer the ability to make the trade-offs between detail 
and performance at different times during the simulation, 
offers an opportunity for performing virtual prototyping. 
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