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Abstract: Hardware/software systems are embedded in devices used to enable all manner of tasks
in society today. The increasing use of hardware=software systems in cost-critical and life-critical
applications has led to the heightened significance of design correctness of these systems.
A summary is presented of research in hardware=software covalidation. The general covalidation
problem involves the verification of design correctness using simulation-based techniques. The
focus is on the test generation process, the fault models and fault coverage analysis techniques, and
the test response analysis techniques employed in covalidation. The current state of research in the
field is summarised and future areas for research are identified.

1 Introduction

A hardware=software system can be defined as one in which
hardware and software must be designed together, and must
interact to properly implement system functionality Hard-
ware=software systems are built from a wide range of
hardware and software components which are associated
with different trade-offs in design characteristics, such as
performance, area and reliability. Typical hardware com-
ponents include application-specific integrated circuits
(ASICs), application-specific instruction processors
(ASIPs), general purpose microprocessors and field-pro-
grammable gate arrays (FPGAs). Software components
generally vary in the abstraction of the programming
language used, including compiled language components
(C, Cþþ), interpreted language components (Java, Visual
Basic) and script language components (Perl, Javascript,
csh). A system design containing multiple subordinate
behaviours can be designed most efficiently by mapping the
subordinate behaviours to hardware and software com-
ponents appropriately. For example, an internet appliance
might require complex signal processing for real-time video
coding, as well as a graphic user interface which can interact
with other components via the internet. Such a system could
be designed efficiently by using an ASIC to perform the
complex signal processing in realtime, while using a Java
program to implement the control logic and user interface,
allowing interaction through the Internet. By using hard-
ware and software together, it is possible to satisfy varied
design constraints which could not be met using either
technology separately. It is for this reason that the use of
hardware=software systems is so common today, and is
expected to increase in the future.

The widespread use of these systems in cost-critical and
life-critical applications motivates the need for a systematic
approach to verify functionality. Several obstacles to the
verification of hardware=software systems make this a

challenging problem, necessitating a major research effort.
One issue is the high complexity of hardware=software
systems which derives from both the size and the
heterogeneous nature of the designs. Hardware verification
complexity has increased to the point that it dominates the
cost of design. In order to manage the complexity of the
problem, many researchers are investigating covalidation
techniques, in which functionality is verified by simulating
(or emulating) a system description with a given test input
sequence. In contrast, formal verification techniques have
been explored which verify functionality by using formal
techniques (i.e. model checking, equivalence checking,
automatic theorem proving) to precisely evaluate properties
of the design. The tractability of covalidation makes it the
only practical solution for many real designs.

Figure 1 shows how covalidation fits into a generic
hardware=software codesign flow. The codesign flow
shown in Fig. 1 closely matches the flow proposed in [1],
but covalidation is integrated in a similar manner into any
codesign flow. The flow shown in Fig. 1 starts with a high-
level specification and produces a partially refined design
which can be completed by software compilation and
behavioural hardware synthesis. Covalidation is performed
after each design refinement step to guarantee that synthesis
has produced a correct design. If the design is correct then
the synthesis process continues, otherwise the previous
synthesis step must be modified to correct any problems.

An outline of the steps involved in the covalidation process
is shown in Fig. 2. Covalidation involves three major steps:
test generation, cosimulation, and test response evaluation.
The test generation process typically involves a loop inwhich
the test sequence is progressively evaluated and refined until
coverage goals are met. Cosimulation (or emulation) is then
performed using the resulting test sequence, and the
cosimulation test responses are evaluated for correctness.
A key component of test generation is the covalidation fault
model, which abstractly describes the expected faulty
behaviours. The fault model is needed to provide fault
detection goals for the automatic test generation process, and
the fault model enables the fault detection qualities of a test
sequence to be evaluated. Test response evaluation is also a
bottleneck because it typically requires manual computation
of correct responses for all test stimuli.

Several features of the hardware=software problem make
it unique and difficult. Each covalidation technique
addresses these issues to different degrees.
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. Globally asynchronous locally synchronous (GALS)
systems: The complexity of hardware=software systems
results in implementations which are composed of several
globally asynchronous clock domains, implemented on one
chip or across several chips. Sophisticated communication
between domains requires an emphasis on interface design
and validation.
. Component reuse: Component reuse is an established
design paradigm in the hardware domain (i.e. core logic
blocks) and in the software domain (i.e. library functions=
classes, design patterns). The use of predesigned and
prevalidated components reduces the need for unit testing,
while increasing the relative importance of interface testing,
focusing on the interactions between components.
. Varied design styles: Hardware=software systems are
built from a wide range of different types of components,
each representing different design quality trade-offs and
requiring different design styles. For example, a software
designer may use an object-oriented design style which
abstracts detail, a hardware designer may mix top-down
design with bottom-up. The nature of the design defects will
depend on the design style and fault models may need to be
developed to match the design style.

. Varied design abstraction levels: Hardware=software
components are described at a variety of abstraction levels
to match the need for design quality and flexibility.
Although multiple abstraction levels are used, the beha-
vioural abstraction is most often used to describe the total
system specification because it is common to both hardware
and software. Mixed-level simulation techniques are needed
to characterise the behaviour of these complex systems.
Fault models and test pattern generation algorithms must be
applicable to designs represented at different abstraction
levels.

In this survey we summarise research in the stages of
covalidation involved with test generation, test response
evaluation and the fault models which support the
covalidation process.

2 Cosimulation techniques

Cosimulation is the process of simulating disparate design
models together as a single system. The term ‘cosimulation’
has been used very broadly to encompass the simulation of
not only electrical systems but also of mechanical and even
biochemical systems. In this paper we will limit our
definition to electrical hardware=software systems.

The challenge of cosimulation is the efficient and
accurate management of the interaction between com-
ponents which are described with very different compu-
tational models. Excellent simulation techniques exist for
each type of component in isolation but fundamental
differences in abstraction level make the simulation
techniques difficult to use together. For instance, digital
hardware may be simulated at a relatively low level of
abstraction using an event-driven simulator with picosecond
accuracy. However, software may be written at a high level
of abstraction (possibly in an interpreted language like Java)
and a real-time operating system (RTOS) might be used to
abstract performance issues from the programmer. Software
‘simulation’ could be performed by running the code on any
processor which supports the RTOS and the interpreter for
the language.

Cosimulation tools typically model three basic types of
components: software, hardware, and processor. Each
hardware component can be modelled at a range of
abstraction levels which can be simulated with different
degrees of timing detail.

. Picosecond accurate simulation: This type of model has
the highest accuracy and the lowest performance.
. Cycle-accurate simulation: This model provides accurate
register contents at each clock cycle boundary.
. Transaction-level simulation: In a transaction-level model
(TLM), the details of communication among computation
components are separated from the details of computation
components. Unnecessary details of communication and
computation are hidden in a TLM and may be added later.
TLMs speed up simulation and allow exploring and
validating design alternatives at the higher level of
abstraction.

Software simulation is accomplished by compiling the
software for a target processor and simulating the processor
using a model. The processor is hardware and so any of the
modelling techniques described above may be used. The
processor is also predesigned and usually prefabricated
intellectual property (IP). In order to preserve the confidenti-
ality of IP design, detailed information required for
simulation may not be provided. The following techniques

Fig. 1 Hardware=software codesign=covalidation flow

Fig. 2 Hardware=software covalidation process
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are often used to model processors in a way which does not
reveal design detail.

. Instruction set simulation: The contents of memory
elements are correctly modelled at machine is at instruction
boundaries. Cycle-to-cycle timing effects such as pipeline
stalls are ignored.
. Host processor: Rather than model the target processor,
software can be compiled to a host processor and simulation
is performed by executing the software as processes, which
communicate with hardware simulator processes. No
processor model is needed but timing accuracy suffers
because the software timing is not related to the timing of
the actual target processor.
. Bus functional model: A bus functional model does not
model the complete behaviour of the processor, only the
different bus cycles that the processor can execute. For this
reason it cannot be used to simulate and debug software
components. Bus functional models are used to debug
hardware and its interactions with the processor by
replicating the processor’s bus interactions.
. Hardware modeller: This describes the use of a real
processor part as the hardware model. This technique can be
applied to model any prefabricated hardware including
processors as well as application-specific integrated circuits
(ASICs).

Subsets of the cosimulation problem are well studied and a
number of industrial tools exist which enable the cosimula-
tion of a variety of system types. Managing the difficult
trade-off between performance and timing accuracy is still a
problem for large systems. Further information on existing
cosimulation techniques can be found in [2].

3 Fault models and coverage evaluation

A design error is a difference between the designer’s intent
and an executable specification of the design The designer’s
intent is most commonly expressed as a natural language
specification. An executable specification is a precise
description of the design which can be simulated. Execu-
table specifications are often expressed using highlevel
hardware=software languages. Design errors may range
from simple syntactical errors confined to a single line of a
design description, to a fundamental misunderstanding of
the design specification which may impact a large segment
of the description. The number of potential design errors is
too large to be managed either automatically or manually, so
a method is needed to reduce complexity without sacrificing
accuracy. A design fault describes the behaviour of a set of
design errors, allowing a large set of design errors to be
modelled by a small set of design faults. A covalidation fault
model describes the definition of a set of faults for an
arbitrary design. A covalidation fault model allows the
concise representation of the set of all design errors for an
arbitrary design. Covalidation fault models can be evaluated
by their accuracy in terms of modelling design errors, and
their efficiency in terms of the time required to evaluate fault
coverage.

The majority of hardware=software codesign systems
are based on a top-down design methodology, which
begins with a behavioural system description. As a result,
the majority of covalidation fault models are behaviour-
al-level fault models. Existing covalidation fault models
can be classified by the style of behavioural description
upon which the models are based. System behaviours are
originally specified in textual languages, such as VHDL
and ESTEREL, and are converted into an internal
behavioural format for use in codesign and cosimulation.

Many different internal behavioural formats are
possible [1].

Many of the covalidation fault models currently applied to
hardware=software designs have their origins in either the
hardware [3] or the software [4] domains. Because the nature
of errors in the hardware domain differs from that in the
software domain, fault models designed for only one domain
will be insufficient in isolation. The differences between
errors in the hardware and software domains are understood
by examining the differences between hardware description
languages and software programming languages. Hardware
description languages invariably include formalisms to
describe concurrency because hardware design is often
performed structurally, combining several concurrent
components. In many hardware description languages
concurrency is described using a process statement, or an
equivalent statement, to define a hardware block which
executes concurrently with other process blocks. Many
software languages support concurrent execution, but the use
of concurrency is assumed in common hardware design,
while it is less well studied in software design. Hardware
description languages also model event timing because
timing constraints are essential to the hardware design
process. The large majority of software does not satisfy hard
timing constraints, so timing has not been thoroughly studied
in the software domain. More recently, timing constraints
have become important in embedded software performing
real-time control tasks, but testing of real-time software
is immature. Since both concurrency and timing have

Table 1: Taxonomy of covalidation fault models

Model class Name of fault model

Textual Mutation analysis

Statement coverage

Control-dataflow Branch coverage

Path coverage

Domain coverage

OCCOM

State machine State coverage

Transition coverage

Gate-level Stuck-at coverage

Toggle (bit-flip) coverage

Application-specific Microprocessor fault models

User-defined

Interface Communication faults

Timing-induced faults

Fig. 3 Behavioural descriptions

a Textual description
b Control-dataflow graph (CDFG)
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traditionally been less important in the software domain,
software fault models do not provide good coverage of these
errors.
As a tool to describe covalidation fault models we will

use the simple system example shown in Fig. 3. Figure 3a
shows simple behaviour, and Fig. 3b shows the correspond-
ing control-dataflow graph (CDFG). The example in Fig. 3
is limited because it is composed of only a single process
and it contains no signals that are used to model real time in
most hardware description languages. In spite of these
limitations, the example is sufficient to describe the relevant
features of many covalidation fault models.
Table 1 presents a taxonomy of covalidation fault models

classified according to the abstraction level of the behaviour
which they operate on. Each class of fault models is
described in the following Sections.

3.1 Textual fault models

A textual fault model is one which is applied directly to the
original textual behavioural description. The simplest
textual fault model is the statement coverage metric
introduced in software testing [4], which associates a
potential fault with each line of code, and requires that
each statement in the description be executed during testing.
This model is very efficient since the number of potential
faults is equal to the number of lines of code. Fault coverage
evaluation for this model is very low complexity, requiring
only that an array be updated after each statement is
executed. However, this coverage metric is accepted as
having limited accuracy in part because fault effect
observation is ignored. In spite of its limitations, statement
coverage is well used in practice as a minimal testing goal.
Mutation analysis is a textual fault model which was

originally developed in the field of software test [5, 6], but has
also been applied to hardware validation [7]. In mutation
analysis terminology, a mutant is a version of a behavioural
description which differs from the original by a single
potential design error. A mutation operator is a function
which is applied to the original program to generate amutant.
A set of mutation operators describes all expected design
errors, and therefore defines the functional errormodel. Since
behavioural hardware descriptions share many features in
common with procedural software programs, previous
researchers [7] have used a subset of the software mutation
operations presented in [5]. A typical mutation operation is
arithmetic operator replacement (AOR), which replaces each
arithmetic operator with another operator. For example in
Fig. 3a, the line a ¼ in1þ in2; would be replaced with
a ¼ in1� in2; a ¼ in1 � in2; and a ¼ in1=in2:
Mutation fault coverage evaluation can be time consum-

ing because it requires that each mutant be executed so that
their results can be compared with the known correct results.
The theoretical efficiency of this metric is good because the
number of mutants in a description is Oðs � mÞ; where s is
the size of the behavioural description and m is the number
of mutation operations applied to an individual line of code.
In practice, however, the complexity of coverage evaluation
can be large because multiple mutation operations may be
applied to a single line of code. For example, researchers in
[6] applied 22 mutation operations to an 11-line Fortran
program to perform bubble sort and generated 338 mutants.
Researchers [6] have investigated approaches to identify a
smaller representative set of mutants in order to alleviate the
time complexity problem. In addition to potential time
complexity problems, the accuracy of this approach has
not been demonstrated. Researchers in [5] state that their
22 mutation operations capture the errors that Fortran

programmers typically make, but no empirical evidence is
provided. Also, the local nature of the mutation operations
may limit its ability to describe a large set of design errors.

3.2 Control-dataflow fault models

A number of covalidation fault models are based on the
traversal of paths through the CDFG representing the system
behaviour. In order to apply these fault models to
a hardware=software design, both hardware and software
components must be converted into a CDFG description.
Applying these fault models to the CDFG representing a
single process is a well understood task. The application of
CDFG fault models to the behaviour of an entire hardware=
software system would require that all component CDFGs
be merged into one. A weakness of CDFG fault models is
that the process of merging multiple concurrent CDFGs has
not been well studied. For this reason, CDFG fault models
are currently restricted to the testing of single processes. The
earliest control-dataflow fault models include branch cover-
age and path coverage [4] models used in software testing.

The branch coverage metric associates potential faults
with each direction of each conditional in the CDFG.
Branch coverage requires that the set of all CDFG paths
covered during covalidation include both directions of all
binary-valued conditionals. Branch coverage is commonly
used for hardware validation and software testing, but it is
also accepted to be insufficient to guarantee correctness
alone. The efficiency of the branch coverage metric is high
because it can be computed by analysing a single
cosimulation output trace. Branch coverage evaluation is
performed by recording the direction of each branch as it is
taken during simulation. The branch coverage metric has
been used for behavioural validation by several researchers
for coverage evaluation and test generation [8–10]. The
accuracy of branch coverage has been studied to determine
its ability to cover design errors [8, 9]. In [8] researchers
found that branch coverage, together with toggle coverage,
was sufficient to ensure the detection of 25 of 26 total design
errors in a five-stage pipelined microprocessor example.

The path coverage metric is a more demanding
metric than the branch coverage metric because path
coverage reflects the number of control-flow paths taken.
The assumption is that an error is associated with some path
through the control flow graph and, therefore, all control
paths must be executed to guarantee fault detection. The
number of control paths can be infinite when the CDFG
contains a loop as in Fig. 3b, so the path coverage metric
may be used with a limit on path length [11]. Since the total
number of control-flowpaths grows exponentially with the
number of conditional statements, several researchers have
attempted to select a subset of all control-flow paths which
are sufficient for testing. One path selection criterion is
presented in [12] (based on work in software test [13]) and
identifies a basis set of paths, a subset of paths which are
linearly independent and can be composed to form any other
path. Previous work in software test [14–18] has investi-
gated dataflow testing criteria for path selection. In dataflow
testing, each variable occurrence is classified as either a
definition occurrence or a use occurrence. Paths are selected
which connect a definition occurrence to a use occurrence of
the same variable. For example in Fig. 3b, node 1 contains a
definition of signal a and nodes 2, 5 and 6 contain uses of
signal a. In this example, paths 1, 2, 4, 5 and 1, 2, 4, 6 must
be executed in order to cover both of these definition–use
pairs. The dataflow testing criteria have also been applied to
behavioural hardware descriptions [19].

The complexity of fault coverage evaluation for path
coverage metrics is largely determined by the number of
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control-flow paths considered by the metric. If all paths are
considered then the computation of coverage requires that
all control-flow paths be enumerated. Since the number of
paths is exponential in the number of control branches, the
time and space required to enumerate all paths can be large.
In practice however, the number of paths in a single
process is relatively low because designers commonly
limit complexity to improve understandability and
maintainability.

The majority of control-dataflow fault models consider
the control-flow paths traversed without overconstraining
the values of variables and signals. For example in Fig. 3b,
in order to traverse path 1, 2, 3, the value of c must be
minimally constrained to be less than a, but no additional
constraints are required. This can be contrasted with
variable=signal-oriented fault models which place more
stringent constraints on signal values to ensure fault
detection. The domain analysis technique in software test
[4, 20] considers not only the control-flow path traversed,
but also the variable and signal values during execution.
A domain is a subset of the input space of a program in
which every element causes the program to follow a
common control path. A domain fault causes program
execution to switch to an incorrect domain. Domain faults
may be stimulated by test points anywhere in the input
space, but they are most likely to be stimulated by inputs
which cause the program to be in a state which is ‘near’
a domain boundary. An example of this property can be seen
in Fig. 3b in the traversal of path 1, 2, 3. The only constraint
required is that c< a, but if the difference between c and a is
small, then there is a greater likelihood that a small change
in the value of cwill cause the incorrect path to be traversed.
Researchers have applied this idea to develop a domain
coverage fault model which can be applied to hardware and
software descriptions [21].

Many control-dataflow fault models consider the require-
ments for fault activation without explicitly considering
fault effect observability. Researchers have developed
observability-based behavioural fault models [22–25] to
alleviate this weakness. The OCCOM fault model has been
applied for hardware validation [22, 23] and for software
validation [24]. The OCCOM approach inserts faults called
tags at each variable assignment which represent a positive
or negative offset from the correct signal value. The sign of
the error is known but the magnitude is not. Observability
analysis along a control-flowpath is done probabilistically
by using the algebraic properties of the operations along the
path and simulation data. As an example, in Fig. 3 we will
assume that a positive tag is inserted on the value of variable
c and we must determine if the tag is propagated through the
condition c< in2 in node 4 of Fig. 3b. Since the tag is
positive, it is possible that the conditional statement will
execute incorrectly in the presence of the tag, so the
OCCOM approach optimistically assumes tag propagation
in this case. Notice that a negative tag could not affect the
execution of the conditional statement. While the approach
presented in [22–24] determines observability in a
probabilistic fashion, other researchers have developed a
precise technique [25]. Work in [25] injects stuck-at faults
on internal variables and determines fault effect propagation
behaviourally. Because the observability analysis is precise,
the computational complexity is increased.

3.3 State machine fault models

Finite state machines (FSMs) are the classic method of
describing the behaviour of a sequential system and fault
models have been defined to be applied to state machines

The commonly used fault models [26–28] are the state
coverage model which requires that all states be reached,
and transition coverage which requires that all transitions be
traversed. Calculation of coverage using these models
requires the update of a table containing all states and
transitions in the behaviour. The act of updating these tables
is not time consuming, but the size of these tables will be
large for realistic state machines. These fault models have
also been refined to differentiate faults in the output function
from faults in the next state function [29]. State machine
transition tours, paths covering each transition of the
machine, are applied to microprocessor validation [30].
A user-refined transition coverage model has been proposed
[31], which selects only transitions which affect state
variables which are identified by the user as being important
for test. The problems associated with state machine testing
are understood from classical switching theory [32] and
are summarised in a thorough survey of state machine
testing [33].

The most significant problem with the use of state
machine fault models is the complexity resulting from the
state space size of typical systems. Several efforts have been
made to alleviate this problem by identifying a subset of the
state machine which is critical for validation. The extended
finite state machine (EFSM) [34] and the extracted control
flow machine (ECFM) [27] models create a reduced state
machine by partitioning the state bits between control and
data bits. These techniques can be quite effective for
systems with a large datapath which does not significantly
impact control flow. For example, the ECFM technique [27]
reduces a 32-bit microprocessor design with 251 flip-flops
to a state machine with only 17 reachable states. In [35] a
reduced state machine is generated by projecting the
original state machine onto a set of states which are
identified as being interesting for validation purposes. These
state machine reduction techniques have enabled validation
to be performed for several large-scale designs.

3.4 Gate-level fault models

A gate-level fault model is one which was originally
developed for and applied to gate-level circuits. Manufac-
turing testing research has defined several gate-level
fault models which are now applied at the behavioural
level [36, 37]. For example, the stuck-at fault model
assumes that each signal may be held to a constant value of
0 or 1 due to an error. The stuck-at fault model has also been
applied at the behavioural level for manufacturing test [38]
and for hardware=software covalidation [39, 40]. Beha-
vioural designs often use variables which are represented
with many bits and gate-level fault models are typically
applied to each bit, individually. For example, if we assume
that an integer as declared in Fig. 3a is 32 bits long, then
applying the single stuck-at fault model to a variable would
produce 32 stuck-at-1 faults and 32 stuck-at-0 faults.
The toggle coverage fault model, which requires that each
bit signal transition up and down, has been applied for
design validation and has been expanded to consider
observability [25].

Gate-level fault models have the potential weakness that
they are structural in nature rather than behavioural.
The relationship between behaviour and structure has been
studied in previous work [41], but the effectiveness of
applying structural fault models to a behavioural description
is unproven. The time complexity of coverage computation
with gate-level models has been well studied in the area of
manufacturing test. In general a coverage computation with
a gate-level fault model should require more time than that
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required when a more abstract model is used, but many
efficient fault simulation approaches have been developed
for gate-level analysis [36, 37].

3.5 Application-specific fault models

A fault model which is designed to be generally applicable
to arbitrary design types may not be as effective as a fault
model which targets the behavioural features of a specific
application. To justify the cost of developing and evaluating
an application-specific fault model, the market for the
application must be very large and the fault modes of
the application must be well understood. For this reason,
application-specific fault models are seen in microprocessor
test and validation [42–48]. Early microprocessor fault
models target relatively generic microprocessor features.
For example, researchers define a fault model for instruc-
tion-sequencing functions [44] by describing the fault
effects (i.e. activation of erroneous microorders), and
describing the fault detection requirements. More recent
fault models target the modern processor features such as
pipelining [46–48].
Another alternative to the use of a traditional fault model is

to allow the designer to define the fault model. This option
relies on the designer’s expertise at expressing the charac-
teristics of the fault model in order to be effective. Several
tools have been developed which automatically evaluate
user-specified properties during simulation to identify the
existence of faults. These approaches differ in the method by
which the designer specifies the fault model. The simplest
techniques used in common hardware=software debuggers
allow the user to specify breakpoints based on the values of a
subset of state variables. More sophisticated tools allow the
designer to use temporal logic primitives to express faulty
conditions [49, 50].

3.6 Interface faults

To manage the high complexity of hardware=software
design and covalidation, efforts have been made to separate
the behaviour of each component from the communication
architecture [51]. Interface covalidation becomes more
significant with the onset of core-based design method-
ologies which utilise predesigned, preverified cores. Since
each core component is preverified, the system covalidation
problem focuses on the interface between the components.
A case study of the interface-based covalidation of an

image compression system has been presented [52].
Researchers classify the interface fault which occurred
during the design process into three groups: (i) COMP2-
COMP faults involving communication between pairs of
components, (ii) COMP2COMM faults involving the
interaction between each component and the communi-
cation architecture, and (iii) COMM faults involving the
coordinated interactions between the communication
architecture and all components. In [52], test benches
are developed manually to target each of these interface
fault classes.
Additional interface complexity is introduced by the use

of multiple clock domains in large systems. The interfaces
between different clock domains must be essentially
asynchronous. Unless a high-overhead timing-independent
circuit implementation is used (such as differential cascode
voltage switch logic), asynchronous interfaces are particu-
larly vulnerable to timing-induced faults. Timing-induced
faults are described in [53] as faults which cause the
definition of a signal value to occur earlier or later than
expected. An example of the occurrence of this type of
fault would be an increased delay on the empty status signal

of a FIFO. If the empty signal is issued too late, the FIFO
may be read from while it is empty. In [21] a timing fault
model is presented and a technique for fault coverage
evaluation is introduced.

4 Automatic test generation techniques

Several automatic test generation (ATG) approaches have
been developed which vary in the class of search algorithm
used, the fault model assumed, the search space technique
used and the design abstraction level used. In order to
perform test generation for the entire system, both hardware
and software component behaviours must be described in a
uniform manner. Although many behavioural formats are
possible [1], previous ATG approaches have focused on
CDFG and FSM behavioural models.

Table 2 presents a taxonomy of covalidation test
generation techniques classified according to the coverage
goal of the search algorithm. Each class of test generation
techniques is described in the following Sections.

Two classes of search algorithms have been explored,
fault-directed and coverage-directed. Figure 4 shows an
outline of both of these classes of algorithms. Fault-directed
techniques successively target a specific fault and construct
a test sequence to detect that fault. Each new test sequence is
merged with the current test sequence (typically through
concatenation) and the resulting fault coverage is evaluated
to determine if test generation is complete. This class of
algorithms suffers in terms of time complexity because it
directly solves the test generation problem for individual
faults, requiring a complex search of the space of input
sequences. However, fault-directed algorithms have the
advantage that they are complete in the sense that a test
sequence will be found for a fault if a test sequence exists.
Another class of search algorithms are the coverage-
directed algorithms which seek to improve coverage
without targeting any specific fault. These algorithms
heuristically modify an existing test set to improve total
coverage, and then evaluate the fault coverage produced by
the modified test set. If the modified test set corresponds to
an improvement in fault coverage then the modification is
accepted. Otherwise the modification is either rejected or
another heuristic is used to determine the acceptability of
the modification. Coverage directed techniques have the
potential to be much less time consuming than fault-directed
techniques because may use fast heuristics to modify the test
set. The drawback of coverage-directed techniques is that
they are not guaranteed to detect any particular fault
although the fault may be detectable.

Table 2: Taxonomy of covalidation test generation
techniques

Test generation class Solving technique

Fault-directed Linear programming þ SAT

Integer linear programming þ SAT

Constraint logic programming

Model checking counterexample

Switching theory

Implicit state enumeration

Coverage-directed Genetic algorithms

Random mutation hill climbing

Directed random tests
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4.1 Fault-directed techniques

Several researchers have chosen to address the test
generation problem directly at the CDFG level by identify-
ing a set of mathematical constraints on the system inputs
which cause a chosen CDFG path to be traversed. Once the
constraints have been identified, the test generation problem
is equivalent to the problem of solving the constraints
simultaneously to produce a test sequence at the system
inputs. Each CDFG path can be associated with a set of
constraints which must be satisfied to traverse the path. For
example, in Fig. 3b the path containing nodes 1, 2, 4 and 6 is
associated with the requirement that c � a and c< in2:
Because the operations found in a hardware=software
description can be either boolean or arithmetic, the solution
method chosen must be able to handle both types of
operations. The boolean version of the problem is
traditionally referred to as the SATISFIABILITY (SAT)
problem [54] and has been well studied as the fundamental
NP-complete problem. Handling both boolean and arith-
metic operations poses an efficiency problem because
classical solutions to the two problems have been presented
separately. For instance, BDD-based techniques perform
well for boolean operations but the complexity of modelling
word-level operations with BDDs is high.

In [55, 56] researchers define the HSAT problem as a
hybrid version of the SAT problem which considers linear
arithmetic constraints together with boolean SAT con-
straints. Researchers in [55] present an algorithm to solve
the HSAT problem which combines a SAT-solving
technique [57] with a traditional linear program solver.
The algorithm progressively selects variables and explores
value assignments while maintaining consistency between
the boolean and the arithmetic domains. The approach
presented in [55] is shown to operate up to three orders of
magnitude faster than a strictly boolean SAT tool, and
solved a 104 constraint problem which could not be solved
using another tool. Other researchers have solved the
problem by expressing all constraints in a single domain
and using a solver for that domain. In [58] researchers
formulate boolean SAT constraints as integer linear
arithmetic constraints. This allows the entire set of
constraints to be solved using an integer linear program

(ILP) solver. Using the CPLEX ILP solver, the approach
described in [58] was used to solve a 3673-constraint
problem in under 9 s on a 500MHz Pentium III.

Constraint logic programming (CLP) techniques [59]
have been employed which can handle a broad range of
constraints including nonlinear constraints on both boolean
and arithmetic variables. CLP techniques are novel in their
use of rapid incremental consistency checking to avoid
exploring invalid parts of the solution space. Different CLP
solvers use a variety of constraint description formats which
allow complex constraints to be captured. Researchers in
[60] use the GNUProlog engine [61] to generate tests by
converting boolean and arithmetic constraints into Prolog
predicates. CLP has also been used to generate tests for path
coverage in a control-dataflow graph in [11] where the
arithmetic constraints expressed at each branch point of a
path are solved together to generate a test which traverses
the path. Using the CLP(R) solving engine [62], researchers
generated path tests for several large examples, including a
microprocessor description of 400 lines of VHDL code. In
[12] researchers employ an approach similar to the one used
in [11] to explore a subset of paths which are linearly
independent. In [63] the CLP approach is used to generate
tests related to the synchronisation between concurrent
hardware=software processes. Constraints are generated
which describe the behaviour of the hardware=software
system and which describe the conditions which would
activate a potential synchronisation fault. In general, the
performance of using CLP has been shown to be several
orders of magnitude better than the use of strictly boolean
SAT solvers. For example, results in [60] show up to three
orders of magnitude improvement in solution time com-
pared to some of the best boolean SAT solvers.

Although binary decision diagrams (BDDs) represent
boolean functions by their nature, BDDs have been used at
the behavioural level to describe the CDFG of a behavioural
VHDL description [40, 64, 65]. These approaches describe
arithmetic functions in the boolean domain by describing
each output bit function as a BDD. Stuck-at faults are
inserted at each variable bit to generate faulty BDDs. Test
patterns are identified by solving the SAT for the machine
which is the exclusive OR of the good and faulty machines.
In most cases, BDDs reduce storage requirements by

Fig. 4 Classes of test generation algorithms

a Fault directed
b Coverage directed
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enabling compact representation of logic functions. This
trend is borne out in the results presented in [65], but it is
violated in a few cases. For example, the b11 benchmark is
described with 119 lines of VHDL code and requires
15.2Mbyte of storage, while the shewa example is only 102
lines of VHDL code but requires 554Mbyte of storage.
Test generation at the state machine level involves the

identification of paths through the state machine which
satisfy the selected fault coverage goal. Once a path has been
identified, the test sequence is the sequence of input events
which trigger each edge on the path. Generating a test
sequence from a path becomes complicated if the state
machine inputs are not primary inputs of the system. This
situation exists in microprocessor test where the inputs to the
controller are instruction and data streams taken from
memory. The commonly used state machine fault models
are state coverage and branch coverage, so the goal of test
generation is to identify a path which includes all states or
transitions.
State machine testing has been accomplished by defining

a transition tour which is a path which traverses each state
machine transition at least once [30]. Transition tours have
been generated by iteratively improving an existing partial
tour by concatenating on to it the shortest path to an
uncovered transition [30]. In [31], a test sequence is
generated for each transition by asserting that a given
transition does not exist in a state machine model, and then
using the model checking tool SMV [66] to disprove the
assertion. A byproduct of disproving the assertion is a
counterexample, which is a test sequence that includes the
transition. Since this technique relies on model checking
technology, it shares its performance and memory require-
ment characteristics with model checking approaches.
If a fault effect can be observed directly at the machine

outputs, then covering each state and transition during test is
sufficient to observe the fault. In general, a fault effect may
cause the machine to be in an incorrect state, which cannot
be immediately observed at the outputs. In this case, a
distinguishing sequence must be applied to differentiate
each state from all other states based on output values. The
testing problems associated with state machines, including
the identification of distinguishing, synchronising and
homing sequences, are well understood [32, 33].
A significant limitation to state machine test generation

techniques is the time complexity of the state enumeration
process performed during test generation. The abstraction
method used to represent the state machine has been shown
to greatly impact the complexity of the state enumeration
process. BDDs have been used to represent the state
transition relation and efficiently perform implicit state
enumeration by defining an image computation which
computes the states which are reachable from a given set of
states [67]. The efficiency of this method of state
enumeration has led to its use during the state machine
test generation process [27, 35]. In [27], the state coverage
metric is used during test generation, but the direct metric is
inaccurate if there is a large set of unreachable states in a
machine. To increase the accuracy of the state coverage
metric, the number of states covered is divided by the
number of reachable states in the machine; implicit state
enumeration is used to identify the set of reachable states.
In [35], coverage analysis and test generation are made more
efficient by evaluating only a portion of the state space.
Implicit state enumeration is performed on machine R to
generate a new machine RI which only contains paths in R
which lead to states which are ‘interesting’ for testing.
The set of interesting states is used during implicit state
enumeration to generate the reduced machine RI .

4.2 Coverage-directed techniques

Several techniques have been developed which generate
test sequences without targeting any specific fault. Cover-
age is improved by modifying an existing test sequence,
and then evaluating the coverage of the new sequence.
These techniques differ in the method used to modify the
test sequence the cost function used to evaluate a sequence
and the criteria used to accept a new sequence.
The modification method is typically either random or
directed random.

An example of such a technique is presented in [10, 68]
which uses a genetic algorithm to successively improve the
population of test sequences. In the terminology of genetic
algorithms, a ‘chromosome’ describes a test sequence.
Many test sequences are initially generated randomly.
Random matings can occur between the chromosomes
which describe the test sequences, but the mating process
defines and restricts the way in which two test sequences are
merged. The cost function (or fitness function) used to
evaluate a test sequence is the total number of elementary
operations (variable read=write) which are executed. In this
technique, the total number of elementary operations is
being used as an approximation of the likelihood of error
detection. This algorithm has been applied to an industrial
VHDL description containing over 10 000 lines of code.
Using 150 CPU hours, the genetic algorithm generated a test
sequence with 5 219 patterns producing 77:13% branch
coverage, while a manually created test set containing 400
vectors achieved only 63:17%.

Work presented in [69] uses a random mutation hill
climber (RMHC) algorithm which randomly modifies a test
sequence to improve a testability cost function. The test
sequence modification is completely random and the criteria
for accepting a new sequence is that the cost function is
improved. The fault model targeted using this approach is
the single stuck-at fault model applied to the individual bits
of each variable in the behavioural description. The cost
function used contains two parts: (i) the number of
statements executed by the sequence, and (ii) the number
of outputs which contain a fault effect. Results show that the
CPU time required using this approach is nearly an order of
magnitude less than the time required using commercial
gate-level test generation tools.

In [70] researchers generate directed-random pattern
sequences to be used for test. No particular fault model is
assumed in this approach, so it is up to the user to provide
the directives for pattern generation. Two types of
directives are used: (i) constraints which define the
boundaries of the space of feasible test patterns, and
(ii) biases which direct assignments of values to signals in
a nonrandom way. For example, a constraint might indicate
that the following relationship between variables must
hold, in1< in2. Because this is a constraint, no test can be
generated which violates this condition. A bias expresses
the desired probability distribution for the values of a
signal throughout the set of all patterns. For example, a
bias of the form (in2,0.9) would indicate that the
probability that input in2 is equal to 1 should be 0.9. It is
the task of the test engineer to develop a set of constraints
and biases which will reveal a particular class of faults. As
an example, this technique was used to generate tests for a
bus interface unit. The stated test goal was to execute as
many read=write requests as possible. The automatically
generated test patterns generated 130 times as many
read=write requests compared to a fully random sequence
of the same length.
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5 Test response analysis

Detection of errors requires that the test responses gathered
during cosimulation be compared to the correct test
responses Since any signal value can be observed at any
point during simulation, the potential amount of test data is
enormous. Manual evaluation of test responses requires that
correct signal values be predetermined. Manually comput-
ing correct test results is time consuming and efforts have
been made to automate the process. The use of assertions
and self-checkers to evaluate test responses have been
investigated in both the hardware and software domains.

5.1 Assertions

An assertion is a logical statement which expresses a fact
about the system state at some point during the system’s
execution. Assertions have been proposed and used in both
software [71, 72] and hardware domains [73]. The use of
assertions is well accepted and has been integrated into the
design proccess of many large-scale systems [74–76].
Assertions are primarily useful in evaluating the correctness
of the system state during simulation, but the use of
assertions has also extended to supporting functional test
generation [70] and performance analysis [77].

An assertion is typically written as a logical relationship
between the values of different storage elements which
would be variables in a software program, but would also
include registers, flip-flops, latches and time-varying signals
in a hardware description. Many languages for the
description of assertions have been proposed, but we will
use a simple first-order predicate calculus in most of our
examples. In this discussion we are interested in the
concepts behind the use of assertions, rather than any
specific implementation details. For this reason our
examples will use a generic syntax, which may not match
any specific assertion language, but is sufficient to describe
the concepts related to assertions. In a system which
describes the operation of traffic lights at an intersection, we
might want to express the fact that both lights cannot be
green at the same time as follows:

ðcolourNS ¼¼ ‘‘green’’Þ \ ðcolourEW ¼¼ ‘‘green’’Þ
ð1Þ

In (1) variables colourNS and colourEW represent the
colours of the north–south and east–west signal lights,
respectively. The assertion in (1) can be referred to as a
positive assertion because it expresses a relationship which
must be satisfied. Notice that when (1) is negated, then it is a
negative, assertion which expresses a relationship which
must not be satisfied. Negative assertions are essentially the
same as error handling code, commonly used in software,
which throw an exception when the system enters an
incorrect state. Notice that positive and negative assertions
are equivalent in their information content so we will
assume the use of positive assertions through the remainder
of this Section, without loss of generality.

Assertions can be evaluated during simulation to
determine whether or not an error occurred which forces
the system into a state which is known to be incorrect.
Assertions may be defined globally which must be satisfied
at all times, or assertions may be defined locally which are
only satisfied at the point in the description where the
assertion is placed. The traffic light controller assertion in
(1) is an example of a global assertion. A local assertion has
the potential to specify more fine-grained properties because
the assertion can be defined to use state information derived
from its position in the description. Figure 5 shows an

example of a local assertion in a traffic light controller code
segment. The assertion in Fig. 5 states that the colour of the
north–south light must be yellow. This statement is clearly
not always true in general, but the assertion is added just
before the statement which changes the light colour to red.
If we assume that the light must be yellow before it is red,
then the assertion must be true at the point in the description
where it is asserted.

An assertion which describes the state of a system at a
point in its execution can be referred to as an ‘instantaneous
assertion’. The assertions in (1) and Fig. 5 are both
instantaneous because they both describe properties at one
time step. Although the assertion in (1) is globally true at all
time steps, it is considered to be instantaneous because it
expresses a statement about each time step individually,
independent of all other time steps. An assertion is referred
to as being temporal if it expresses constraints on sequences
of time steps. In order to express temporal constraints, a
logic must be used which expresses temporal relationships.
To give an example of a temporal assertion we will
introduce the next operator used in PSL [78]. The statement
p ! next q states that if statement p is true at time step t
then statement q must be true at time step t þ 1. Using this
temporal operator we can state the fact that the north–south
traffic light must turn red one time step after it becomes
yellow with the following expression:

ðcolourNS ¼¼ ‘‘yellow’’Þ ! next ðcolourNS ¼¼ ‘‘red’’Þ
ð2Þ

An assertion defines boundaries on the correct execution of
the system. An instantaneous assertion defines a subset of the
state space and a temporal assertion defines a subset of the set
of all execution sequences. The discussion here will be
limited to instantaneous assertions, but the same argument
could be extended to temporal assertions as well. The state
space subset defined by an instantaneous assertion must
contain the actual system state at the point in executionwhere
the assertion is evaluated. Figure 6 is used to show the state
space hierarchy during system execution. The largest space
in Fig. 6, called the cross-product state space is the space
defined by the cross-product of the states of all individual
state elements in the system. Only a subset of these states,
referred to as ‘all feasible states’, may be entered during the
operation of the system if it is free of design errors. At any
given point during the operation of the system there is a
subset of the all feasible states set, called ‘current states’,
which must contain the current system state if the system is

Fig. 5 Local assertion in a traffic light controller

Fig. 6 State space hierarchy
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error free. If the system is completely deterministic then the
set of current states must have cardinality 1. The current
states set must be a subset of the all feasible states set because
the current states set is dependent on the input sequence and
the point in simulation being evaluated, while the all feasible
states set is the union of feasible states over all possible test
sequences and points in simulation.
An instantaneous assertion defines a subspace referred to

as the ‘assertion subspace’, which must completely contain
the current states as shown in Fig. 6. Test response
evaluation is performed by checking the satisfaction of
each assertion; if an assertion is not satisfied then a design
error exists.

5.1.1 Assertion completeness: The main diffi-
culty with the use of assertions is that the satisfaction of all
assertions does not guarantee that errors did not occur
during simulation. This is because the assertion subspace is
a superset of the set of current states. In the traffic light
controller, for example, both north–south and east–west
traffic lights may become yellow at the same time due to a
design error without violating the assertion in (1). To
increase the chances that errors are detected, the set of
assertions must be as complete as possible. In terms of the
state space, this means that the assertion subspace must be
as small as possible while still containing the correct states
set. This requires that the assertions be written as strictly as
possible to reduce the number of incorrect states which can
satisfy the assertion. For example, the assertion for the
traffic light controller in (1) can be replaced by the stronger
assertion in (3).

ðcolourNS ¼¼ ‘‘red’’Þ [ ðcolourEW ¼¼ ‘‘red’’Þ ð3Þ
The assertion in (3) is stronger than (1) because the subspace
that (3) defines is a proper subset of the subspace defined
by (1). Notice that the assertion in (3) catches the erroneous
condition when both light directions are yellow at the same
time.
Defining a set of assertions which is complete is difficult

because the task of assertion definition is largely manual, so
the completeness of a set of assertions depends on the
abilities of individual designers. Definition of a complete set
of assertions is typically very expensive due to the rigorous
and manual nature of the process. The cost investment is
worthwhile for some highly standardised and reused
applications, such as floating-point division [79] and the
PCI bus protocol [80]. In [81] researchers have evaluated
the completeness of a set of properties=assertions by
injecting design errors and determining whether or not the
assertion set can detect each error. If an error is inserted
which cannot be detected, then the assertion set is assumed
to be incomplete and it is the responsibility of the designer
to add assertions to detect the error. The nature of the errors
inserted are ‘bit-flip’ errors where a single bit in the
description may be flipped to an incorrect value.
The approach presented in [81] can identify weaknesses

in the set of assertions, but it is still the designer’s task to
write the assertions. It has been observed in previous work
[82] that a formal specification can itself be used to generate
assertions at the inputs and outputs of a system. The primary
use of a specification is to express the system outputs as a
function of the system inputs. If the relationship between
inputs and outputs is expressed in a formal logic language
then the specification is a set of assertions on the system
outputs. In [82] researchers present a set of style rules,
which should be followed in the definition of the formal
specification to make it more effective as a set of assertions.

5.2 Self-checking

A self-checking component is one which automatically
evaluates its correctness by comparing its results to the
results of one or more other redundant components which
implement the same function. Using only two redundant
components enables the detection of errors, but not
correction, since it is impossible to know which redundant
version is the one with the correct result. At least three or
more components allow correction as well. If it is assumed
that the likelihood of a majority of components producing
incorrect answers is very small, then correction can be
achieved by selecting the result produced by the majority of
redundant components.

Self-checkers are distinguished from assertions in a
number of ways including their description style. While
assertions are described declaratively, as logical statements,
self-checkers are described procedurally as a sequence of
operations. Also, a self-checker does not simply restrict the
space of correct results as an assertion would. A self-
checker actually computes the correct result(s). In terms of
the state space hierarchy shown in Fig. 6, a self-checker
computes the set of correct states, just as an ordinary
component would. Defining features of a self-checking
technique includes the implementation of the redundant
components and the number of redundant components used.

An important distinction between self-checking tech-
niques is the point in the system’s lifecycle when they are
applied. Self-checking can be applied prior to deployment
of the system in the field for the purpose of validation. Self-
checking can also be applied post-deployment to enhance
reliability. Self-checking incurs some overheads in terms of
cost, performance and power, which can be difficult to
justify in tightly constrained systems. High overhead is one
reason that self-checking is not well used in standard
hardware and software projects today.

A key requirement of any self-checking technique is that
the redundant components used for comparison must not
operate in exactly the same way as the original component
so that they do not all manifest the same errors. One way to
accomplish this is by assigning completely different design
teams to implement the same system. This approach is
referred to as N-version programming in the software
domain [83–85]. A significant limitation of this approach is
the exorbitant cost of multiple design teams. The reliabilty
provided using this approach relies on the independence of
the design teams. Such independence is difficult to establish
in practice because programmers are likely to be trained in
the same industrial environment and using the design tools.
Designer independence also contradicts the current trend
toward design reuse to reduce design times.

A theoretical framework for self-checking has been
developed by Blum and Kanna [86] and has been applied to
several practical programming examples [87]. In [87] a
general technique is presented to create a self-checking
program from a non-self-checking program for numerical
programs including matrix multiplication and integer
division. The self-checking technique exploits a property
of many numerical functions referred to as ‘random self-
reducibility’. A function f is random self-reducible if f(x)
can always be computed as Fð f ða1Þ; . . . ; f ðacÞÞ; where F is
an easily computable function and the numbers a1; . . . ; ac
are randomly deistributed and are also easily computable
given x. The key idea is that f(x) can be computed as a
function of f ða1Þ; . . . ; f ðacÞ: If the numbers a1; . . . ; ac are
randomly distributed, then it is very unlikely that the
implementation of f would produce an incorrect result for
the majority of values a1; . . . ; ac:
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The advantage of the technique presented in [87] is that
the self-checking function is created in a straightforward
way from the original program without the need for
alternate design teams. This greatly reduces design cost
compared to N-version programming, and it simplifies
reliability analysis since the level of independence between
different design teams is not an issue.

5.2.1 Self-checking for physical defects:
Current trends in soft error rates in hardware are motivating
the use of self-checking to detect and correct physical
defects as opposed to designer errors. As device sizes shrink
to nanometer scales, the occurrence and impact of physical
defects are increasing to the point that architectural
strategies are required to mitigate the cost of defects.
Even small parametric variations are having a significant
impact on functional operation of extremely small devices
in current integrated circuits ICs [88]. The number of
defects produced both by electronic wear mechanisms and
by terrestrial radiation sources are on the rise as device sizes
scale down. Currently the increasing defect levels are
primarily impacting only the most dense components, such
as DRAMs, but the impact on general logic is growing and
is projected to be substantial by 2011 [89].

This paper investigates the detection of design errors
rather than physical defects. For this reason the problem of
self-checking for physical defects in hardware is considered
to be out of the scope of this paper.

6 Conclusions and future directions

It is clear that the field is maturing as researchers have begun
to identify and agree on the essential problems to be solved.
Our understanding of covalidation has developed to the
point that industrial tools are available which provide
practical solutions to test generation, particularly at the state
machine level. Although automation tools are available,
they are not fully trusted by designers and as a result, a
significant amount of manual test generation is required for
the vast majority of design projects. By examining the state
of previous work, we can identify areas which should be
studied in future work in order to increase the industrial
acceptance of covalidation techniques.

A significant obstacle to the widespread acceptance of
available techniques is the lack of faith in the correlation
between covalidation fault models and real design errors.
Automatic test generation techniques have been presented
which are applicable to large scale designs, but, until the
underlying fault models are accepted, the techniques will
not be applied in practice. Fault models must be evaluated
by identifying a correlation between fault coverage and
detection of real design errors. Essential to this evaluation is
the compilation of design errors produced by real designers.
Research has begun in this direction [90, 91] and should be
used to evaluate existing covalidation fault models. Once
covalidation fault models are empirically evaluated we can
expect to see large increases in covalidation productivity
through the automation of test generation.

Analysis of test responses is a bottleneck in the
covalidation process because the definition of assertions
and self-checkers requires design understanding that only a
designer can have. Assertions, for example, express proper-
ties of the design which must be satisfied, but developing
these properties requires an understanding of the specifica-
tion. It is possible to generate assertions which are
generically applicable to a class of designs such as
microprocessors (i.e. ‘all RAW hazards are illegal in any

pipeline’) but properties unique to a design must be
expressed manually.

A great deal of research in hardware=software covalida-
tion is extended from previous research in the hardware
and software domains, but communication between hard-
ware and software components is a problem unique to
hardware=software covalidation. The interfaces between
hardware and software introduce many new design issues
which can result in errors. For example, software may be
executed on an embedded processor which is in a different
clock domain to other hardware blocks which it commu-
nicates with. Such communication requires the use of some
asynchronous communication protocol, which must be
implemented in hardware and in software. Asynchronous
communication is a difficult concept for both hardware and
software designers, so it can be expected to result in
numerous design errors. Hardware=software communi-
cation complexity is also increased because interprocessor
communication is handled very differently in hardware
compared to software. Hardware description languages
typically provide only the most basic synchronisation
mechanisms, such as the wait expression in VHDL. More
complicated protocols (i.e. two-way handshake) must be
implemented manually and are therefore vulnerable to
design errors. Interprocess communication in software tends
to use high-level communication primitives, such as
monitors (i.e. the synchronised statement in Java). Although
the implementation of each primitive may be known to be
correct, the primitive itself may be used incorrectly by the
designer, resulting in design errors. Relatively little research
has investigated testing the interfaces between hardware and
software components, but this research area is essential.
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