Synthesis and Simulation of Digital Systems Containing Interacting
Hardware and Software Components

Rajesh K. Gupta

Claudionor Nunes Coelho, Jr.

Giovanni De Micheli

Center for Integrated Systems
Stanford University, Stanford, CA94305.

Abstract

Synthesis of systems containing application-specific as well as re-
programmable components, such as off-the-shelf microprocessors,
provides a promising approach to realization of complex systems
using a minimal amount of application-specific hardware while
still meeting the required performance constraints. We describe an
approach to synthesis of such hardware-software systems starting
from a behavioral description as input. The input system model is
partitioned into hardware and software components based on im-
posed performance constraints. Synchronization between various
elements of a mixed system design is one of the key issues that any
synthesis system must address. In this paper, we consider software
and interface synchronization schemes that facilitate communica-
tion between system components.

We present tools to perform synthesis and simulation of a system
description into hardware and software componerus. In particular,
we describe a program, Poseidon, that performs concurrent event-
driven simulation of multiple functional modules implemented ei-
ther as a program or as behavioral or structural hardware models.
Input 1o Poseidon consists of description of interacting functional
models with their respective clock cycle times and the interface
synchronization scheme chosen by the partitioner. The resulting
software component is assumed to be implemented for the DLX
machine, a load/store microprocessor. We present simulation ex-
amples and design of a graphics controller demonstrate the fea-
sibility of mixed system synthesis.

1 Introduction

In this paper we consider an approach to extend the high-
level synthesis techniques to synthesize system designs using
application-specific and reprogrammable components. We refer to
the application-specific component as the hardware component,
while the program running on the reprogrammable component as
the sofiware component. Our approach to system synthesis us-
ing hardware and software components is inspired by the fact that
in practice most systems used in embedded control and telecom-
munication applications consist of application-specific hardware
components as well as reprogrammable components. While most

digital functions can be implemented by software programs, a ma-
jor reason for building dedicated ASIC hardware is satisfaction of
performance constraints. The performance constraints can be on
the overall time (latency) to perform a given task or on the in-
put/output data rates. Typically, the pure software implementations
of a system design are often too slow to meet the imposed per-
formance constraints. Therefore, specialized hardware chips are
often needed to complement or assist the reprogrammable compo-
nent on certain performance-critical tasks. Further, mixed system
designs reduce the size of the synthesis task by reducing the num-
ber of application-specific chips required while at the same time
achieving the flexibility of software reprogramming to alter system
behavior. Such a flexibility is also important in achieving rapid
prototyping of complex system designs where non performance-
critical and unconstrained operations are shifted into a program
running on an off-the-shelf microprocessor.

Whereas the focus of high-level synthesis techniques thus far
has been to generate a purely hardware implementation of a system
design either as a single chip or as an interconnection of multiple
chips, each of which is individually synthesized [1] [2] [3] [4],
attempts at system synthesis using both hardware and software
components have been rare and limited to developing frameworks
for facilitating the design process [S].

The problem of synthesis of mixed systems is fairly complex.
There are many subproblems that must be solved before an ef-
fective synthesis system can be developed. Among the important
issues are the problems of modeling of system functionality and
constraints, determination of the boundary between hardware and
software components in the system model, specification and syn-
thesis of the hardware-software interface, and implementation of
hardware and software components. In this paper, we summarize
a systematic approach to automatic synthesis of mixed systems
and focus on the issue of interface design and the synchroniza-
tion mechanisms that are used to facilitate communication between
system models and ensure correctness of system functionality.

Figure 1 shows organization of the CAD design system used
for synthesis of mixed system designs. The input to our synthe-
sis system is an algorithmic description of system functionality.
We model system behavior using the HardwareC [6] language
that has a C-like syntax and supports timing and resource con-
straints. HardwareC supports specification of unknown delay op-
erations that can arise from data dependent decisions and external
synchronizations. The HardwareC description is compiled into
a system graph model based on data-flow graphs[6]. The sys-
tem graph model consists of vertices representing operations, and
edges which represent either a data dependency or a control depen-
dency. Overall the system graph model is composed of concurrent
data-flow sections which are ordered by the system control flow.
The data-flow sections simplify the tasks of identification of con-
currency in the system model, while use of control constructs such

29th ACM/IEEE Design Automation Conference®

0738-100X/92 $3.00 © 1992 IEEE

225

Paper 14.2

' O
VULLN-II
@ ». Sysiem Partioning @
b. Mulf-#veed Program Generation
. hiariace Genaration

HEBE + CERES

System Inputs

Assambly Code ASIC and inerince Natist POSEIDON
Mixed System Implementation l
Sysum Quita

Figure 1: System Synthesis Procedure

as conditionals and loops obviate the need for a separate descrip-
tion of control flow. Associated with input/output statements, we
specify corresponding constraints on input/output data rates. The
input (output) rate constraints refer to the rates at which the data
is required to be consumed (produced). The system graph model
is input to Vulcan-II which partitions the system graph model into
portions to be implemented either as dedicated hardware modules
or as a sequence of instructions on a reprogrammable processor
based on feasibility of satisfaction of externally imposed data-rate
constraints. System partitioning constitutes an important phase of
the system synthesis process. However, it is not the intent of this
paper to delve into the partitioning issues. For an approach to
system partitioning the reader is referred to [7]. Hardware synthe-
sis of the models identified by Vulcan-II is performed by program
Hebe [6]. For synthesis of the software component, we generate a
corresponding C-description after generating a total order of oper-
ations in accordance with the partial order imposed by the graph
model. The Ccode is then compiled into assembly code for the
target processor using existing software compilers. The interface
synthesis is performed by Vulcan-II under timing constraints im-
posed on the system model. At the present time, Vulcan-II is a
framework to carry out various synthesis tasks, and it is not yet
an automated tool.

 MEMORY____
[l ML Program !

{ | User Data -
e Interface Butter

MICRO-
PROCESSOR

.

Application-Specific
Components

Re-programmable
Component

Figure 2: Target System Architecture

Paper 14.2

226

Target System Architecture

Figure 2 illustrates the broad features of the system architecture
that is the target of our system synthesis approach. The target
architecture consists of a general-purpose processor assisted by
application-specific hardware components. The memory used for
program and data-storage may be on-board the processor. How-
ever, the interface buffer memory needs to be accessible to the
hardware modules directly. Because of the complexities asso-
ciated with modeling hierarchical memory design, in this paper
we consider the case where all memory accesses are to a single
level memory, i.e., outside the reprogrammable component. The
hardware modules are connected to the system address and data
busses. Thus all the communication between the processor and
different hardware modules takes place over a shared medium.
Further, the mechanisms of data transfer between processor and
application-specific components are constrained to those supported
by the processor.

Concurrently executing hardware modules generate data that is
consumed by the program(s) running on the processor. Due to the
inherent serialization of operations implemented on the proces-
sor, any implementation must ensure that the data transfer across
components takes place in an efficient manner that reduces the
associated area and time overheads. The data transfer between
the program(s) and the hardware modules is facilitated by the
hardware and software synchronization mechanisms used. The
choice of a data transfer scheme is determined by the individual
execution rates of different models and control model used for
scheduling various components. For example, a blocking transfer
protocol may ensure correctness of the data-transfer but it may
impose undue overheads on speed of execution of hardware mod-
ules. Whereas a non-blocking transfer may starve or overrun the
interface buffers.

In the following sections, we outline our approach to system
synthesis, and discuss different synchronization mechanisms used
for synthesis for software and hardware components. The issue of
synchronization between operations in a system model is closely
related to the issue of communication between operations. For this
reason, a choice for synchronization scheme is influenced by the
selection of the communication scheme between system compo-
nents. We first present the communication model supported in our
synthesis system and then describe the synchronization schemes in
context. We then address issues related to design of the hardware-
software interface.

2 System Synthesis

Synthesis of application-specific hardware components under tim-
ing and resource constraints requires generation of a schedule of
operations which satisfies the imposed timing constraints, an allo-
cation of hardware resources that satisfies the resource constraints
and finally the construction of a suitable control to facilitate hard-
ware execution. Our model of hardware supports specification of
data-dependent operations. Since data-dependent operations may
offer unbounded delays it becomes necessary to schedule these
operations dynamically. Therefore, we refer to data-dependent de-
lay operations as points of synchronization in the system model.
Our approach to synthesis of hardware under relative scheduling
formulation has been described in detail elsewhere [6]. Briefly,
the relative scheduling formulation makes it possible to achieve a
data-driven dynamic schedule of operations with respect to a set
of synchronization points (also referred to as anchors in [6]).
Here we focus on the problem of synthesis of the software
component of the target system design. The software component
is implemented as a program running on the onboard processor,
i.e., the reprogrammable component. We assume that this pro-
gram is small enough that it can be mapped to real memory, so

that the issues related to virtual memory management can be ig-
nored. As indicated in Figure 1, we start with a partition of the
system graph model. System partitioning into hardware and soft-
ware components is performed under the constraint that specified
system input/output data rates can be supported by the final system
implementation. One such partitioning approach relies on identi-
fying and partitioning unbounded delay operations [7]. As a result
of system partitioning we essentially have a set of concurrently ex-
ecuting hardware and software models. The software component
consists of a set of concurrently executing routines, called threads.
All threads begin with a point of synchronization and as such these
are scheduled dynamically. However, within each thread of exe-
cution all the operations are statically scheduled. Therefore, for
a given reprogrammable component the latency of each thread is
known statically. As an example, data-dependent loops in soft-
ware are implemented as a single thread with a data-dependent
repeat count.

The problem of concurrent multi-thread implementation is well
known [8]. In general, the program threads may be implemented
either as a subroutines to a global task scheduler or as coroutines.
However, in the context of mixed system designs where the pro-
cessor is completely dedicated to the implementation of the system
model and all software tasks are known statically, it is possible
to use simpler and more relevant schemes to implement the soft-
ware component. In the following, we present two schemes for
implementation of the software component.

Software Implementation as Coroutines

Coroutines provide an attractive means of achieving concurrency
between various program threads by reducing the cost of switch-
ing execution from one thread to another [9]. In this scheme,
the reprogrammable component runs a task scheduler based on a
priority assigned to various routines which are maintained in a
co-operative, rather than hierarchical, relationship to each other.
Each coroutine maintains a local state and willingly relinquishes
control of the execution machine at points of synchronization.
Coroutines provide a limited form of message passing via follow-
ing two primitive operations: resume and detach. A coroutine
switch consists in saving the current machine status and restoring
the machine status of the next process to be executed. In the most
general case, where any interruptions or exceptions may cause a
context switch, all machine registers and flags should be saved.
In case of an R/M processor, that is a processor that provides in-
structions with a register and memory operands such as 8086, the
code for a coroutine based scheduler amounts to 34 instructions
taking about 100 bytes. The coroutine switch takes 364 cycles
when implemented for 8086 processor. By contrast, implementa-
tion of a global task scheduler using subroutines takes 728 clock
cycles for the 8086 processor [10].

It is possible to reduce the overhead due to context switch if all
the coroutine switches are explicit and known at the compile time.
By making sure that during code optimization, variable lifetimes
do not cross the coroutine boundaries, then the only register that
needs to be saved is the program counter of the current corou-
tine and also only register that should be restored is the program
counter of the next coroutine to be executed. The code for a such
a scheduler on 8086 processor takes 103 cycles for each context
switch. By comparison, on an load/store (L/S) machine, such as
DLX [11], the code for task scheduler is reduced to 17 instructions
(19 machine cycles), as opposed to the general case when all 64
registers would have to be saved requiring 192 instructions.

Software Implementation using Case Descriptions

In this approach, we merge different routines and describe all op-
erations in a single routine using a method of description by cases
{12]. This scheme is simpler than the coroutine scheme presented

227

above. Here we construct a single program which has a unique
case assignment for each point of synchronization. Thus each
thread now corresponds to a case description of a rather large
conditional in the final program. A global state register is used to
store the state of execution of a thread. This method is restrictive
since it precludes use of nested routines and requires description
as a single switch statement, which in cases of particularly large
software descriptions, may be too cumbersome. Overhead due to
state save and restore amounts to 85 clock cycles for every point
of synchronization when implemented on a 8086 processor. Con-
sequently this scheme entails smaller overheads when compared
to the general coroutine scheme described earlier. Corresponding
overheads for the DLX processor amounts to 35 clock cycles for
every point of synchronization.

Graphics Controller

process ge{q.xy..)l
Behavioral
(Controtier GraPh | byrytoning and
Synthesis Program threads.
} generation
HardwareC Code

Intertace Circuity

Figure 3: System Synthesis Example

In order to illustrate our system synthesis approach we con-
sider synthesis of a graphics controller that provides for drawing
of lines and circles given the end coordinates (and radius in case
of a circle). Figure 3 illustrates some of the steps in synthesis of
the graphics controller. The HardwareC description consisting of
457 lines of code is input to the behavioral synthesis phase. The
resulting system graph model is input to Vulcan-II. As a result of
system partitioning and program threads generation in Vulcan-II,
the system design at this stage consists of interacting hardware
modules modeled by the hardware graph models and a software
component modeled by program threads. Next step is to synthe-
size the interface circuitry that would facilitate synchronization
and communication between heterogeneous system components.
Synthesis of interface circuitry is driven by the requirements im-
posed by system synchronization. We shall revisit this example in
Section 4 to show how multiple program threads are synchronized
with the concurrently operating hardware portions.

3 System Synchronization

A system design consists of various components which carry out
operations in response to input data. An event refers to the ex-
ecution of a data input/output operation. Synchronization in a
system design refers to constraints on system design that ensure
the partial ordering of events and operation executions imposed
by the system model must be observed in any execution trace of
the system model. Some synchronization constraints are needed
1o ensure correctness of the execution model, for example, all
the data generated within the system model must be consumed in
the time order in which it was generated. Typically this is guar-
anteed by appropriate choice of the execution semantics for the
system model. Additional constraints may be needed to ensure
correctness of a set of concurrently executing models. Further,
some synchronization conditions may be extemally imposed. For

Paper 14.2

example, a certain precedence or simultaneity condition between
execution of two operations imposed by the system control flow.

Communication Model

In the system graph model, communication between two opera-
tions is indicated by presence of an edge between respective op-
eration vertices. When considering hardware synthesis, an edge
between two operations may translate into either a physical wire
connection, or it may be buffered and/or blocked to facilitate asyn-
chronous communication. Final selection of data-transfer mecha-
nism is made based on the data transfer requirement and how in-
dividual communicating models are implemented. However, note
that in a mixed system implementation, due to inherently different
rates of computation between hardware and software modules, it
is necessary to allow multiple executions of individual models in
order to achieve high system throughput. However, in presence
of variation in rates of communication across different models ap-
propriate buffering and handshake mechanisms may be required.

3.1 Software Synchronization

Our model of software component relies on the sequential execu-
tion of different threads of execution. Due to this serialization of
the input system model, software synchronization is needed to en-
sure correct ordering of operations within the program threads and
between different threads. A thread of execution already main-
tains an order of execution of its instructions, so a schedule of
the operations is implicit to the sequential execution model of
the instructions in a reprogrammable component. This solves the
problem when a single thread of execution can be found for an
entire description or among operations implemented in software
belonging to the same thread - synchronization is only needed in
points of synchronization and where the control is transferred be-
tween software and hardware. When data-dependent loops, and
asynchronous message passing are present in the code, it may
not always be possible to find a static schedule of the operations.
If the order of execution can still be found, a single thread of
execution could be determined that preserves the order in which
the operations are executed. In case no such thread of execution
can be determined, multiple threads of execution are required. In
presence of multiple threads of executions (whether implemented
as multiple programs or a single program using case descriptions
described before) software synchronization consists of a mecha-
nism to transfer control from one thread to another. In case of
small number of threads, such a transfer can be done based on
a statically defined priority of threads. For example, in case of
two threads, control would simply switch from one thread to the
other. In the general case, however, due to unbounded delay op-
erations, we look for a dymamic scheduling of different threads
of execution. Such a scheduling is done based on availability
of data. Suppose we were to time stamp each data generated and
also for each data request. Then the next thread of execution to be
scheduled would be the one with the smallest request time stamp.
Further, in order to maintain the correct order of data production
and consumption, at any time the data being consumed is the one
with the smallest time stamp. Such an scheme is implemented
using a control FIFO that contains pointer to the next thread to
be scheduled for execution [7]. Data transfer between two threads
of execution can be implemented with shared memory or mes-
sage passing. Shared memory can be facilitated by maintaining
read and write pointers on each data-transfer. Such an scheme
would add the overhead of maintaining and updating the read and
write pointer for each data transfer across the program threads.
Non-register based data-transfers (or data transfers which could
culminate in control transfer) are well suited to be implemented
as a queue connected with the control FIFO. On the other hand,
register based transfers have the characteristic that once something

Paper 14.2

228

is written, the data may be read many times. It is possible to use
processor registers to transfer information between threads. How-
ever, such a scheme requires global register assignments which are
not available for reassignment by the compiler. A limited form
of message passing can be achieved by using co-routine model of
implementation described before.

3.2 Hardware-Software Synchronization

Synchronization between hardware and software components is
determined by the data transfer requirements between the sender
and the receiver. A data transfer between two models can be either
blocking or non-blocking. A blocking transfer protocol requires
the sender(receiver) to block transfer until the corresponding re-
ceiver(sender) is ready to receive(send) data. Blocking can also be
made conditional so as to reduce the associated timing penalties
due to blocking [13]. With respect to their overheads, a non-
blocking transfer consumes the system bus bandwidth, whereas a
blocking transfer costs not only system bus bandwidth but also
additional control lines that are needed to implement the required
handshake. Therefore, for lower system costs, it is necessary to
implement blocking only when absolutely necessary. A blocking
transfer protocol can be thought of as a non-blocking transfer with
an infinitely deep queue buffer. The queue size may be bounded
by addition of handshake signals that treat queue as the sender or
receiver of data. Alternatively, in presence of specific constraints
on rates of data transfer, the queues can be sized algorithmically
[14).

For a given data-transfer edge in the system graph model, we
first attempt to determine the rates of data production and con-
sumption associated with the sender and receiver models. Such
a rate determination requires specification of data rates for ex-
ternal inputs and outputs. In case of unknown or varying data
rates, a blocking protocol for both sending and receiving ends is
selected. Either sender or receiver end of a transfer can be made
non-blocking if it can be determined that the corresponding oper-
ations are always slower. In case of perfectly matched data-rates
a synchronous non-blocking protocol is selected. After selecting
transfer protocols for different data-transfers across the hardware
and software models, the interface circuitry can be synthesized us-
ing asynchronous and synchronous logic synthesis techniques [15]
[16]. For a description of the interface architecture the reader is
referred to [7).

System Graph Model
Ariadne
SUF Netist
DLX Assembly Code (Gato-level Description)
S Of o——n POSEIDON -—
.' Irplements:

2. INNertace protocol between
b. event-chiven simulation of
¢ mullipie docks and dock rates between models

Figure 4: Event-driven simulation of a mixed system design

4 Simulation of Hardware-Software Systems

We have developed an event-driven simulator, named Poseidon,
that performs concurrent simulation of multiple functional models

InRq
comm
outPort o — V:_ Producer
O\ut/A{k inChannel

Figure 5: Simulation Example 1

implemented either as a program or as application-specific hard-
ware. The software component is compiled into the assembly
code of the target microprocessor. Poseidon currently supports
simulation of assembly code for the DLX microprocessor, a RISC
oriented load/store processor [11). The hardware component of
system design can be simulated either before or after the struc-
tural synthesis phase. The graph model before structural synthesis
is simulated using program Ariadne. A gate-level description of
the hardware component of system design is generated using struc-
tural synthesis techniques in program Hebe and simulated using
program Mercury. Thus, Poseidon supports simulation of partially
synthesized hardware modules along with the software component
of the system design. Poseidon maintains an event queue which
stores all simulation models sorted by their activation times. After
simulating an event, the event is enqueued in the event queve. A
system specification in Poseidon consists of following parts:

1. Model declarations: consists of declarations of the concur-
rently executing simulation models. Models can be either
software or hardware models. Each model has an associated
clock signal and clock cycle-time used for its simulation. It
is assumed that the clock cycle-times are a rational multiple
of each other. Further it is assumed that different models
supply (latch) data at the interface using flip-flops at the in-
terface edge-triggered by their respective clock signals.

2. Model interconnections: The interface between different
system components is specified by connections among mod-
els. A connection between two models may be either a direct
connection through a wire, or a port connection through a
register or a queue. Queues can have multiple fanins and
fanouts. Signal assignments indicate direct connections be-
tween respective models. For connections such as queues
that require existence of additional control signals for syn-
chronization, it is possible to group signals having identical
synchronization requirements together for a given set of syn-
chronization signals.

3. Communication protocols: Interface protocol for data-
transfer is specified via guarded commands [17]. A guarded
command is executed only when some precondition is true.
Each precondition is specified as a logic equation of signal
values and transitions. There are four commands recognized
by the connection types. Enqueue and dequeue are used
for queues port connections and load and store are used for
register port connections.

4. System outputs: Outputs to be observed during simulation
runs may be indicated by direct connections to the internal
signals in the system model.

For illustration purposes, we consider a simple example of two
models, Producer and Consumer connected by means of a
finitely sized queue as shown in Figure 5. We consider two cases:
one in which the producer model is implemented in software and
consumer in hardware and the other in which producer, consumer
implementations are reversed. Example 1 shows system specifi-
cation for this example for the first case. The three first lines of
the specification declare the models to be simulated. Model io
models the external system inputs and outputs. The following pa-
rameter specifies the clock period of the clock signal associated
with the respective model. A value of 3.0 for the consumer model

229

PROCESSOR ASIC Hardware
0 line data queus ‘
= HIE
: .
Generator
_ m circle data queue
— T
Control FIFO
Software Component: main program
int 1astPC{MAXCRS]={scheduler circle,line,mainY;
int curreni=sMAIN;

int *control FIFO = (int *) 0xaa0000;

int *contral FIFO_rq = (int *) 0xas0004;

main()/
l&m(SCHFDU LERX

int pextCoroutine;

while ({RESET)(
nextCoroutine = *control FIFO;
} while ((nextCoroutine & 0x4) = 0x4);
resume(nextCoroutine & 0x3); }

}

Figure 6: Example 2: Graphics Controller Design

indicates that consumer is implemented in an ASIC technology
that uses a clock signal that is three times slower than the clock
used by the reprogrammable component, which is usually a cus-
tom designed component. The system input/outputs are sampled
here at the same rate as the consumer. The last two parameters
specify the directory location where the model description can
be found and the model name. The queue statement declares
a queve named, comm, which is 4 bits wide and 3 words deep.
We use rq and ak signals to implement a blocking communi-
cation protocol as indicated by the guarded commands. A ‘+’
suffix indicates rising edge transition of the corresponding signal.
A ‘-’ suffix indicates falling edge transition. Symbols ‘&’ and ‘!’
indicate the boolean and and not operations.

Example 1:
(Figure 5).

4 Models

model IO io 1.0 /local/ioDir I0;

model P dlx 1.0 /local/ProducerDir Producer;
model C mercury 3.0 /local/ConsumerDir Consumer;

Specification of a producer-consumer pair

Connections

queue {4] comm{3];
C.RESET = IO.RESET;
C.r[0:0) = IO.r{0:0];

4+ Communication protocol
P.Oxff004(0:0) = 'comm full;
C.b_rq = !comm.empt

wheR (P.0Xf£000_wr+ & ! comm.full) do comm{0:3] enqueue P. Oxffooo[o 3):
31

when (C.b_ak+ & ! comm.empty) do comm[0:3) dequeue C.b[0:

+ Outputs

10.inChannel(0:3] = P. OxffOOO[O 3):
I0.outPort[0:3] = C.c(0:3};
I0.InRg = P.0Oxff000_wr:

I0.0utAk = C.b_ak:

In order to illustrate the effect of software and hardware-
software synchronization mechanisms we now consider the de-
sign of the graphics controller introduced in Figure 3. Figure 6
shows the final implementation of the system design. The design
consists of application-specific portions containing initial coordi-
nate generators and control logic for controlFIFO and a software
portion implemented on the DLX processor. The software com-
ponent consists two threads of execution corresponding to the line
and circle drawing routines. Both program threads generate coor-
dinates that are used by the dedicated hardware. Input to Poseidon
consists of gate-level description of the ASIC hardware, assembly
code of the coroutines, and a description of the interface. Exam-
ple 2 shows the Poseidon interface specification of the graphics
controller design.

Paper 14.2

[rowwt T Schnt T wiew T vivoss | 2o 1 ot |
nvfecrfiexjc{of~v]ofuj-JaT ¢ | 3 juea]...}

4 W W T W U UM We U0 1 24 7 28 UM 2%
xA10:3) 0[$000900000000000000000009080000¢)]
wmato®) I! ttmt!uniuu :Ellu“l““!! Ell“k"
!k Ekbuuulllullnnnnnuua u!nnnnnnu
unoouo»mcml‘ kﬂ!! Ikusﬂmnnnnnnannu!n;ﬂi:nnunﬂr
omtrolifol0ckl |oldR2 i1 p2ls Palta p2o22222222k 11 110120001 P21t Poji1s p2222222922R11 PRI P2
OF.resdy J
ore ol L L1111 L 1b a1l 1 114
o |o | L1 1 1 P11
i o L 1 1 |
e I [1 | 1|
3 A A . T T A IS

Figure 7: Example 2: Simulation of Graphics Controller

Example 2:

Specification of the graphics controller
interface (Figure 6).

model
model
model
model
model

gc 1o 1.0 DIR GraphicsController;
ccoord mercury 5.0 DIR gcircle:
lcoord mercury 5.0 DIR gline;

mp dlx 1.0 DIR main;

CF mercury 1.0 DIR control:

queue (1) lqueue[l6], cqueue{l6];
queue [3] controlFifo[2]:

CF.
CF.
CF.
CF.
CF.
CF.
mp.
mp.

Lqueue

when (lcoord.queue rq+ & !lqueue.full) do lqueue{15:0) enqueue
lcoord.queue[15:0)7

lcoord.queue_ak = !lqueue.full;

r(0:0) = lcoord.run[0:0] =~ ccoord.run{0:0] = gc run(0:0]:
RESET = lcoord.RESET = ccoord.RESET = gc.RESE

1rq[0:0} - !lqueue.empty;

1ak[0:0) = mp.0xff004_rd;

crq(0:0) = !cqueue.empty;

cak(0:0] = mp.Oxee004_rd:

0xee004[0:0] = !cqueu®.empty:

Oxff004(0:0] = !lqueue.empty:

when (mp.0xff000 rd+ & !lqueue.empty) do lgueue(15:0] dequeue
mp.Ox££000([15:0]7
mp.Ox££000(16: 16] = !lqueue.empty:

ControlFifo

when (CF.outline_rg+ & !controlFifo.full) do controlFifo[1:0] enqueue 2]

outline[1:0]:
CF.outline_ak = !controlFifo.full:

4+ Output specification

gc.x_out{7:0) = mp.0xff100([7:0]):
gc.y_out(7:0] = mp.OXf£104[7:0):
gc.controlFifo[1:0) — controlFifo[1:0];
q: CF_ready = !controlFifo.empty:

Figure 7 shows some results of Poseidon simulations of the graph-
ics controller. The hardware-software synchronization specified
in Example 2 follows the scheme described in Section 3.2. The
data-driven dynamic scheduling of program threads is achieved
through the use of a 3-deep controlFIFO. In Figure 7, the circle
and line drawing program threads are identified by id numbers
1 and 2 respectively. The program threads are implemented us-
ing the coroutine scheme described in Section 2. Signal ol_rq
and oc_rq in Figure 7 indicate when the line and circle thread
id’s are being enqueued on data request from the software com-
ponent. Variable time distance between oc.rq requests is due to
data-dependent delay offered by the circle drawing routine in soft-
ware. controlFifo_wr represents when a thread of execution
enqueues its thread id in the control FIFO and then yields the ex-
ecution to another thread. x_out and y_out are the coordinates
generated by the line routine and xcircle and ycircle are
the coordinates generated by the circle routine. CF_ready sig-
nals when the control FIFO is not empty and controlFifo_rd
shows when the scheduler checks to see if the control FIFO is not
empty (and eventually read it).

Paper 14.2

230

§ Conclusions

Synthesis using application- speclﬁc as well as reprogrammable
components provides a promising extension of high-level synthe-
sis approaches to realize complex system designs without corre-
sponding increase in the magnitude of the synthesis tasks. Use of a
reprogrammable component, however, poses interesting problems
due to inherently serial nature of program execution that must
interact with concurrently operating hardware portions. Thus syn-
chronization between various components constitutes one of the
most important issues in system synthesis.

‘We have presented an approach to synthesis of systems contain-
ing both application-specific and reprogrammable components and
synchronization schemes that are used to facilitate data-transfer
across concurrently executing system models. The resulting hard-
ware and software components are simulated using an event-driven
simulator, Poseidon which provides cycle-by-cycle simulation re-
sults. Since the selection of a synchronization scheme is driven
by requirements of data-transfer rates, automatic selection of in-
terface protocol can be made based on the data-rate constraints
imposed on the system model. Work is underway to develop an
automated tool to generate Poseidon interface specification and to
synthesize appropriate interface circuitry once such a selection is
made of all data transfers.

6 Acknowledgments

This research was sponsored by NSF-ARPA, under grant No. MIP
8719546 and, by DEC jointly with NSF, under a PYI Award pro-
gram, and by a fellowship provided by Philips/Signetics. We ac-
knowledge also support from ARPA, under contract No. J-FBI-89-
101. The second author was partially supported by CNPg-Brazil
under contract 200212/90.7.

References

{1} G. D. Micheli, D. C. Ku, F. Mailhot, and T. Truong, “The Olympus Synthesis System for
Digital Design.” IEEE Design and Test Ma,.n'u pp. 37-53, Oct. 1990.

J. Rabacy, H. D. Man, and e¢. al., “Cathedral II is System for DSP
Systems”, in Silicon Compilation, editor: D. Gn;m pp- 311-360. Adduoandzy 1988.

D. Thomas, E. Lagnese, R. Walker, J. Nestor, J. R-mde.Blukbw-n.Al‘mMuand
Register-Transfer Lavel: The System Architect's Workb . Kluwer

1990.

4] R. Camp and W. R iel, “Synth Circuits from Behavioral Descriptions,”
IEEE Transactions on CAD/ICAS, vol. 8 no. 2, pp. 171-180, Feb. 1989.

M. B. St “Rapid-Prototyping of Hardware and Softwarc in
a Unified F; I ional Confe on C Aided
Design, (Santa Clara), pp. 152-155, 1991.

D. C. Kz and G. D. Micheli, “Sm«fASlClvnﬂlHumludeebo” in High-level

3]

[5)

(6]

IS’M oditors: Raul Camposano, Wayne Wolf, pp. 177-203. Kluwer Academic
Publishers, 199
m RK.G!WMGDWM lovel Using R ble Compo-
rents,” in Proceedings of the Ewopean Design A ion Confe , Mar. 1992
[8) G.R. Andrews and F. Schmeider, “Concepts and N for C P

ACM Computing Swrveys, vol. 15, no. 1, pp. 3-44, Mar. 1983,

M. E. Conway, “Design of & Scparate Transition-Diagram Compiler,” Comm. of the ACM,
vol. 6, pp. 396-408, 1963.

R. K. Gupta and G. D. Micheli, “Sysem Synthesis via Hardware-Softy
Technical Report CSL-TR, Stanford Umvu-ty 1992,

JLL.} and D.A.F
Morgan-Ksufmann, 1990.

P. J. H. King, *Decision Tables,” The Computer Journal, vol. 10, no. 2, Aug. 1967.

I C. WmdlndA.J We.llmgl Distributed Compuiing, F. B. Chambers a1. al. editors, ch. 14:
201-215. Academic Press, 1984,

T. Amon and G. Barriell "Sizin;" h Queuex: A Case Study in Higher Level
Synthesis,” in Procesdings of the 287 Design Atomation Conference, June 1991.

T.H. Meng, Synchronization Design for Digital Systems, ch. Synthesis of Self-Timed Circuits,
pp. 23-63. Kluwer Academic Publishers, 1991.

9]

10}

Co-design,” CSL

i

Computer : A Qi Approach, ch. 3.

(12]
13

[14)

(15)

[16] G. Bomiello and R. Katz, and O of Interface Transdu Logic,”" in
Proceedings of the IEEE Trauulm on CADIICAS Nov. 1987.
[17] E.W.Dij ds, Nond and Formal Deri of Pre "

“Guarded C i
CACM, vdl. 18, no. 8, pp. 453-457, Aug. 1975.

