
Automatic Test Data Generation using Constraint Solving Techniques

Armmd Gotl ieb
Dassm It Electronique

55 quai Marcel Dassault
92214 S~int Cloud, France

a.~d also at
Universit4 de Nice- Sophia Antipolis

Arnaud.Got l eb(~dassault-elec.fr

Bernard Botella
Dassault Electronique

55 quai Marcel Dassault
92214 Saint Cloud, France

Bernard.Bote l la@dassaul t -e lec . f r

Michel Rueher
Universit~ de Nice - Sophia Antipolis

13S-CNRS Route des colles,
BP 145

06903 Sophia Antipolis, France
rueher~)unice. fr

Abstract

Automatic test data generation leads to identify input
values on which a selected point in a procedure is ex-
ecuted. This paper introduces a new method for this
problem based on constraint solving techniques. First,
we statically transform a procedure into a constraint
system by using well-known "Static Single Assignment"
form and cont:ol-dependencies. Second, we solve this
system to che,,k whether at least one feasible control
flow path goir.g through the selected point exists and
to generate te~t data that correspond to one of these
paths.

The key point of our approach is to take advantage of
current advances in constraint techniques when solving
t h e generated ,:onstraint system. Global constraints are
used in a prelil ninary step to detect some of the non fea-
sible paths. Pz rtial consistency techniques are employed
to reduce the domains of possible values of the test d a t a .

A prototype il.lplementation has been developped on a
restricted subset of the C language. Advantages of our
approach are i.lustrated on a non-trivial example.

Keywords

Automatic tes~: data generation, structural testing, con-
straint solving techniques, global constraints

1 I N T R O D U C T I O N

Structural tes ~ ing techniques are widely used in unit or
module testin~ process of software. Among the struc-
tural criteria, both statement and branch coverages are

Permission to make ~igltal/hard copies of all or part of this material for
personal or classroci i use is granted without fee provided that the copies
are not made or dists ibuted for profit or commercial advantage, the copy-
right notice, the title ~fthe publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post m servers or to redistribute to lists, requires specific
permission and/or fe. ~.
ISSTA 98 Clearwater Beach Florida USA
Copyright 1998 0-89791-971-8/98/0:3..$5.00

53

commonly accepted as minimum requirements. One of
the difficulties of the testing process is to generate test
data meeting these criteria.
From the procedure structure alone, it is only possible
to generate input data. The correctness of the output
of the execution has to be checked out by an "oracle".

Two different approaches have been proposed for auto-
matic test da ta generation in this context. The initial
one, called path-oriented approach [4, 7, 16, 20, 3], in-
cludes two steps which are :

• to identify a set of control flow paths that covers
all statements (resp. branches) in the procedure ;

• to generate input test da ta which execute every se-
lected path.

Among all the selected paths, a non-negligeable amount
is generally non-feasible [24], i.e. there is no input data
for which such paths can be executed. The static identi-
fication of non-feasible paths is an undecidable problem
in the general case [1]. Thus, a second approach called
goal-oriented [19] has been proposed. Its two main steps
are :

• to identify a set of statements (resp. branches) the
covering of which implies covering the criterion ;

• to generate input test da ta that execute every se-
lected statement (resp..branch).

Assuming that every statement (resp. branch) is reach-
able, there is at least one feasible control flow path going
through the selected statement (resp. branch). The goal
of the data generation process is then to identify input
data on which one such path is executed.

For these approaches, existing generation methods are
based either on symbolic execution [18, 4, 16, 7, 10], or
on the so called "dynamic method" [20, 19, 11, 21].

Symbolic execution consists in replacing input param-
eters by symbolic values and in statically evaluating
the statements along a control flow path. The goal of
symbolic execution is to identify the constraints (either
equalities or inequalities) called "path conditions" on
symbolic input values under which a selected path is
executed. This method leads to several problems : the
growth of intermediate algebraic expressions, the diffi-
culty to deal with arrays (although some solutions exist
[13, 8]), and the aliasing problem for pointer analysis.
Using symbolic execution corresponds to an exhaustive
exploration of all paths going through a selected point.
Of course, this may be unacceptable for programs con-
taining a large number of paths.

Korel proposes in [20] to base the test data generation
process on actual executions of programs. Its method
is called the "dynamic method". If an undesirable path
is observed during the execution flow monitoring, then
a function minimization technique is used to "correct"
the input variables. [19] presents an extension of the
dynamic method to the goal-oriented approach. This
method is designed to handle arrays, dynamic struc-
tures, and procedures calls [21]. However, although the
dynamic method takes into account some of the prob-
lems encountered with symbolic execution, it may re-
quire a great number of executions of the program.

This paper introduces a new method to identify- auto-
matically test data on which a selected point in the pro-
cedure is executed. The proposed method operates in
two steps :

1. The procedure is statically transformed into a
constraint system by the use of "Static Single
Assignment" (SSA) form [23, 2, 9] and control-
dependencies [12]. The result of this step is a set of
constraints - - called Kset - - which is formed of :

• the constraints generated for the whole proce-
dure ;

• the constraints that are specific to the selected
point.

2. The constraint system Kset is solved to check
whether at least one feasible path which goes
through the selected point exists. Finally, test data
corresponding to one of these paths are generated.

The key point of this method is to take advantages of
current constraint techniques to solve the generated con-
straint system. In particular, global constraints are used
in a preliminary step to detect some of the non-feasible
parts of the control structures and partial consistency
techniques are employed to reduce the domains of pos-
sible values of the test data. Search methods based on

the combination of both enumeration and inference pro-
cesses are used in the final step to identify test data.
Furthermore, these techniques offer a flexible way to
define and to solve new constraints on values of possible
test data.

A prototype implementation of this method has been
developped on a restricted subset of the C language.

Outline of the paper : the second section presents the
generation of Kset while the third section is devoted
to the resolution techniques. The four thsec t ion de-
scribes the prototype implementation while the fifth sec-
tion provides a detailed analysis of a non-trivial example
that has been successfully treated with our method.

2 G E N E R A T I O N O F
S T R A I N T S Y S T E M

T H E C O N -

Application of our method is limited to a structured
subset of a procedural language. Unstructured state-
ments such as "goto-statemenf' are not handled in our
framework because they introduce non-controled exits
of loops and backward control flow.
Pointer aliasing, dynamic allocated structures, func-
tion's pointer involve difficult problems to solve in the
frame of a static analysis. In this paper, we assume that
programs avoid such constructions. The treatement of
basic types such as char and floating point numbers is
not presented. A few words in the fourth section are
devoted to the extension of our method to these types.

The generation of the constraint system Kset is done in
three steps :

1. Generation of the "Static Single Assignment"
form ;

2. Generation of a set of constraints corresponding to
the procedure p, called pKset(p) ;

3. Generation of a set of constraints corresponding
to the control-dependencies of a selected point n,
called cKset(n).

Kset is defined as :

Kset(p, n) de=.1 pKset(p) U cKset(n)

Now, let us introduce some basics used in the rest of the
paper.

2.1 Bas ics

A procedure control flow graph (V, E, e, s) [1] is a con-
nected oriented graph composed by a set of vertices V,

54

int f (i n t i)
int j ;

i , j : = l ;
2. w h i l e (l e O)

do
3 a j : = j * i ;
3b i : = i - 1 ;

o d ;
4. i f (j = 2)
5. t h e n i : = 2 ;

f i ;
6. r e t u r n j ;

Figure 1: Example 1

a set of edges t': and two particular nodes, e the unique
entry node, ant: s the unique exit node. Nodes repre-
sent the basic "t locks which are sets of statements exe-
cuted without ~ ranching and edges represent the possi-
ble branching t:etween basic blocks. For instance, con-
sider the procec: ure 1 given in figure 1, which is designed
to compute the factorial function, and its control flow
graph (CFG) st:own in figure 2.

A point is eithe~ a node or an edge in the CFG. A path
is a sequence <: v i , . . . , vj > of consecutive nodes (edge
connected) in (7, E, e, s). A control flow path is a path
< v i , . . . , v j > in the CFG, where vi = e and vj = s. A
path is feasible ,f there exists at least one test datum on
which the path is executed, otherwise it is non-feasible.
For instance, tile control flow path < 1, 2, 4, 5, 6 > in
the CFG of example 1 is non-feasible.

A node Vl is p(:st-dominated [12] by a node v2 if every
path from vl t¢ s in (V, E, e, s) (not including vl) con-
tains v2.
A node v2 is c~ntrol-dependent [12] on vl iff 1) there
exists a path t) from vl to v2 in (V, E, e, s) with any
v in P \ {vi, v.,} post-dominated by v2 ; 2) vl is not
post-dominatec by v2. For example, block 5 is control-
dependent on l=]ock 4 in the CFG of example 1.

2.2 S S A F o r m

Most procedur~fl ianguages allow destructive updating
of variables ; t fis leads to the impossibility to treat a
program variab .e as a logical variable. Initially proposed
for the optimization of compilers [2, 23], the "Static
Single Assignn ent" form [9] is a semantically equiv-
alent version c f a procedure on which every variable
has a unique (~ efinition and every use of a variable is
reached by this definition. The SSA form of a lin-

1 For all the exalaples t h r o u g h o u t the paper , a clear abs t rac t syn tax
is used to indicate t h a t our m e t h o d is not des igned to a par t i cu la r
l anguage

Figure 2: Control flow graph of example 1

int f(int i0)
int J0 ;

l a . J0 := 1 ;
/ * H e a d i n g * /

l b . J2 :--- ¢ (J o , J x) ;
l c . i2 :-- ¢ (i 0 , i l) ;
2. whi le (i2 ¢ 0)

do
3a . J l :---- J2 * i 2 ;
3b . i l :---- i2 - 1 ;

od
4. i f (J2 ---- 2)
5. t h e n 13 := 2 ;

fl
6. 14 := ¢(i3, i2) ;

r e t u r n (3"2) ;

Figure 3: SSA Form of example 1

ear sequence of code is obtained by a simple renam-
ing (i > i0, i > i l , . . .) of the variables. For the
control structures, SSA form introduces special assign-
ments, called C-functions, in the junction nodes of the
CFG. A C-function returns one of its arguments depend-
ing on the control flow. Consider the if-statement of
the SSA form of example 1 in figure 3 ; the C-function
of statement 6 returns i3 if the flow goes through the
then-part of the statement, i2 otherwise. For some more
complex structures, the C-functions are introduced in a
special heading of the loop (as in the while-statement
in figure 3). SSA Form is built by using the algorithm
given in [5], which is designed to treat structured pro-
grams in one parsing step.
For convenience, a list of C-assignments will be written
with a single statement :

:= Z2 := ¢(Zl , Z0) : =

55

2.3 G e n e r a t i o n o f pKset

pKset(p) is a set of both atomic and global constraints
associated with a procedure p.

Informally speaking, an atomic constraint is a relation
between logical variables. Global constraints are de-
signed to handle more efficiently set of atomic con-
straints. For instance, global constraint ELEMENT/3 2 :
ELEMENT(k, L, v) constraints the k th argument of the
list L to be equal to v.

Let us now present how pKset is generated. The method
is driven by the syntax. Each subsection, which is de-
voted to a particular construction, presents the genera-
tion technique.

2.3.1 Declaration

The variables of a procedure are either input variables
or local variables. Parameters and global variables are
considered as input variables while the other variables
are considered as local. Each variable x which has a
basic type declaration, is translated in atomic constraint
of the f o r m : x E [Min, Max] where Min (resp. Max)
is the minimum (resp. maximum) value depending on
the current implementation. An array declaration is
translated into a list of variables of the same type while
a record is translated into a list of variables of different
types.
A specific variable, named "OUT", is devoted to the
output value of the procedure.

2.3.2 Assignment and Decision

Elementary statements, such as assignments and ex-
pressions in the decisions are transformed into atomic
constraints. For instance, the assignment of statement
3a in example 1 generates the constraint j t = J2 * i2.
The decision of s tatement 2 generates i2 ¢ 0. A ba-
sic block is translated into a conjunction of such con-
straints. For example, statements 3a and 3b generate
j l = j2 * i2 Al l = i2 - 1.

2.3.3 Conditional Statement

The conditional s tatement if_then_else is translated
into global constraint I T E / 3 in the following way :

pKset(if d t h e n sl e lse s2 fi v~ := ¢(v~, v~)) =
ITE(pKset(d), pKset(sl) A ~ = ~2, pKset(s2) A ~ = ~3)

2where/3 denotes the arity of the constraint

This constraint denotes a relation between the decision
and the constraints generated for the then- and the else-
parts of the conditional. Note that C-assignments are
translated in simple equality constraints. The opera-
tional semantic of the constraint I T E / 3 will be made
explicit in section 3.2.

2.3.4 Loop Statement

The loop statement while is also translated in a global
constraint W / 5 . Informally speaking, this constraint
states that as long as its first argument is true, the
constraints generated for the body (fifth argument) of
the while statement are true for the required data.

pKset (6 := ¢ (4 , vq) wh i l e d d o s o d)
= w(pKset(d), vo, vl, v2, pKset(s))

The generated constraint requires three vectors of vari-
ables v~, vq, v~. v~ is a vector of variables defined before
the while-statement. ~ is the vector of variables defined
inside the body of the loop and v~ is the vector of vari-
ables referenced inside and outside the while-statement.
Note here that the C-assignments are only used to iden-
tify the vectors of variables.

The operational semantics of the constraint w / 5 will
also be given in section 3.2.

2.3.5 Array and Record

Both arrays and records are treated as list of variables,
therefore we only present the generation of pKset on
arrays.

Reference of an array is provided in the SSA Form by
a special expression [9] : access. The evaluation of ac-
cess(a,k) statement is the k th element of a noted v.

For the definition of an array, the special expression
update is used [9]. update(a,j,w) evaluates to an array
al which has the same size as a and which has the same
elements as a, except for j where value is w.

Both expressions access and update are treated with
the constraint ELEMENT/3 :

pKset(v:-- access(a, k)) -- {ELEMENT(k, a, v)}

pKset(al := update(a,j ,w))
"- Ui~tj{ELEMENT(i, a, v) A ELEMENT(i, al, v)}

u {ELEMENT(j, al, w)}

56

2.4 G e n e r a t i o n o f c K s e t

cKset(n) is a set of constraints associated with a point
n in the CFG. It represents the necessary conditions
under which a selected point is executed. These con-
ditions are I:recisely the control-dependencies on the
selected poinl, cKset(n) is then the set of constraints of
the statemen' s and the branches on which n is control-
dependent. For example, node 5 is control-dependant
on node 4 th,~n : cKset(5) = {j2 = 2}

2.s E x a m p l e

For the proc,~dure given in figure 1 and the statement
5, the following sets are obtained :
p g s e t (/) =
{ j 0 = l ,

w(i2 # O, (io, jo), (il, j l) , (i2, j2),
j l = j 2 " i 2 All = i 2 - 1),

I T E (j 2 = 2 ia = 2 A i 4 = i3, i 4 = i 2) ,

OUT = j2 }

cKset(5) = {j2 = 2}

Kset (/ , 5) = p K s a (y) U eKset(5)

S O L V I N G T H E C O N S T R A I N T S Y S -
T E M A N D G E N E R A T I O N O F T E S T
D A T A

Constraint p :ogramming has emerged in the last decade
as a new toe I to address various classes of combinato-
rial search p :oblems. Constraint systems are inference
systems bas(d on such operations as constraint propa-
gation, consistency and entailment. Inference is based
on algorithms which propagate the information given
by one cons;raint to others constraints. These algo-
rithms are nmally called partial consistency algorithms
because the:" remove part of inconsistent values from
the domain of the variables. Altough these approxi-
mation algorithms sometimes decide inconsistency, it is
usually nece,sary to combine the resolution process with
a search me 'hod. Informally speaking, search methods
are intelligei.t enumeration process.
For a survey on Constraint Solving and Constraint Logic
Programmi:t g, see [14] and [17].

Let us first introduce some basics notations on con-
straint prog::amming required in the rest of the paper.

These notations are extracted from [15].

A constraint system is consistent if it has at least one
solution, i.e. if there exists at least one variable assign-
ment which respects all the constraints. More formally,
a set of constraints ~r is called a store and the store is
consistent if :

p

where (3)¢ denotes the existential closure of the formula
¢.
Entailment test checks out the implication of a con-
straint by a store. For example,

x > 0 is entailed by {x = y2}

The entailment test of the constraint c by the store cr is
noted :

b (V)(~ ~ c)

where (V)¢ denotes the universal closure of ¢.
Both consistency and entailment tests are NP-complete
problems in the general case. For this reason, implemen-
tations of these tests are based on two approximations :
domain-consistency and interval-consistency.

3.1 L o c a l C o n s i s t e n c y

Associated with each input variable xi is both a domain
Di E z~ and an interval D* = [min(Di), max(Di)].
A constraint C(Xl , . . . , xn) is a n-ary relation between
variables (x l , . . . , xn) which denotes a subset of ~ ' .

Domain-consistency also called arc-consistency removes
values from the domains and Interval-consistency only
reduces the lower and upper bounds on the domains.
Both are applied in a subtle combination by the con-
straint solver. Intuitivelly, when the domains contain
a small number of values, domain-consistency is ap-
plied. Interval-consistency is applied on large domains.
Precise definitions of these local consistencies are now
given :

D e f i n i t i o n 1. (domain-consistency) [15]
A constraint c is domain-consistent if for
each variable xi and value vi E Di there
exists values vl, • • • , V i - 1 , V i + I , • • • , Vn in

D 1 , . . . , D i - l , D i + l , . . . , D n such that C (V l , . . . , vn)
holds. A store ~r is domain-consistent if for every
constraint c in ~, c is domain-consistent.

D e f i n i t i o n 2. (interval-consistency) [15]
A constraint c is interval-consistent if for each
variable xi and value vl E {min(Di) ,max(Di) }
there exist values v l , . . . , v i - l , v i + x , . . . ,Vn in

57

int g(int x,int y)
int z ;
int t ;

l a . z : = x * y ;
l b . t : - - 2 . x ;
2. i f (z ~ 8)

t h e n
3a.
3b.
4.

t : = t - y ;
i f (t = l A x > l)

t h e n ...

Figure 4: Example 2

D~,.. . ,D*_I,Di*+I,. . . ,D* such that c (v l , . . . , v ,)
holds.

A local t reatment is associated to each constraint.
The corresponding algorithm is able to check out both
domain- and interval- consistencies for this constraint.
The inference engine propagates the reductions pro-
vided by this algorithm on the other constraints. The
propagation iterates until a fixpoint is reached. Infor-
mally speaking, a fixpoint is a state of the domains
where no more prunnings can be performed.

Let us illustrate how interval-, domain- consistency and
the inference engine may reduce the domains of possible
values of test da ta on the example 2 given in figure 4.
Consider the problem of automatic test data generation
for s tatement 4.

Parameters are of non-negative integer type. The
following set is provided :

Kset(g,4) -- {xo, yo E [O, Max],zo = xo* yo, to =
2*xo, zo<8, t l=to-Yo, t l = l , xo> l }

and the following resolution process is performed :

zo = xo * Yo leads to zo E [0, Max]
to = 2 * xo leads to to E [0, Max]
zo ~ 8 leads to zo E [0, 8]
t l - 1 leads to t l E {1}
xo > 1 leads to xo E [2, Max]
zo -- xo * Yo leads to xo E [2, 8] and Yo E [0, 4]
to = 2 * xo leads to to E [4, 16]
t l = to - Yo leads to Yo e {3, 4} and to e {4, 5}
to = 2 , x0 leads to x0 E {2} and to E {4}
tl = t 0 - Y0 leads to Y0 E {3}

Finally, (xo = 2, Yo = 3) corresponds to the unique test
datum on which statement 4 in the program of figure 4
can be executed.

3.2 Global Cons tra in t s D e f i n i t i o n s

For atomic constraints and some global constraints, the
local treatment is directly implemented in the constraint
solver. However, for user-defined global constraint, it is
necessary to provide the algorithm. The key point of our
approach resides in the use of such global constraints to
treat the control structures of the program. The global
constraints are used to propagate information on incon-
sistency in a preliminary step of the resolution process.

3.2.1 Entailment Test Implementation

The entailment test is used to construct these global
constraints. The implementation of entailment test may
be done as a proof by refutation. A constraint is proved
to be entailed by a store if there is no variable assign-
ment respecting both the store and the negation of the
constraint.

The operational semantic of the user-defined global con-
straints is designed with properties which are "guarded"
by entailment tests. Such properties are expressed by
constraints added to the store. We have introduced in
the section 2.3 two global constraints : ITE/3 and w / 5 .
Let us give now their definitions.

3.2.2 I T E / 3

Definition 3. (ITE/3)
~TE(c, {cl ^ . . . ^ cp}, { 4 ^ . . . ^ ~})

• i f p (v)(,~ ~ c) then ,~ := ,, u {c~ ^ . . . ^ cp}

• i f ~ (V)(o" ~ -,e) the,, ~ := ~ U { 4 ^ . . . ^ e~}

• if ~ (V)(@ =:=Y ~(Cl A... A cp)) then
:= ~ u {~e ^ el n . . . ^ c ~ }

• if ~ (V)(~ = , - ' (4 n . . . n c~)) the,,
a" :---- a'U {c A Cl A . . . A cp}

The first two features of this definition express the op-
erational semantic of the control structure if_then_else.
The last ones are added to identify non-feasible parts
formed by one of the two branches of the control
structure. Consider for example :

ITE(i0 ~ 0, il -- i0 -- 1 A i2 = il, i2 = 1)

Suppose that the store contains i2 - 0 ; when
applying the fourth feature of the ITE constraint we
have to consider the consistency of the following set :
{i2 - 0} U {i2 = 1} It is inconsistant, meaning that the

58

else-part of the statement is non feasible. Then, the
constraints i0 ~ 0 A il = i0 - 1 A i2 = il are added to
the store.

3.2.3 1/17/5

The while-state'nent combines looping and destructive
assignments. H(nee w / 5 behaves as a constraint gener-
ation program.

When evaluating w / 5 , it is necessary to allow the gen-
eration of new ¢ 3nstraints and new variables. A substi-
tution s u b s (~ ~- ~ , e) is a mechanism which generates
a new constrail.t having the same structure as c but
where variables vector v~ has been replaced by vector
v~. The followi:~g example illustrates this mechanism :
if v~ = (zl , Yl)~md v~ = (x2, Y2) then
s u b s (~ 6 - v - ~ , x + y l = 3) i s (x 2 + y 2 = 3)

w / 5 is now formally defined :

D e f i n i t i o n 4. : w / 5)
w (e, v~, v~, v~, c ~ A . . . A ep)

@

i f ~ (V)(a ==ez subs(~2 6- ~o, c)) then
:= ~ u {~, ~b~(4 6- 4 , c~ ̂ . . . ^ e,) ^

w(c,v~,~, ~ ,

i f ~ (V)(a ==~ subs(Q 6- ~o,-,c)) then
~r:=~rU{4 = 4}

i / ~ (v)(~- ~ ~ b ~ (~ 6- 4,-~(e~ ^ . . . ^ e~)))
then
~, := ~ u {,, ~b~(4 6- ~,-,~) ^ 4 = 4 }

~ / h (v)(~ ~ v~ # v~) then
:= ~ u {~,:=b~(4 6- 4 , e) ^

subs(v2 (.- ~o, e l A . . . ^ ep) ^
w(c, vq, ~ , 4 , subs(~ ~ ~ , c~ ^ . . . ^ cp))}

The first two f¢atures represent the operational seman-
tic of the while- statement. As for the ITE/3 constraint,
the other featm es identify non-feasible part of the struc-
ture. The thirc, one is applied if it can be proved that
the constraints of the body of the loop are inconsistent
with the curren ~ store. This means the body cannot be
executed even (,nee, the output vector of variables v~ is
then equated ~]th the input vector v~. In the opposite,
if v~ = v~ is inconsistent in the current store, the fourth
feature is applied meaning that the body of the loop is
executed at least once.

Let us illustra':e the treatment of w / 5 on the while-
statement of example 1 :

Suppose that the store contains {j0 = 1,j2 = 2} ; when
testing the consistency of

w(i2 ¢ 0, (io,jo), (ix, j1) , (i2,j2),
j l = j2 * is A il = is -- 1)

the fourth feature is applied twice and then gives
the following store :

{jo = 1,js = 2,j2 = j l * i t , i2 = it - 1,
j l = jo *io, il = i o - 1,i2 = 0}

Finally, (io = 2) is obtained.

3.3 Complete Resolut ion of the Example

Consider again the example of figure 1 and the problem
of generating a test data on which a feasible path going
through statement 5 is executed. The Kset provided by
the first step of our method is :

K s e t (f , 5) = p K s e t (f) U cKse t (5) =
{ J0 = 1 ,

w(i2 ¢ 0, (io,jo), (i l , j l) , (is , j2) ,
j l - - j2 * i2 A i l ---- i2 - 1),

ITE(j2 = 2, is = j2 A i4 = i3, i4 = i2),
O U T = js} U {js = 2}

The loop is executed twice, generating the follow-
ing store :

{jo = 1,io ¢ 0, il ¢ 0, i2 = 0, i2 = i 1 - 1 , i l = i o - l , j 2 =
j l * il , j l = jo * io, j2 = 2, i3 = j2, i4 = i3, O U T = j2 }

Interval" consistency is applied to solve the sys-
tem, and yields to i0 = 2. This is the unique test da ta
on which statement 5 may be executed.

3.4 Search Process

Of course, local consistencies are incomplete constraint
solving techniques [22]. The store of constraints can
be domain-consistent though there is no solution in the
domains (i.e. the store is inconsistent). Let us give an
example of a classical pitfall of these techniques :
• ,u,~ ~ {0,1}, ~ = { ~ # u , u # z }
Testing ~ (V)(~r ~ (x -- z)) fails because the store
{z # y, y ~£ z, x ¢ z} is domain-consistent.

In order to obtain a solution, it is necessary to enumer-
ate the possible values in the restricted domains [22, 15].
This process is incremental. When a value v is chosen in

59

the domain D~ of the variable x, the constraint (x = v)
is added to the store and propagated. This may reduce
the domains of the other variables. This process is re-
peated until either the domain of all variables is reduced
to a single value or the domain of some variable becomes
empty. In the former case, we obtain a solution of the
test da ta generation problem, whereas in the latter we
must backtrack and try another value (x = w) until
D~ =O.

In general, there are many test data on which a se-
lected point is executed. As claimed in the Introduc-
tion, constraint solving techniques provide a flexible way
to choose test data. The search process can be user-
directed by adding new constraints on the input vari-
ables of the procedure. Our framework provides an ele-
gant way to handle such constraints. These constraints
are propagated by the inference engine as soon as they
induce a reduction on the domains. Furthermore, these
additional constraints may be used to insure that the
generated input data are "realistic". They may have
one of the two following forms :

• constraints on domains (for example z0 E
[-3 , 17]) ;

• constraints between variables (for example Y0 > x0
meaning that a parameter Y0 of a procedure is
strictly greater than another one x0).

It is also possible to guide the search process with some
well-known heuristics. For example :

• to select the variable with the smallest domain
(first-fail principle) ;

• to select the most constrained variable ;

• to bissect the domains (x E [a, b] is transformed
into (D~ = [a, a + b/2] or Dx = [a + b/2 , b])).

4 I M P L E M E N T A T I O N

INKA, a prototype implementation has been developed
on a structured subset of language C. The extension to
control structures such as do-whi le and swi tch statement
is straightforward. Characters are handled in the same
way as integer variables. Floating point numbers do not
introduce new difficulties in the constraints generation
process, but they require another solver. Although the
domains remain finite, it is of course not possible to
enumerate all the values of a floating point variable.
Resolution of the constraint system is therefore more
problematic. References on these solvers can be found

int s a m p l e (i n t a[3], i n t b[3], i n t target)
int i, f a , f b , ou t ;

l a . i : = 1 ;
l b .]a := 0 ;
l c . fb := 0 ;
2. w h i l e (i _< 3)

d o
3. i f (a[i] = target)
4. t h e n f a :---- 1 ;

f l ;
5. i : = i + 1 ;

od
6. i f (f a = l)

t h e n
7a. i := l ;
7b fb := 1 ;
a. w h i l e (i _< 3)

do
9. i f (b[i] ~ target)
10. t h e n]b := 0 ;

f i ;
11. i : = i + 1 ;

d o ;
f l ;

12. if (fb = 1)
13. t h e n out := 1 ;
14. e l s e out := 0 ;

f i ;
15. return out ;

Figure 5: Program SAMPLE

in [17]. The extension of our method to pointer variables
falls into two classical problems of static analysis : the
aliasing problem and the analysis of dynamic allocated
structures.

INKA includes 5 modules :

• A C Parser

• A generator of SSA form and control-dependencies

• A generator of K s e t

• A constraints solver

• A search process module

The constraint solver is provided by the CLP(FD) li-
brary of Sicstus Prolog 3.5 [6].

5 E X A M P L E

We present now the results of our method on a non-
trivial example adapted from [11] : the SAMPLE pro-
gram given in figure 5. For the sake of simplicity, it is
written in the abstract syntax used in this paper. Size
of array have been reduced to 3 for improving the pre-
sentation.

50

Consider the problem of automatic test data generation
to reach node 13.

INKA has ge:erated the Kset(SAMPLE, 13) constraint
system. The f)llowing set of constraints on domains are
added :

a[1], a[2], a[3], bill, b[2], b[31, target E [1, 9]

Table 1 reporl s only the results of the constraint solver
and search pr)cess module. Experiments are made on
a Sun Sparc 5 workstation under Solaris 2.5

First experim rots concern the search of solutions with-
out adding ar.y kind of constraints on input data. The
line 1 of the t~ hie 1 indicates the time required to obtain
the first solut: on and all solutions of the problem. The
exact test da~ • "s provided in the former case while the
number of so: ltions is only provided in the later one.

Then, we hav, considered that the user wants the input
data to satisf~ the additional constraint :

a[3] 2 = all] 2 + a[2] 2

Second line r, ports the results of generation when the
additional cor.straint is checked out after the search pro-
cess and the t l ird line reports the results when the con-
straint is add, d to the current store and propagated.

A first fail eaumeration heuristic has been used for
these experin:ents. Test data are given in vector form
(a[1], a[2], a[3:, b[1], b[2], b[3],target) and CPU time is
the time elap:ed in the constraint solving phase. Note
that a comple ;e enumeration stage would involve to try
97 = 4782969 vz~lues.

These experir.~ents are intended to show what we have
called the fle::ible use of constraints. First, the CPU
time elapsed :ia the first and second experiments are ap-
proximatively the same to obtain all the solutions. In
both cases, tl.e search process has enumerated all the
possible values in the reduced domains. The only dif-
ference is that, in the second case, the added constraint
has been chec ~ed out after the enumeration step. This
illustrate a g, nerate and test approach. On the con-
trary, note that the results presented in the third line
of table 1 show an important improvement factor due
to the use of 1 he additional constraint in the resolution
process. In tl e third case, the additional constraint is
used to prune: the domains and thus the time elapsed in
the search pro cess module is dramatically reduced.

Of course, f t r ther experiments are needed to show
the effectiven,~ss of our approach and to compare the
method with)ther approaches.

Table 1: Results

First solu- CPU time All solutions CPU time
tion

(1,1,1,1,1,1,1) 1.0s 1953 solu- 287s
tions

(3,4,5,3,3,3,3) 53s 292s

(3,4,5,3,3,3,3) 1.3s

(3,4,5,3,3,3,3),
(3,4,5,4,4,4,4),
(3,4,5,5,5,5,5),
(4,3,5,3,3,3,3),
(4,3,5,4,4,4,4),
(4,3,5,5,5,5,5)
(3,4,5,3,3,3,3),
(3,4,5,4,4,4,4),
(3,4,5,5,5,5,5),
(4,3,5,3,3,3,3),
(4,3,5,4,4,4,4),
(4,3,5,5,5,5,5)

2.4s

6 C O N C L U S I O N

In this paper, we have presented a new method for the
automatic test data generation problem. The key point
of this approach is the early detection of some of the
non-feasible paths by the global constraints and thus the
reduction of the number of trials required for the gen-
eration of test data. First experiments on a non-trivial
example made with a prototype implementation tend
to show the flexibility of our method. Future work will
be devoted to the extension of this method to pointer
variables and experimentations with floating point num-
bers ; an experimental validation on real applications is
also forseen.

A c k n o w l e d g e m e n t s

Patrick Taillibert and Serge Varennes gave us invalu-
able help on preliminary ideas to design the global con-
straints introduced. Thanks to Xavier Moulin for its
helpful comments on earlier drafts of this paper.
This work is partially supported by A.N.R.T.
This research is part of the software testing project DE-
VISOR of Dassault Electronique.

References

[1] AHO, A., SETHI, R., AND ULLMAN, J. Compilers
Principles, techniques and tools. Addison-Wesley
Publishing Company, Inc, 1986.

51

[2] ALPER.N, B., WEGMAN, M. N., AND ZADECK,
F. K. Detecting Equality of Variables in Programs.
In Proc. of Symposium on Principles of Program-
ming Languages (New York, January 1988), ACM,
pp. 1-11.

[3] BERTOLINO, A., AND MAI~I%ff., M. Automatic
Generation of Path Covers Based on the Con-
trol Flow Analysis of Computer Programs. IEEE
Transactions on Software Engineering 20, 12 (De-
cember 1994), 885-899.

[4] BOYEtt, R., ELSPAS, B., AND LEVITT, K. SE-
LECT - A formal system for testing and debugging
programs by symbolic execution. SIGPLAN No-
tices 10, 6 (June 1975), 234-245.

[5] BRANDIS, M. M., AND M()SSENBOCK, H. Single-
Pass Generation of Static Single-Assignment Form
for Structured Languages. Transactions on Pro-
gramming Languages and Systems 16, 6 (November
1994), 1684-1698.

[6] CARLSSON, M. SICStus Prolog User's Manual,
Programming over Finite Domains. Swedish In-
stitute in Computer Science, 1997.

[7] CLARKE, L. A System to Generate Test Data and
Symbolically Execute Programs. IEEE Transac-
tions on Software Engineering SE-2, 3 (September
1976), 215-222.

[8] COEN-POrtISINI, A., AND DE PAOLI, F. Array
Representation in Symbolic Execution. Computer
Languages 18, 3 (1993), 197-216.

[9] CYTRON, R., FERRANTE, J., ROSEN, B. K.,
WEGMAN, M. N., AND ZADECK, F. K. Efficently
Computing Static Single Assignment Form and the
Control Dependence Graph. Transactions on Pro-
gramming Languages and Systems 13, 4 (October
1991), 451-490.

[10] DEMILLO, R. A., AND OFFUT, A. J. Constraint-
Based Automatic Test Data Generation. IEEE
Transactions on Software Engineering SE-17, 9
(September 1991), 900-910.

[11] FErtGUSON, R., AND KOREL, B. The ChainingAp-
proach for Software Test Data Generation". ACM
Transactions on Software Engineering and Method-
ology 5, 1 (January 1996), 63-86.

[12] FEPdtANTE, J., OTTENSTEIN, K. J., AND WAR-
REN, J. D. The Program Dependence Graph and
its use in optimization. Transactions on Program-
ming Languages and Systems 9-3 (July 1987), 319-
349.

[13] HAMLET, D., GIFFORD, B., AND NIKOLIK, B. Ex-
ploring Dataflow Testing of Arrays. In Proc. of the
International Conference on Software Engineering
(Baltimore, May 1993), IEEE, pp. 118-129.

[14] HENTENRYCK, P. V., AND SAR.ASWAT, V. Con-
straints Programming : Strategic Directions. Con-
straints 2, 1 (1997), 7-34.

[15] HENTENRYCK, P. V., SARASWAT, V., AND DEV-
ILLE, Y. Design, implementation, and evaluation
of the constraint language cc(fd). In LNCS 910
(1995), Springer Verlag, pp. 293-316.

[16] HOWDEN, W. Symbolic Testing and the DISSECT
Symbolic Evaluation System. IEEE Transactions
on Software Engineering SE-3, 4 (July 1977), 266-
278.

[17] JAFFAR, J., AND MAHER, M. J. Constraint Logic
Programming : A Survey. Journal of Logic Pro-
gramming 20, 19 (1994), 503-581.

[18] KING, J. C. Symbolic Execution and Program
Testing. Commun. ACM 19, 7 (July 1976), 385-
394.

[19] KOREL, B. A Dynamic Approach of Test Data
Generation. In Conference on Software Mainte-
nance (San Diego, CA, November 1990), IEEE,
pp. 311-317.

[20] KOREL, B. Automated Software Test Data Gener-
ation. IEEE Transactions on Software Engineering
16, 8 (august 1990), 870-879.

[21] KOREL, B. Automated Test Data Generation for
Programs with Procedures. In Proc. of ISSTA '96
(San Diego, CA, May 1996), vol. 21(3), ACM, SIG-
PLAN Notices on Software Engineering, pp. 209-
215.

[22] MACKWORTH, A. K. Consistency in Networks of
Relations. Artificial Intelligence 8, 1 (1977), 99-
118.

[23] ROSEN, B. K., WEGMAN, M. N., AND ZADECK,
F. K. Global Value Numbers and Redundant Com-
putations. In Proc. of Symposium on Principles
of Programming Languages (New York, January
1988), ACM, pp. 12-27.

[24] YATES, D. F., AND MALEVI~IS, N. Reducing The
Effects Of Infeasible Paths In Branch Testing. In
Proc. of Symposium on Software Testing, Analysis,
and Verification (TAV3) (Key West, Florida, De-
cember 1989), vol. 14(8) of Software Engineering
Notes, pp. 48-54.

62

