
38.1

Simulation Vector Generation from HDL Descriptions
for Observability-Enhanced Statement Coverage

Farzan Fallah Pranav Ashar Srinivas Devadas
Fujitsu Labs. of America, Inc. CCRL Laboratory for Computer Science

Sunnyvale, CA NEC USA, Princeton MIT, Cambridge

Abstract

Validation of RTL circuits remains the primary bottleneck in im-
proving design turnaround time, and simulation remains the primary
methodology for validation. Simulation-based validation has suf-
fered from a disconnect between the metrics used to measure the er-
rcr coverage of a set of simulation vectors, and the vector generation
process. This disconnect has resulted in the simulation of virtually
endless streams of vectors which achieve enhanced error coverage
only infrequently. Another drawback has been that most error cov-
erage metrics proposed have either been too simplistic or too ineffi-
cient to compute. Recently, an effective observability-based state-
ment coverage metric was proposed along with a fast companion
pTocedure for evaluating it.

The contribution of our work is the development of a vector gen-
eration procedure targeting the observability-based statement cov-
erage metric. Our method uses repeated coverage computation to
minimize the number of vectors generated. For vector generation,
we propose a novel technique to set up constraints based on the cho-
sen coverage metric. Once the system of interacting arithmetic and
Boolean constraints has been set up, it can be solved using hybrid
linear programming and Boolean satisfiability methods. We present
heuristics to control the size of the constraint system that needs to be
solved. We present experimental results which show the viability of
automatically generating vectors using our approach for industrial
RTL circuits. We envision our system being used during the design
process, as well as during post-design debugging.

1 Introduction

Simulation is by far the primary design validation methodology in
IC design and it is likely to remain so for the foreseeable future, es-
pecially in the validation of RTL circuits. A reason for this is that
the typical RTL circuit is derived from a heterogeneous, ad hoc de-
scription of the behavior, i.e., there is no formal model of the behav-
ior for the RTL to be compared against. In fact, even if there were
such a formal model, verification tools available today are gener-
ally not robust enough to perform an automatic, formal comparison
of the RTL against the behavioral model. That leaves some form of
simulation as the only alternative to compare the U 0 response of the
RTL against the specification.

Simulation is the most time-consuming task in the design of mi-
crochips, and simulation time clearly influences the time-to-market.
Vector generation (usually done manually by hordes of “verification
engineers” poring over the HDL code) and actual simulation time
both contribute to the time spent in validating the design. Clearly,
there is a need for manual generation of simulation vectors to check

Permission to make digital or hard copies of all or part of this work for personal or
classmom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
DAC 99. New Orleans, Louisiana
01999 ACM 1-581 13-092-9/99/0006..$5.00

functionality which cannot possibly be covered by any coveragemet-
ric. It is our belief, though, that most functional errors can be de-
tected through the prudent use of a compact set of simulation vec-
tors derived from a suite of quality coverage metrics. The choice
of coverage metrics will influence the computational requirements
of automatic vector generation, and the size of the generated vec-
tor set. However, the most important step here is to help design-
ers to develop sufficient confidence in the vectors generated in this
manner to cut back on their manual- and random-vector generation
efforts. If one could convince designers that automatic vector gen-
erators produce a majority of the vectors that verification engineers
manually create, that would be a giant step forward, and would re-
sult in significant reduction of design turnaround time.

The key question is what constitutes a reasonable suite of cov-
erage metrics? Clearly, in order to detect an error, simulation must
visit the site of the error, and subsequently propagate the effect of
the error to an observable’ output. A coverage metric must begin
with some error model and impose observability and controllability
constraints on the simulation to be useful. An additional require-
ment is efficient evaluation of the coverage metric, if it is to be used
in the inner loop of vector generation. It is obvious that the cover-
age of all paths in the HDL code or the coverage of all transitions in
an FSM model of the implementation [I] results in way too many
vectors to be usable. Approaches that generate vectors which cover
selected transitions in the FSM model or selected paths in the HDL
code are much more practical. Coverage of all statements in the
HDL code [2] is more tractable than path or transition coverage, but
again not very meaningful since it does not address the observabil-
ity requirement.

A recent development in coverage metrics for simulation-based
validation has been the proposal of an effective observability-based
statement coverage metric along with a fast companion procedure
for evaluating it [3,4]. This metric is more accurate than just state-
ment coverage since it also incorporates observability criteria. On
the other hand, it is also more practical than path or transition cov-
erage since it leads to a much smaller number of vectors. The eval-
uation procedure proposed in [4] is computationally very efficient,
more so than other approaches. A feature of this coverage metric is
that it is pessimistic, making it more likely that a vector generated
based on this metric will in fact uncover a real design error. It is our
belief that this coverage metric must be a part of any chosen suite
of coverage metrics used for vector generation.

1.1 Our Contribution

The contribution of our work is the proposal of a vector genera-
tion procedure targeting the observability-based statement coverage
metric. We use repeated coveragecomputation to minimize the num-
ber of vectors generated. For vector generation, we propose novel
techniques to set up constraints based on our chosen coverage met-
ric. To solve the system of interacting arithmetic and Boolean con-
straints, we augment recent algorithms for solving hybrid satisfia-

‘By observablewe mean that a monitoror the designer should be able to distinguish
between correct and incorrect responses at that location.

666

bility problems [5]. We present heuristics to control the number of
the constraints generated. Analogous to a fault-list in test genera-
tion, we maintain a “tag-list” during vector generation. Tags are as-
sociated with each variable assignment in the HDL code. After the
generation of each vector, coverage by this vector of all tags in the
HDL code is determined using the efficient coverage computation
procedure from [4]. The corresponding tags are deleted from the
tag-list. The process is continued until all tags under our metric are
covered, i.e., the tag-list is empty.

A review of the observability-based statement coverage metric
along with the coverage computation procedure is provided in Sec-
tion 2. A review of an algorithm for solving interacting arithmetic
and Boolean constraints is provided in Section 3. Details of our vec-
tor generation algorithm are in Section 4. Section 5 provides tech-
niques to enhance the basic vector generation algorithm. Section 6
provides examples of the application of our approach on a few in-
dustrial examples. Section 7 concludes the paper and describes on-
going work.

2 Observability-Based Statement Coverage and its Computa-
tion

The purpose of this coverage metric is to evaluate vectors for their
ability to propagate an error at a specific location in the HDL code to
some output. This is much harder to do than computing a control-
lability metric which just determines if a vector results in a state-
ment being visited. A review of previous work on controllability
and observability-based metrics is provided in [4].

In [3], the notion of a rug to model the possibility that an incor-
rect value is computed at a location was introduced, where a loca-
tion corresponds to an assigned variable in some statement in the
HDL code. As the name suggests, a tag is just a label. It does not
have a value, and has nothing to do with how the erroneous value
was generated. It is either present or absent. It does have a sign as-
sociated with it which helps determine if it can be propagated for-
ward. As will become clear, these limited attributes associated with
the tag lead to an inherent pessimism in the coverage metric. At the
expense of a few extra vectors, this pessimism leads to greater con-
fidence in the ability of vectors satisfying the coverage metric to de-
tect real design errors.

Given a vector and a location in the HDL code, a tag at the loca-
tion is said to be covered by the vector under this coverage metric if
it is determined that the tag can be propagated to some output by the
vector. The propagation of a tag may be blocked becauseof interac-
tion between data values. For example, if one input to a two-input
multiplier has a tag on it while the other input is zero, the tag is not
propagated to the output of the multiplier. Successful tag propaga-
tion implies that using the vector for simulation will reveal the error
in RTL model. Given a vector, the task of the coverage computation
procedure is to efficiently determine all the tags that will be covered
by a vector. We use asingle rug model in which a tag is injected only
on one location at a time.

Coverage computation is done by a concurrent algorithm on a
graph extractedfrom the HDL model. Details of the tag propagation
algorithm can be found in [4].

3 Solving Hybrid LP-SAT Constraints

Given a Boolean equation, Boolean satisfiability (SAT) is the prob-
lem of finding an assignment of variables so that the equation eval-
uates to one, or to establish that no such assignment exists. Typ-
ical SAT algorithms convert the Boolean equation into a conjunc-
tive normal form (CNF) and apply a branch-and-boundalgorithm to
find the solution, or to prove that none exists. SAT algorithms have
found successful application in CAD in stuck-at fault test genera-
tion [6].

Vector generation from HDL code targeting a chosen coverage
metric can also, in theory, be set up as a purely Boolean satisfia-
bility problem. Given that HDL code consists of word-level arith-
metic operators in addition to logic gates, this would not be a very
efficient approach in practice. It was demonstrated in [5] that it is
much more efficient to keep the Boolean and word-level domains
distinct, and only model their interaction for the specific variables
shared between the two domains. Linear constraints are solved in
the linear programming domain, while Boolean clauses are solved
using a SAT solver. Completeness is ensured by effectively ensur-
ing that the feasibility of the linear constraints is checked for each
path to a leaf in the branch-and-bound tree of the SAT solver. This
is accomplished in practice by checking the feasibility of the lin-
ear constraints each time a Boolean variable is assigned in the SAT
solver. When there is a choice of the next variable to assign, either a
Boolean variable, or a word-level variable with no direct correlation
to a Boolean variable is picked. If a word-level variable is picked,
the feasibility of a solution must be checked for the entire range of
the variable. The feasibility of linear constraints is checked by re-
laxing the constraint that the word-level variables be integral. If the
problem is infeasible with this relaxation, the original problem is in-
feasible. The integral constraint is imposed only at the leaves of the
SAT branch-and-boundtree. Becauseof the correlation between the
Boolean and word-level variables, some optimizations in the SAT
solver algorithm cannot be used in the hybrid problem. Even so, it
was shown in [5] that the hybrid algorithm is much faster than al-
ternatives.

The problem of solving for a mixture of Boolean and linear con-
straints was called the Hybrid SAT or HSAT problem in [5]. This is
also the approach we will follow in our effort to generate vectors for
the observability-based code coverage metric. Details of constraint
generation and constraint solution can be found in [5] .

4 Vector Generation Algorithm for Observability-Enhanced
Statement Coverage

We provide details of our vector generation algorithm in this sec-
tion. The goal of the algorithm is to generate vectors so that each
tag (denoted by A) is propagated to an output by some vector.

As the first step, the HDL description of the design is compiled
into structural RTL. In our prototype implementation, this involved
compiling a Verilog [7] description into BLIF-MV [8]. A graph
G(V, E) encapsulating the dependencies between operators is built
from the RTLdescription. There are the following two types of nodes
in the graph:

1. Operator nodes, denoted by V,, which correspond to the in-

2. Latch nodes, denoted by K , which correspond to latches in

Every edge E corresponds to a variable in RTL description. An
edge from VI to VZ exists if there is a data dependence between op-
erators or latches corresponding VI and VZ.

stantiation of operators in the RTL description.

the RTL description.

4.1 The Basic Algorithm

The basic algorithm operates according to the following steps:

1. A tag-list is set up. This is analogous to the fault-list in stuck-
fault test generation. As the algorithm proceeds forward, tags
are removed from the list as vectors are found to cover them.
Ideally, the tag-list should be empty when the algorithm com-
pletes.

2. An upper bound on number of time frames, t,,, , that will be
used for vector generation is selected.

667

3. If there is no uncovered tag, the algorithm stops. Otherwise
i t selects an uncovered tag to generate a vector for. The vari-
able Vj and the operator Vopf corresponding to this tag are
identified in the graph G(V, E) .

expanded to in the current attempt. 1 is set to one.

in its transitive fanout are marked.

4. t denotes the number of time frames that the design will be

5. The graph G(V, E) is unrolled t times. Vj and all variables

6. HSAT constraints for both tagged and untagged versions of
the circuit are generated according to the techniques in [5] .
For the tagged circuit, we ignore constraints with no marked
variables in them, and replace Vj by Vj + A in constraints
corresponding to Vopf . For the untagged circuit, constraints
are only generated for the portion of the circuit in the fanin of
marked outputs.

7. Constraints are added expressing the requirement that the tag
be detected on at least one of the marked variables which is
also an output of the circuit. For example, if variables Eo1
and Eo2 are marked outputs, the added observability con-
straint will be the following,

in

8

-

-

i

I +

-

~

8. The HSAT problem is solved using the algorithm described

9. If there is no solution to HSAT problem and if t < t,,, , t is
incremented by 1 and the algorithm reverts to Step 5.

10. If there is no solution to HSAT problem and t = t,,, , the al-
gorithm returns reporting that the tag cannot be covered within
t,,, time frames.

11. For the vector generated, tag simulation is performed using
an algorithm akin to [4] to detect all the tags which can be
covered by this vector. The algorithm updates the tag-list and
reverts to Step 3.

in [5], with enhancements as described in Section 5.

-
CO 1

a i*
- t -

C

h
- - -

I

a out'

4.2

Consider the following Verilog code as an example to illustrate the
above algorithm. The code computes the running sum, sum, of the
inputs in. The output is set equal to the sum if two values of i n 2 8
are observed. Clearly, if we want to detect a tag on the statement
sum = sum + i n ; , we must wait for at least one cycle for it to
propagate to the output out. The RTL circuit generated from this
code is shown in Figure 1.

module test(clk, in, out)
input c l k ;
input [3 :01 in;
output out;
reg out;
reg [1:01 i;
reg [3 : 0 1 sum;

initial
begin

Example Application of the Basic Algorithm

out = 0;
i = 0;
sum = 0 ;

end

i - - t -
C

h -

-

Figure 1 : Structural RTL for the Example Verilog Code

-
1
a sum'
t -
C
h -

i = i + l ;

sum = sum + in;
if(i == 2)

i = 0;
out = sum;

begin

end

out = 0;
else

end
endmodule

The following constraints are generated for the various state-
ments (indicated in comments below) and variables in the untagged
version of one unrolling of the RTL circuit. The subscripts 10 and t l
indicate the time frame to which the variable belongs. The variables
zpl and z p 2 are indicated in Figure 1. clpl and clp2 are temporary
variables.

/ / initialization
out to = 0
i t 0 = 0
s u m t o = 0

/ / in >= 8
into - 8 + 16(1 - c0to) >= 0
into - 8 - 1 6 C O t o <= -1

/ / if/else (in >= 8)
iP1

ip - Z t O = 1
t p - [to = 1
t o

ip2 - + 16(1 - c0to) >= 0
i!! - :.!! - 16(1 - c0to) <= 0

ipz - i t 0 + 16cOto >= 0
- it0 - 16cOto <= 0

/ / sum = sum + in;
sumtl - s u m t o - into = 0

/ / (i == 2)
/ / i >= 2
ip2 - 2 + 4 (1 - cl::) >= 0
ik! - 2 - 4~1:: <= -1

/ / i <= 2
2 - iFZ + 4(1 - cl::) >= 0
2 - id - 4 c l P 2 <= -1 to to

always (@ posedge clk)

if(in >= 8)
begin

668

5.1

Unrolling the HDL model increases the size of the HSAT problem
rapidly. This can degrade the speed of test vector generation sub-
stantially. It can easily be seen that in order to detect the tag in the
output, the tag should be propagated through a path consisting of
marked variables. In order to simplify the search for a solution, in-
formation about paths can be added to the HSAT problem.

As an example, in Figure 1, in order to have a tag on out’, it
is necessary to have c l = 1. Adding this constraint to the origi-
nal HSAT problem can help the HSAT solver find a solution to the
problem more quickly. In the previous example, there was only one
path between the injected tag and out’, but in general there are many
paths. As a result propagation constraints will be in disjunctive nor-
mal form. Transforming propagation constraints to conjunctive nor-
mal form which is appropriate for the HSAT solver can result in ex-
ponential growth in the number of clauses or will require the addi-
tion of several intermediate variables. As a result, it is not always
practical to use them.

In order to make this approach practical, it is possible to gener-
ate propagation constraints only for a limited number of paths be-
tween the injection point and each variable. This controls the size
of the HSAT problem that must be solved at any given time, usually
leading to a smaller run time. This is easily done by modifying the
step in the algorithm that marks the transitive fanout variables of the
tag location. Under this heuristic, the markings propagate forward
only along specific paths. Correspondingly, constraints are added to
the HSAT problem which require the tag to propagate forward along
the chosen paths. If the HSATproblem is found to be infeasible, an-
other set of paths is chosen. As a variation on this, short paths are
selected when the HSAT problem is very large. On the other hand,
preference is given to long paths when it is important to cover as
many tags as possible with each vector to minimize the number of
generated vectors.

Note that marking a path or a subset of paths in the circuit can
result in a decrease in the total number of variables and constraints.

Improving the Performance of the Algorithm

We would like to generate a vector to cover the tag on the state-
ment sum = sum + i n ; . To achieve that, all constraints corre-
sponding to the operations in the fanout of sum are duplicated with
each marked variable 2, in the constraints replaced with tagged-v.
The tag is injected by means of the statement tagged-sum =
sum + in .+ A labeled with the appropriate subscripts for the
number of unrollings. Constraints for detecting the tag at the out-
put in the first time frame are the following:

tagged-outtl - outtl + 16(1 - 91) >= 1
outtl - tagged-outtl + 16(1 - 9 2) >= 1
g l + 92 >= 1

Since the tag cannot be detected in the first time frame, the cir-
cuit must be unrolled once to generate a two time frame version.
This is achieved by marking variables in unrolled circuit and gener-
ating constraints for unrolled circuit. For the variables correspond-
ing to the second time frame, the subscripts 11 and t 2 are used in-
stead of t O and 11, respectively.

4.3

Apart from the fact that the constraints generated in our algorithm
are a hybrid of linear and Booleanconstraints, this manner of setting
up constraints for the tag propagation problem is similar to the way
constraints are set up in test pattern generation for stuck-at faults [6].
A key difference has to do with the error magnitude. Either we do
not assume any error magnitude as a result of which no constraints
are generated to justify a particular value at the site of the tag, or
we try to maximize the range of error magnitude for which the er-
ror is propagated. This is clarified in the following section. There is
no corresponding counterpart requirement in the test pattern gener-
ation case. In the test generation case, constraints must be generated
to justify a value opposite to the stuck-fault value at the fault site.
We do need to ensure that the statement corresponding to the tag
location is visited during the course of simulation of the generated
vector. That, as well as the observability of the tag is ensured by the
constraints generated in our algorithm.

Relationship to ATPG for Stuck-Faults

5 Enhancements to the Basic Algorithm

We use various heuristics to improve the run time and the quality
of vectors. As an straightforward tactic to reduce the vector gen-
eration time, the deterministic vector generation is preceded by a
limited random vector generation phase. In this case, the extracted
graph can be used to compute the values of the variables and after
that concurrent tag propagation can be used as before.

5.2 Maximizing the Tag Magnitude

In order to increase the likelihood that real design errors will be un-
covered by the generated vectors, we would like to maximize the tag
magnitude for which the vector covers the tag. Ideally, we are in-
terested in finding a vector, if such a vector exists, which can propa-
gate the tag independentof its magnitude. This is important because
we do not know anything about nature of the error and cannot make
any assumption for its magnitude. We achieve this in the following
manner.

During the search for finding a solution to the HSAT problem,
the HSAT solver fixes the value of variable A. This means that the
resulting vector will propagate the tag with some specified magni-
tude to the output. There is no guarantee that a tag with a different
magnitude can be detected by the same vector. Consider the follow-
ing verilog code shown below.

x = 4;
if (X > Y)

P = 1;
else P = 0;
if (Y == 8)

P = x;

Y is an input, and P is an output. A vector with value 6 for Y
will propagate a tag injected in the first line to the output only if the
tag magnitude is greater than 2. On the other hand, if the value of
Y is set to 8, a tag in the first line can be propagated to the output
independent of its magnitude.

The following modifications are made to the HSAT problem in
order to maximize the covered magnitude of the tag.

669

Variable substitution is used to eliminate A from all equality
constraints.

All inequalities with A present in them, are rewritten in the
following form
A 5 linear combination of other variables, or
A 2 linear combination of other variables.

A is replaced by nub and AIb, in the first and second form
inequalities, respectively.

We maximize Aut, - Alb over HSAT constraints.

The result gives us a vector which can propagate the tag, for all
values between Alb and Aut,, inclusive. Note that, this algorithm
converts the search problem from HSAT feasibility to optimization
over HSATconstraints. The optimization problem is harder to solve.

An alternative heuristic for maximizing the magnitude of the
covered tag is to select paths on the graph which propagates the tags
only through operators that can propagate tags independent of their
magnitude. An HSAT problem requiring propagation through such
paths are written. This way, only an HSATfeasibility problem needs
to be solved. If these constraints make the HSAT problem infeasi-
ble, an alternative path must be tried. Consider the example earlier
in the section. Since the tag on X = 4 ; can be propagated through
the statement !? = X; independent of the magnitude of the tag if
Y has the value 8, we add the constraint (Y == 8) = 1 to the
HSAT constraints.

5.3 Undetectable Tags

In some cases there might be tags in the code, which cannot be de-
tected by any vector. For example, a tag on the statement ou t = 0
in the Verilog code in Section 4.2 cannot be detected since the state-
ment is basically dead code. We would like to detect them as early
as possible to avoid wasting time solving HSAT problems for them.

Obviously, if no output variable has been marked (as in Step
5 of the basic algorithm) in t unrollings, we do not generate con-
straints for the tag until t + 1 unrollings. Furthermore if the set of
marked latches within t o time frames (to < t) is equal to the set
of marked variables within t o + 1 time frames, and no output has
been marked in t time frames, the tag is undetectable. This gives us
an easy method for finding some undetectable tags though not all of
them. For example, the tag on Y on Line 2 in the following code is
not detectable, but that cannot be identified by our heuristic.

Line 1 if((X 4)&&(X < 3))
Line 2 Y = 1;
Line 3 P = Y;

This tag can be determined to be undetectable by solving HSAT
constraints for the tag ignoring initial values on latches, and writing
constraints for detecting the tag on an output variable or latch. If we
fail to find a vector, the tag is undetectable. Otherwise it might be
detectable.

5.4 Finding Lower Bounds on the Number of Unrollings Re-
quired for Each Tag

As discussedin the Section 5.3, we can detect the minimum number
of unrollings required for covering a tag by computing the number
of unrollings required to obtain a marked output. It turns out that we
can compute lower bounds for all tags concurrently by starting with
marked outputs and propagating the markings backward to nodes in
their transitive fanin. The backward propagation of the markings is
continued beyond the latch boundaries by progressively increasing
the number of unrollings. The number of unrollings required for a
marking to reach an operation is the minimum number of unrollings
that will be required to propagate a tag at that location to an output.
As an extension, separate markings could be used for each output.

The lower bounds for each tag are used to sort the tags according to
the likely level of difficulty in covering the tag, or to determine the
potential of a vector generated for a tag to cover other tags.

6 Experimental Results

6.1 Performance Comparison

We have implemented the vector generation algorithm proposed in
this paper in a prototype system. The implementation uses the
VL2MV Verilog parser in VIS verification system [SI. VL2MV con-
verts the Verilog to structural RTL in the BLIF-MV format. Our im-
plementation involved converting the BLIF-MV format to our inter-
nal graph representation from which we could generate constraints.
In addition, we implemented a coverage computation (tag simula-
tion) routine which operated on the same graph representation. The
combination of linear and Boolean constraints was solved using the
HSAT solver system [5]. Each time a vector was generated, it was
tag simulated to determine the other tags covered by it. We did not
use random vector generation to get a fair evaluation of the vector
generation algorithm. The experiments were performed on a Sun
Ultra 30/300 with 256 MB of RAM running at 300 MHz.

The examples usedin Table 1 correspond to various circuits from
industrial and academic sources implemented in VERILOG. FIFOc-
trl is a FIFO controller, DMActrl is a DMA controller, counter is
an 8-bit counter, port is an interface circuit, arbiter is a bus arbiter,
and crd is a traffic controller. Note that counter and port are part
of a larger circuit.

We used topological ordering (see below) for clauses, and en-
abled tag simulation for this experiment. Random vectors were not
used as indicated above.

The basic numbers highlighting the performance of our vector
generation algorithm are presented in Table 1. Presented are the
number of generated vectors, the number of covered tags, the per-
centage of total tags covered by the generated vectors, and the num-
ber of tags on which the vector generation had to abort.

As one can see from the table, our program was able to achieve
full coverage for some examples. In some cases our program was
unable to find vectors covering a tag. The reason is that our algo-
rithm targets tags with small depth. It tries to find a vector within
several time frames or tries to prove that it does not exist. We are
working on heuristic vector generation methods for tags that require
a large number of time frames to be detected.

6.2 Clause Ordering Comparison

The purpose of this section is to show the effect of clause order-
ing on the vector generation time. In this controlled experiment, tag
simulation was disabled so that each heuristic operated on the same
set of tags in each example. The results are presented in Table 2.
Column 3 has the CPU time for the case that clauses are not ordered.
Column 4 is the case where clauses are generated in the topological
order of their corresponding operators in the graph. Column 5 is the
case when clauses for operators in the fanout of the injected tag are
generated in depth-first search order. Column 6 is for the case when
clauses for operators in the fanout of injected tag are generated in
the depth-first search order, and clauses for other operators are gen-
erated in topological order. As one can see, using topological order
achieves the best results.

Ordering of clauses in SAT can affect the CPU time. A good or-
dering will help the HSAT solver in selecting good variables for
branching and as a result decrease the CPU time.

In depth-first ordering, we try to keep clauses corresponding to a
path from a tag to the outputsflatches together. This way, the HSAT
solver will choose variables corresponding to a path in the circuit.

670

1 Example I #Lines I #Vectors I #CoveredTags I Percent I #Aborted 1
I FIFOctrl I 146 I 15 I 21 I 84% I 4

1 2

Example #Lines
FIFOctrl 146
DMActrl 443

3 4 5 6
Topological

Random Topological Depth-first and depth-first
160s 159 s 218 s 160 s
188s 142 s 149 s 143 s

Port I 73 I I s I I s I 1.1 s I 1.1 s
counter I 100 I 3 s I 2.9 s I 3.2 s I 3 s
arbiter I 180 1 216s I 114s I 190s I 113 s

crd I 191 I 486s I 408s I 490s 1 444 s

Table 2: Comparing Different Heuristics for Ordering SAT Clauses.

In topological ordering, clauses for an operator appear only af-
ter the clauses for all the operators in its transitive fanin. This way
the HSAT solver is likely to set values on input variables to an op-
erator early. In turn, this is likely to imply a value on the output of
operator.

7 Conclusions and Future Work

Our work is a confluence of recent developments in the computation
of an observability-based coverage metric, the solution of systems
of hybrid linear and Boolean constraints and novel heuristics for
generating vectors for observability-enhanced coverage. We have
proposed a method for the generation of simulation vectors from
hardware description language (HDL) models targeting observabil-
ity-based statement coverage which uses a fast coverage computa-
tion procedure in the inner loop to minimize the number of vectors
that need to be generated to cover all statements. The vector gener-
ation itself is done by setting up interacting arithmetic and Boolean
constraints, and solving them using hybrid linear programming and
Boolean satisfiability methods. Heuristics are presented to control
the size of the constraint system that needs to be solved. A key con-
tribution has been the proposal of a technique to maximize the range
of the error magnitude for which a vector covers a tag. By targeting
an effective coverage metric and by using deterministic vector gen-
eration, we automatically generate simulation vectors of high qual-
ity.

The development of such a system will allow the designer to use
this tool during the design process, and not just in a post-design de-
bugging phase.

There are three directions of work to be explored in improving
the current system: changing the order of tags in the tag-list, mod-
ifying a test vector to cover more tags, and heuristics for handling
deep sequential designs.

In the prototype system, the tags (assignments) are processed in
the order of their line numbers. In practice it is much better to gen-
erate test vectors that cover many tags early during the test vector
generation, because this results in deleting many tags from the tag-
list before trying to generate a test vector for them, and decreasing
the overall tag generation CPU time. Finding a heuristic for chang-
ing the order of tags in the tag-list is one possible direction for the
future work.

In some cases HSAT problems for covering different tags are

very close to each other. As a result, their solutions will be close
to each other too. Finding a method for modifying a test vector to
cover some new tags can improve the speed of the test vector gen-
eration substantially.

The current prototype uses a complete algorithm to generate test
sequences. It is necessary to add heuristics to the current algorithm
to handle deep sequential designs.

References

R. C. Ho, C. H. Yang, M. A. Horowitz, and D. L. Dill, “Archi-
tecture Validation for Processors,” in Proceedings of the 22”d
Annual Symposium on Computer Architecture, June 1995.

K.-T. Cheng and A. S. Krishnakumar, “Automatic Functional
Test Generation Using the Extended Finite State Machine
Model,” in Proceedings of the 30th Design Automation Con-
ference, pp. 86-91, June 1993.

S. Devadas, A. Ghosh, and K. Keutzer, “An Observability-
Based Code Coverage Metric for Functional Simulation,” in
Proceedings of the International Conference on Computer-
Aided Design, pp. 41 8-425, November 1996.

[4] F. Fallah,, S. Devadas, and ,K. Keutzer, “OCCOM: Efficient
Computationa of Observability-Based Code Coverage Metncs
for Functional Simulation,” in Proceedings of the 35th Design
Automation Conference, pp. 152-1 57, June 1998.

[5] F. Fallah, S. Devadas, and K. Keutzer, “Functional Test Gener-
ation Using Linear Programming and 3-Satisfiability,” in Pro-
ceedings of the 35th Design Automation Conference, pp. 528-
533, June 1998.

[6] T. Larrabee, “Test Pattern Generation Using Boolean Satisfia-
bility,” IEEE Transactions on Computer-Aided Design, vol. 11,
pp. 4-1 5, January 1992.

[7] D. E. Thomas and P. R. Moorby, The Verilog Hardware De-
scription Langua e Kfuwer Academic Publishers, Boston,
MA, seconded., 8994.

[SI R. K. Brayton and others, “VIS: A System for Verification and
Synthesis,” in Proc. Computer-Aided Verifcation, vol. 1102,
pp. 428-432, June 1996.

67 1

