IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 8, AUGUST 2001 1003

OCCOM—Efficient Computation of
Observability-Based Code Coverage Metrics
for Functional Verification

Farzan FallahMember, IEEESrinivas Devadad-ellow, IEEE and Kurt KeutzerFellow, IEEE

Abstract—Functional simulation is still the primary workhorse ~ some time to come. As a result, there is a well-defined need for
for verifying the functional correctness of hardware designs. tools that enable designers to assess the comprehensiveness of
Functional verification is necessarily incomplete because it is verification coverage offered by a simulation vector set

not computationally feasible to exhaustively simulate designs. It
is important, therefore, to quantitatively measure the degree of The analogy that is used in OCCOM is that of fault simula-

verification coverage of the design. Coverage metrics proposed for tion used in manufacturing test. A fault simulator enables one
measuring the extent of design verification provided by a set of to assess that the fault coverage is high enough. This is crit-
functional simulation vectors should compute statement execution jcal to ensuring that the design is adequately tested. By analogy,
counts (controllability information) and check to see whether we are interested in providing HDL coverage metrics that allow

effects of possible errors activated by program stimuli can be desi t th hensi f their simulati
observed at the circuit outputs (observability information). Un- esigners 1o assess the comprenensiveness of their simuiation

fortunately, the metrics proposed thus far either do not compute Vector set. Next, we aim to help them diagnose what part of
both types of information or are inefficient, i.e., the overhead of their design may be inadequately verified by the current vector
computing the metric is very large. In this paper, we provide the ~get. This will help guide the writing of additional vectors.

details of an efficient method to compute an observability-based Currently, the state-of-the-art in coverage metrics is found in

code coverage metric that can be used while simulating complex - . . .
hardware description language (HDL) designs. This method offers commercial tools that principally rely on either line-coverage or

a more accurate assessment of design verification coverage thanPath-coverage metrics inherited from software testing. In soft-
line coverage and is significantly more computationally efficient ware testing, given a set of program stimuli, coverage metrics
than prior efforts to assess observability information because it such as line coverage, branch coverage, and path coverage are
breaks up the computation into two phases: functional simulation \seq for software quality assurance. Most coverage metrics in
of a modified HDL model followed by analysis of a flowgraph . L

extracted from the HDL model. Commercial HDL simulators can software testing [3] are based on the activation of statements,
be directly used for the time-consuming first phase and the second branches or sequences of statements, and do not address ob-

phase can be performed efficiently using concurrent evaluation servability requirements; the fact that a statement with a bug has

techniques. been activated by input stimuli does not mean that the observed
Index Terms—Code coverage, functional verification, observ- outputs of the program will be incorrect. Exceptions are the sen-
ability, OCCOM. sitivity analysis methods of Voas [20] and the impact analysis

methods of Goradia [11].
Similar approaches can be taken in hardware. However,
hardware offers much less observability meaningful data
ERIFICATION is increasingly perceived as the major botthrough primary outputs than software does through inspection
tleneck in integrated circuit design. For most designs, o¢ memory contents. Therefore, coverage metrics proposed for
of the hardest verification problems is verifying the correctnesseasuring the extent of hardware design verification provided
of the initial register-transfer level (RTL) description coded int@y a set of functional simulation vectors should compute HDL
a hardware description language (HDL). Formal techniques fstatement execution counts (controllability information) and
language containment and property checking are making sost@ck to see whether effects of possible errors activated by
progress on this problem. However, there is no indication thatogram stimuli can be observed at the circuit outputs (observ-
these techniques will be able to offer comprehensive verificatiability information). Unfortunately, the coverage metrics for
across a wide variety of designs. Thus, it appears that simuterrdware proposed thus far either do not compute both types of
tion will continue to be the workhorse for design verification foinformation or are inefficient, i.e., the overhead of computing
the metric is very large.
. . . _ A simple example of why observability information is impor-
Manuscript received August 25, 1999; revised August 3, 2000. This paper desi is sh in Fig. 1. A h del A and
was recommended by Associate Editor E. Cerny. ant to designers is s an inHg. L. ssqme that mO elAan
F. Fallah is with the Fujitsu Laboratories of America, Inc., Sunnyvale, CAnodel B are both exercised thoroughly using a functional vector
94086 USA (e-mail: farzan@fla.fujitsu.com). _set. Controllability metrics will report 100% statement coverage
S. Devadas is with the Massachusetts Institute of Technology, CambrldPe . .
MA 02139 USA (e-mail: devadas@caa.lcs.mit.edu). of both models. _Howe_/er, it may be that_ statemgnts in model
K. Keutzer is with the Department of Electrical Engineering and ComA are only exercised with vectors for whiech= 0, implying
puter Science, University of California, Berkeley, CA 94720 USA (e-mail:

keutzer@eecs.berkeley.edu). 1By meaningful, it is meant that the designer should be able to easily differ-
Publisher Item Identifier S 0278-0070(01)05202-2. entiate incorrect values from correct values for a given input stimulus.

I. INTRODUCTION

0278-0070/01$10.00 © 2001 IEEE

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:48 from |IEEE Xplore. Restrictions apply.

1004 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 8, AUGUST 2001

1) Fault Models: One of the most popular fault models in
Model A manufacturing test is the stuck-at fault model [1]. The stuck-at
fault model is a logical fault model where any wire in the logic
F circuit can be stuck-at-1 or stuck-at-0. A test vector that pro-
duces the opposite value (zero for a stuck-at-1, and one for a
Model B stuck-at-0) willexcitethe fault. The effect of the fault has to be
c propagatedo an observable circuit output in order for the fault
to be detected by the vector.
Fig. 1. Observability versus controllability coverage. 2) Fault Coveage andSimulation: For any fault model,
given a test vector set, tifault coveage of the test vector set
that the variables assigned in these statemeeisraffect the canbe computed usirigult simulationFor every possible fault
observed outpuf for any simulated vector. in the fault model, it is checked for each vector in the vector
This paper describes the details of an efficient method to cofet whether the fault is excited and propagated to a primary
pute an observability-based code coverage metric (OCCORDtput. Fault coverage for a vector set is defined as the number
that can be used while simulating complex HDL designs. Tt detected faults divided by the total number of faults. Fault
computed coverage information serves as a diagnostic aid to geverage measures the “goodness” of a vector set in detecting
signers: it helps to debug and design and/or create better fuptfaults. A test set with higher fault coverage is more likely to
tional tests. detect bad integrated circuits and so fault coverage is used to
The concurrent tag propagation algorithm proposed in tHiive the test generation process.
paper circumvents the drawbacks of previously proposed covFault simulation can conceivably be used to provide coverage
erage metrics with a new two-phase approach_ The two phamrics for HDL models. However, fault simulation would re-
are the following. quire a synthesis of the HDL model into gates and is typically
1) The given HDL model is modified automatically, in par_too time consuming for a large model and a large set of vectors.

ticular some new variables are added and some statemdr{gher, the faults targeted would be stuck-at faults on gate in-
are moved out of conditionals, atide given vectors are puts/outputs, most of which are unrelated to HDL model errors.

simulated using commercial HDL simulatof&us, cur- 3) _Functiona_l Testing_ and Functional Fault Model#&s
rent (future) simulation technology is (can be) directly eXr_n_entl_oned earl!er, th_e direct corr_esp_ondence between_ a metal
ploited. There is a loss of simulation efficiency due to th¥iré in the silicon integrated circuit and a connection in
addition of new variables, but this is not large [cf. SedN€ l0ogic circuit motivates logical fault models. No such
tion VI). correspondence may exist fo.r a behavioral desgnpnon in an
2) Aflowgraph from the modified HDL modelis created and'DL pr_structural RTL description. Statements in the HD'L
the results of simulation are used to determine coverag@Scription may correspond to hundreds of gates and wires
under OCCOM. Using concurrent evaluation technique) the final design. Some efforts have been made to model
this phase can be executed efficiently. faults as perturbations of transitions in a state transition graph

The remainder of this paper is organized as follows. Sectio q?SCI‘IptIOH of a circuit [6] and at the.RTL for MICTOProcessors
4], [19]. Error models that reflect incorrect connections or

explains related work in manufacturing test, software testing; ; . .

and HDL coverage analysis. Section Ill describes tag propa es In a g_ate-level cwc_wt have been proposed along with

tion, which is the basic strategy for computing OCCOM co =fror 5|mulgt|on methoo!s in [16]. . .

erage. HDL code maodification is explained in Section IV. Sec- The qualle of a functional fault model is determ|_ned by the
ber of single stuck-at faults detected by a functional test set

tion V describes the graph-based forward tag propagation .
the concurrent tag propagation methods. Experimental resﬁ gt produces 1.00% coverage for the functional f‘.”‘““.m"de'- The
roposed functional fault models attempt to obtain high stuck-at

are presented in Section VI and directions for future work i)) .
: ault coverage rather than attempting to discover bugs in the
Section VII. 2 .
HDL description. Further, the effectiveness of test sequences
cannot be evaluated directly at the functional level [1].

Il. RELATED WORK

This section describes representative coverage analyBisSoftware Testing
methods from the manufacture test and software test literaturegpe problem of verifying the correctness of an HDL descrip-

as well as HDL coverage analysis work. tion of circuit behavior is similar to the software testing problem
) because the description of circuit behavior is similar to a pro-
A. Manufacturing Test gram written in a high-level programming language like C or

The basic premise of manufacturing test is the modeling 684+. An important difference is that software programming
manufacturing defects as logical faults. Since manufacturingléguages are more expressive than HDLs, leading to more com-
a physical process that can be analyzed, credible fault modelisated descriptions and test procedures.
can be derived. For example, defects are known to cause break& control flowgraphis a graphical representation of a
and shorts in metal wires. These breaks or shorts can be modg@extyram’s control structure [3, Ch. 3]. Given a set of program
as logical faults since there is a direct correspondence betwsémuli, one can determine the statements activated by the
wires in silicon and connections in the logic circuit. stimuli by applying the stimuli to the control flowgraph. The

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:48 from |IEEE Xplore. Restrictions apply.

FALLAH et al. OCCOM—EFFICIENT COMPUTATION OF OBSERVABILITY-BASED CODE COVERAGE METRICS 1005

line coveage metric measures the number of times every [ll. COMPUTING COVERAGE—BASIC STRATEGY
instruction is exercised by the program stimuli. In the case
g];atr)g??sht;ck);/ﬁrg?i’é’vstﬂgﬁsﬂzet?;:légbgp?:)g“gﬁ\ssﬁac f modules. The modules can be. compri;ed of combinational
; Hmy gic and registers. The combinational logic can correspond to
Path coveraganeasures th? number of times every path n th§oo|ean operators (e.qaND, OR, NOT) or arithmetic operators
control flowgraph is exercised by the set of program stimul e.g.+ >)
A potential goal of software testing is to have 100% path =" '~ 7"
coverage, which implies branch and line coverage. Howevg,
100% path coverage is a very stringent requirement and the_. .
number of paths in a program may be exponentially related toC1ven an HDL model and a set of functional vectors, com-
program size. putmg controllability metncs during fqnctlor!al simulation is
These coverage metrics require activation, but say nothiH“dat'V‘a'y easy. Assuming an even_t-drlven simulator, counters
about the observability conditions required to see the effect A" k€ep track of how many times, if any, each statement is exe-
possible errors in the activated statements. The path coverS{id Or action taken. Itis, however, desired to compute observ-
metric will satisfy observability requirements if paths from pro@Pility metrics as well. o _
gram inputs to program outputs are exercised and the values oh tag at a location represents t'he possibility that an mcorrect
variables are such that the erroneous value is not masked (A€ was computed at that location. These tags on variables are
is analogous to side inputs having noncontrolling value in fadiPt tied to particular design errors; they serve as a mechanism
propagation). However, the path coverage metric does not for extending standard coverage metrics to include observability

plicitly evaluate whether the effect of an error is observable gauirements [8]. Each location corresponds to an assigned vari-
an output. able in some statement in the HDL model. Our goal, given a set

of functional vectors and an HDL model, is to determine if a tag
injected in any particular location ipropagatedto the circuit

C. HDL CoverageAnalysis output. That is, we want to see if incorrectly computed values
are propagated to circuit outputs, or Aot.

Coverage analysis techniques proposed for general HDLThis is dependent on the data values at other locations in the
models include—guaranteed coverage of every statementciftuit; other data values mayockthe tag from reaching any
an HDL model [7], evaluation of transition coverage of a tesiircuit output. The quality of a vector set is determined by how
set [14], and abstraction of models and semantic control ov@iany injected tags are propagated to the output. The percentage
transition coverage [10]. These metrics do not directly addresspropagated tags is what we catbde coverageunder the
observability requirements. metric.

Observability requirements are addressed in the metric pro-Note that we will use thseingle tagmodel, where the effects
posed in [8]. In order to compute observability informationpf exactly one injected tag are computed, for many different
variables are tagged during simulation and a simulation calcuinfected tags. Each injected tag can be thought of creating a
is used to calculate the coverage provided by an arbitrary skdtinct “faulty” HDL model and several such faulty models are
of functional vectors. There are several drawbacks with the tagpcessed in parallel by the simulation algorithm. (This is akin
simulation algorithm and calculus presented in [8]. to concurrent fault simulation [5].)

An HDL model is viewed as a structural interconnection

Tag Coverage

1) The calculus was developed for only a subset of Verilo%
In particular, nested if statements cannot be handled and . 3 . _ .
neither can looping constructs used in popular HDLs. ~ Computing an observability metric for a collection of logic
2) The efficiency of the simulation algorithm leaves mucBates is similar to fault simulation using ttie calculus [18].
to be desired because the calculus dictated the use ofAdherror at the input of aAND gate is propagated to the output
augmented simulator whose speed is much slower th@ply if the other inputs are at a one or have errors of the same
the compiled-code speed of commercial simulators. TH@larity. (Similarly for anor gate.) Generalizing this notion to
speed can be improved by incorporating all the optimiz&iDLs requires us to handle arithmetic operations, conditionals,
tions currently present in commercial HDL simulatorsand looping constructs.
but this is a huge undertaking. A calculus can be defined to handle HDL models, for ex-
Ho et al.[13] use transition tours on the implementation-corAMPle, augmenting the calculus of [8], but the calculus should be
trol finite state machine to automate test generation of corrSily computable. Designers wish to simulate many thousands
cases for validation of an embedded dual-issue pipelined pRSvectors on complex HDL models. Commercial HDL simula-
cessor. The issue of error coverage is not addressed. A for®4p incorporate many optimizations to improve logic simulation
metric for coverage computation is presented in [12]. ThiPeed. A new calculus implies that the simulation engine has to
method has several attractive features, including a guarante®®fmodified and this can result in a dramatic loss in efficiency
design error coverage. However, it has not been automated angye there is ful observability of internal locations in the HDL model
has only been applied to a processor example. during simulation, the particular data values at internal locations may be incom-
Design-specific coverage analysis and test generation gpshensible to the designer. For example, the designer may be able to verify that

h h b d f 2]; output of a Wallace tree multiplier is an incorrect six, for inputs of four and
proaches have been proposed for processors (e.g., [2], [r, but will not be able to determine if an arbitrary internal wire is at a faulty

[17]). one or zero.

Two-Phase Approach

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:48 from |IEEE Xplore. Restrictions apply.

1006 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 8, AUGUST 2001

unless a major effort to incorporate optimizations is made. In TABLE |
order to avoid this problem, a two-phase approach can be used =~ £ CALCULUS FORINVERTER, AND GATE, AND OR GATES
to compute OCCOM coverage metric. The two-phase approach INVERTER ||
is the following. i 1
1) The given HDL model is modified. The modifications are 1 0
necessary because of conditionals in the HDL model. In Ol'fﬁ‘ 01_;_%
particular, some new variables and statements are added. 0T 7 0+ 7

Then the modified HDL model is simulated using a stan-
dard HDL simulator. Note that tags do not play a part in

AaND O] 1 JO+A[J1-A]J04+7

this phase. 0 0| o 0 0 0
. i - . : 1 0 1 0F+A [1-A [0+7
~ Simulating the modified HDL model will provide more T AN o[0T A 0T A 0 To0F7
information than simulating the original model. This extra 1-A 0] 1-4 0 i- A 0
information is used in the second phase to perform tag 0+7J 0O T10+47 0 0+
propagation. N o | 0 JIJ0FA[I-AJ0%7
2) In the second phase, tags are injected and propagated. A = 5 TToTATI-A 0%7
flowgraph is extracted from the HDL model. There are 1 1 1 1 1 T
two different possibilities for doing tag propagation. In 0+A [[0O+A[1]0+4A 1 0+ A
forward tag propagation, tag injection simply corresponds 1-A 1 1-4 |1 1 1-A]0+7
; " - 0+7 || 0+7 |1]O0F+A [0O+7 [0+7
to introducing a tag on a vertex in the graph and tag prop-
agation corresponds to selectively traversing paths from
the vertex to the output nodes. In concurrent tag propaga- TABLE I
. A CALCULUS FOR AN ADDER
tion, tag injection corresponds to introducing a tag on the
observable verte® in the graph corresponding to outputs ~ADDER]| b [b-A T b+A T b+7
and tag propagation corresponds to selectively traversin a a+ b a+tb-A |a+tb+A |a+b+?
paths from the observable vertéxbackward. a-A Jlat+b-A [a+b-A]a+tb+? Jatb+?

, : ,) . a+td |atb+A |atb+|atb+tA|atb+?
Phase 1 of algorithmis described in SectionIVandPhase2 257 [[a+b+7 |a+b+7 | a+b+7 |a+ b+ 7

described in Section V. The tag simulation calculus is described
in Section IlI-C. Note that this calculus is not used in Phase(é

— ? Ju— == ==
but only in Phase 2. Nevertheless, in order to understand why 0,1, 0+4, 1-A, 0+7}. (Note thaD—A = Oandl+A = 1.)

é g
HDL description is modified, the tag simulation calculus nee S an example, if the input of an inverter gate is zero and it has
to be described first.

positive tag on it, the value of the output of the inverter will be

one and it will have a negative tag on it. The case that the input

_) of the inverter is one and the input has a negative tag is similar.

C. Tag Simulation Calculus As another example, if one of the inputs of aD gate is zero
Atag is represented by the symh| which signifies a pos- and the input has a positive tag and the value of the other input

sible change in the value of the variable due to an error. Bdghone and it has a negative tag on it, the value of the output of

positive and negative tags are considered, written simply as theAND gate will be zero because the erroneous value of one of

A, and—A. If the presence or sign of the tag is not known, afh€ inputs is zero.

unknown tag is used. An unknown tag is shown by “ » Note Using the above calculus, any collection of Boolean gates

that? = —7 and alsc0+? = 1+7?. In the sequel, the tag sim- comprising a combinational logic module can be tag simulated.

ulation calculus is defined for multiple operators. Note that the 2) Arithmetic Operators:In the sequel, the tag simulation

following calculus is based on the likelihood of the propagatiog@lculus is described procedurally for some common arithmetic

of the tag. If the propagation of the tag depends on its magnitu@@erators. All modules are assumed tordieits wide. For each

it is assumed that the tag is propagated or blocked depending®gratowp, after the simulator computesf) = v(a){op)uv(b),

which case is more likely. For example, in the Verilog statemetit./) might be tagged with a positive or negatideor 7 and it

¢ = (a! = b) with a = 2 andb = 5, if there is a positive tag is written asu(f) + A, v(f) — A, v(f)+7.

on variableqa, it is assumed that the tag is not propagated to the 1) Adder:If all tags on the adder inputs are positive and if

variablec. The reason is that the value of the variabli@ the the valuev(f) < MAXINT, the adder output is assigned
presence of the tag is TRUE unless the magnitude of the tag on to v(f) + A. MAXINT is the maximum value possible
a is exactly three. As a result, it is unlikely to have a tag on vari- for f. This is similar if all tags are negative. If both pos-
ablec. itive and negative tags exist at adder inputs, the output is

The calculus can be changed easily, but the resulting analysis assumed to be unknown tag. Table Il shows calculus for
might substantially underestimate or overestimate the coverage tag propagation through an adder.

of a set of test vectors. 2) Multiplier: Alltags have to be of the same sign for propa-
1) Logic Gates: First, the calculus is defined for Boolean gation. A positiveA oninpute is propagated to the output

logic gates. This is similar to th® calculus [18]. The calculus f provideduv(b) # 0 or if b has a positived. The output

for anINVERTER, a two-inputAND gate, and a two-inputr gate of multiplier is assigned te(f) + A. This is similar for

are shown in Table I. The five possible values at each input are negativeA.

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:48 from |IEEE Xplore. Restrictions apply.

FALLAH et al. OCCOM—EFFICIENT COMPUTATION OF OBSERVABILITY-BASED CODE COVERAGE METRICS 1007

3)

4)

5)

6)

7

Reference [9] gives the calculus for all operators used in tH

TABLE I 2) If there is a tag on the control conditien:pr, it means
A CALCULUS FOR> WHEN RESULT OFa > b IS TRUE that the tag will result in the incorrect branch being
S b |b+A[b-A]b+7 taken. Under the tag condition, some assignments will
Py 1 1-A 1 T+ 7 be missed and others incorrectly made. Unfortunately, it
a4 A 1 17 1 1+7 is not known what happens when the incorrect branch is
a-A[1-AJ1-4 J1+7/1+7 taken; the only information is regarding the simulation
at? 147] 147 (171147 of the correct branch.

As an example of the second case, consider
TABLE IV

A CALCULUS FOR > WHEN RESULT OFa > b IS FALSE if (¥)
x =expl;

> [b [b+A]b-A[b+7 else Z = exp2;

a 0 0 0+A[0+7 _ _ _
a+A||O+A [0F+7 |[O+A O+ 7 If ¥ = 1 and there is a negative tag gnthe case where is
a-Aa o 0 o+7]0+7 not assigned angd is assigned has to be considered. While the
a+? || O+7 [0+7 [O+7 |O+7

values ofz prior to and after the assignment are known, only the
old value ofz is known since the simulator does not compute
expl.

Nested conditionals and loops exacerbate the above situation.
the next section, the way various cases are handled by modi-
fying the HDL model prior to simulation is described.

> Comparator:If tags exist on inputg andb, they have
to be of opposite sign, else the output will have an urﬂh
known tag. Assume a positive tag emlone or a positive
tag ona and a negative tag dn If v(a) < v(b), then the
tag(s) is (are) propagated to the output, else the tag(s) is
(are) not. The output of comparator is assigned toA.

This is similar for other tags and other kinds of compara- In this section, various commonly occurring cases of condi-
tors. Tables Il and IV show the calculus for tag propagaionals and loops in Verilog are considered and it is shown how
tion through a> operator when the result of operation iso modify the HDL model such that the HDL simulation pro-
TRUE and FALSE, respectively. duces enough information to compute coverage in Phase 2. The
Bit Extraction:If tags exist on4, whereA is ann-bitvari- modification is illustrated for several commonly occurring cases
able, itis assumed that the tag cannot propagate to a sinigléhe following sections. The modifications all require the ad-
bit of A. For exampleA[2] is assumed to be tag free eventition of new variables.

if there is a tag oM. The reason is that in order to have

atag onA[2], itis necessary to havd’[2] # A[2], where A. Simple Conditional

A’ = A+ A. This requires to have either the third bit ‘?f Consider the code on the left-hand side below. The trans-
(A) equal to one or a carry from the sum of the lower bitg, . § ~ode is shown to the right

of A andA. In other words, the values of and A have

IV. PHASE 1—MODIFYING THE HDL M ODEL

to satisfy the formul@® > A[1 : 0] + A[2 : 0] > 22 vyl = expril;
This restricts the magnitude of tags which can be propa- y2 = expr2;
gated and makes the tag propagation analysis very com- if (cexp) if (cexp)

plex (Note that in order to be pessimistic or conservative, y = exprl; y = exprl;
it can be assumed that there is an unknown tagi{j. elsey — expr2; elsey = expr2;

In our system, we assume that there is no tagipn) _) _
Concatenationif a tag exists om, it is assumed that it ~Consider the case of a tag enrp. During the simulation

is propagated t§ A, B}. of the modified code, the values of batlipr1 andezpr2 are
Bitwise AND: If one of the operands is zero and tag-freecomputed and stored in the new \(arlatgyesandy2. _

the tag is not propagated through operator. If all bits of The new values off corresponding to the execution of both
one of the operands is one and tag-free, the tag on fhethenandelseclauses are known, regardless of the value of
other operand is propagated through operator. For otif&rp during simulation. This will help to correctly propagate

cases, refer to [9]. positive or negative tags arxp in Phase 2 (cf. Section V).
BitwiseNOT: v(f;) = v(a;), 0 < i < n. For a positive ~ Note thatit has been assumed that computing expressions has
tag ona, the output is assigned f) — A. no side effect, otherwise it is necessary to save the values of the

griables and restore them to make the behavior of the modified

Verilog HDL model and the original model equivalent.

3) Conditionals: When a conditional is encountered by th
tag simulator, there are two cases.

1)

eB. Nested Conditionals

There is no tag in the control condition. In this case, The case of nested conditionals is more complicated. Further,
simulation proceeds norma”y_ In the appropriate prdhe situation where variables SUChga&re aSSigned values that

cesses, Stat.emems are executed and tags (if any) akPhe approach of [8], somewhat arbitrarily, tags all the variables in the as-
propagated/injected. signments that would be missed under the tag condition.

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:48 from |IEEE Xplore. Restrictions apply.

1008 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 8, AUGUST 2001

depend on the old values (e.g., increment operation) has to b&he original code and the transformed code are shown below.
considered. The transformed code will compute the necessary information
As an example, consider the following Verilog statements:to perform propagation of tags @nxpl, cexp2, or cexp3

y3=7y;
if (cexpl) y1l = exprl;
begin
if (cexpl) if (cexp2) if (cexp2)
begin y = exprl; y3=y1;
if (cexp?2)
y = exprl ; if (Cexp3) y2 = y3+ expr2;
if (cexp3) y=y+expr2; if (cexp3)
y =y +expr2; end y3 =y2; 0
end.
if (cexpl)
Transformation starts with transforming th& cexpl) state- begin
ment if (cexp?2)
y = exprl ;
if (cexp2) if (cexp3)
y = expril; y=y+expr2;
end.
if (cexp3)
_ . It can easily be verified that the two pieces of code result in
y =7y + expr2;
the same values fay.
if (?eXPl) C. Loops
begin . .
if (cexp2) . Cons_lder théor. loop shown on_the left-hand side pelow. The
v = expri ; interesting case |s'where there is atagon the varidbl@he
if (cexp3) transformed code is shown to the right
y =7yt expr2; for(i=0;i<N;i++) for(i=0; i<N+1; i++)
end. y =7y + expr; y =Yy +expr;
yl =7y +expr;

In the next step, thef (cexp2) and thei f (cezp3) statements
are transformedy is the only variable in the original Verilog Ifthereisanegative (positive) tag &, then that corresponds
code whose value is changed inside ihstatement and, as at0 the situation that the loop is iterated fewer (more) thén
result, in order to transform the code, a new varia3iés intro- times.

duced Itis assumed that the values of the variables inside the body of
the loop are monotonic functions 8. As aresult, in order to do
y3=1y; the tag propagation, instead of using the values of the variables
y1 = expri ; when the loop iterate®/ + A times, their values afteV + 1
iterations can be used. Similarly, instead of using the values of
if (cexp2) the variables when the loop iteratds— A times, their values
y3=7y1; after N — 1 times can be used. Using this assumption helps to
determine the propagation of tag independent of its magnitude
y2 = y3 + expr2; and simplifies the coverage analysis. Otherwise, the propagation
if (cexp3) of the tag will depend on its magnitude, which is unknown.
y3 =y2; Clearly, the monotonicity assumption is not always true. To
be pessimistic, it can be assumed that the tag on the variables
if (cexpl) present in the left-hand-side of statements in the body of the
begin |00p is “?."
if (cexp2) The above modified loop results in the same valueifas
y = expril ; the unmodified code. Howevey] will contain the value for the
if (cexp3) case where the loop is iteratéd + 1 times.
y =y + expr2; Note that tags are not injected on the loop counter variable
end. i. It is assumed that errors arare reflected by changes in the

number of loop iterations, i.ely. Propagating tags on variables
Note that if the value ofexp2 is false, variable;3 is read such ag; does not require additional information. Similar trans-
before assigning any value to it. As a result, it is necessaryftrmations can be made foepeatloops. Readers can find the
initialize its value to the value aof. transformation algorithms in [9].

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:48 from |IEEE Xplore. Restrictions apply.

FALLAH et al. OCCOM—EFFICIENT COMPUTATION OF OBSERVABILITY-BASED CODE COVERAGE METRICS 1009

Fig. 2.

there will be a single node for the arrayand the array:
and an edge frorito . Information corresponding to the
array indices are associated with the edge fiama. In
general, two indices, one férand one fok:, are required.
For each index, one expression is used. These indices have
to be computed dynamically during tag propagation.

4) Type of Dependenc®ependence can be normal, condi-
tional, through task or function call, and through module
instantiation. For example, given

Linel A

1]
—

Line2 B = 2A +1;
Line3 C = B - A;

Line4 3display("C = %d",C);

Verilog model and its corresponding graph. if (x > y)

a=b+4c;

After modifying the HDL model, the modified version is sim-
ulated using commercial HDL simulators. Information aboutthe there is an edge from to a andy to . These edges are
values of the variables and simulation trace are stored in afile. conditional edges. The edges frérandc to « are normal
This information is used in the Phase 2 of the algorithm to per- edges.
form tag propagation. We describe this propagation of tags in A task or function call dependency is a dependency be-
the next section. tween inputs and outputs of a task enable or function call.

In this section, it is described how forward and concurrent
tag propagation are performed, given the information regarding)
variable values for the simulated functional vectors. A flow-
graph data structure is used to enable efficient tag propagation.

A. Graph Structure

If there is a tag on one of the inputs or the tag-injected
V. PHASE 2—GRAPH ANALYSIS line is inside the task or function, there may be tags prop-
agated to the output of the task or function.
Propagation Multiplier: There is a multiplier associated
with each edge that will be used to multiply tags propa-
gating through the edge. These multipliers can be expres-
sions. For example, given= b — ¢, the edge betwedn
anda has a+1 multiplier, but the edge fromto « has a
—1 multiplier. (This is because a positive tag ©@ahould

A graphG(V; E, L(E)) from the given HDL model is cre- result in a negative tag an) There is an additional com-
ated. Fig. 2 shows a Verilog code fragment and its corresponding pjication for edges whose dependence type is conditional.
graph. Consider the code fragment below.

Each vertexs € V corresponds to a variable in the HDL
model, such as variabld in Fig. 2. Also, there is a constant if (x> y)
vertex CONSTin the graph. Each edg€v, w) € F is a di- _
rected edge from source nodéo destination node. The edge a=al;
implies a data dependence between the nodes. Natpends elsea=a2;
onw. As an example, the edge between nadesdC in Fig. 2
shows a data dependence between variatlasdC'. In this case, the conditional dependence edge troim

The label of an edgkc) € I contains the information below. a will have the expressionl — a2 as the propagation

1) Line NumbersThe edge exists because of a data depen- multiplier. Note that only the sign afl — a2 is used, not

2)

3)

dence. A particular line of thenodifiedHDL file con- A _|ts Ima%thdebl o2 in th h that d
taining the description of the model is associated with the single observable verte in the graph that does not cor-

edge. For example, in Fig. 2, the edge frofrto C has respond to any variable is created. The variables in desgitay
Line 3 as alabel Al,so a pérti'cular line of themodified °" monitorstatement in the HDL model will be connected®o

HDL file might be associated with the edge via edges. Each edge will have a Line number corresponding
Conditional ExpressiorThere might be a con.ditional ex. {0 its displayor monitor statement. The conditional expression

pression that has to be true in order for the data depé’Hi—” be always true and the propagation multiplier will kel
dency to exist. For example, given or —1. If array variables are displayed, the index of the variable

will be attached as a label for the edge.
if (x > y) A single vertexCONSTIn the graph is created. There is an
edge from the verte€KONSTto every variable in the left-hand
side of each assignment whose right-hand side is constant.
Note that the data dependence graph can be constructed irre-
spective of the number of processes in the HDL description.

a=b+4c;

the conditional expression for the edge fréo « would
bex > y.
Indices for Array VariablesArrays are common in HDL

models. There will be a separate tag associated with e&h Forward Tag Propagation

array element, resulting in an array of tags. Given Forward tag propagation is performed on the graph structure,
and uses information obtained from the simulation trace of the
a[i] = b[i+4]; modified HDL model. For each vector and each tag injected in

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:48 from |IEEE Xplore. Restrictions apply.

1010

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 8, AUGUST 2001

A =43
C = A =B

Setlsplay (* C = G4 fetiepday (* C = ®ad”, C);

-4 =2 A=2:

C =A% 8#; - o= A x B

Sflepdaw(® C© = 9%d°

A =X
c=aknm @

- fdteplay(C 0 = %d", C)

L1

Fig. 3. Forward tag propagation example.

the graph, itis determined if the tag is propagated to the observ- ony cannot be propagated tofrom y, but a negative tag
able vertexO. The steps are are the following. can.
1) Each edge in the graph is first determined to be active or 2) All inactive edges are deleted from the graph.

inactive for the given vector. An active edge is an edge 3) A positive tag and a negative tag are injected in an edge
that can propagate a tag from a predecessor node to the thatcorresponds to an assignmentin the unmodified HDL
successor node. Whether an edge is active or not depends model.

on the tag simulation calculus (cf. Section I1I-C). 4) The edges are traversed in the graph in the order of sim-
For example, given the statemefit= A x B, if B ulation trace. For each edde, w), if it is the first edge
is zero, then the edge from to C will be inactive. A corresponding to a line in HDL code, make the nade

complication is that edges corresponding to the control tag-free before propagating the tag through the edge. If
statements may be active or inactive depending on the thereis a tag on nodeand it can be propagated through
sign of the tag that is propagated as well as the value of ~ the edge, itis propagated to nodend its sign is defined.
the control predicate under the given vector. For example, ~ After that, itis combined with the previous tag of nade

in If a tag has been injected on edge w), it is propagated
to nodew, its sign is defined and it is combined with the
if (y) previous tag of node.
x = expl; 5) If during the tag propagation, the tag propagates to the

observable verte), it is possible to detect the injected
tag under the current test vector.

there is an edge with conditional dependence fyam.. Fig. 3 shows the progress of the forward tag propagation algo-
This edge is inactive itxpl — exp2 = 0 for the given rithm for a simple Verilog modelB is input of the model and its
vector and is marked active otherwise. The propagatiealue is zero for the selected test vector. First, inactive edges in
multiplier of the edge ist+1 if exprl — ezpr2 > 0 and the graph are found and deleted from the graph. BecBuse),
—1if exprl — expr2 < 0. If y = 1, then a positive tag the edge betweed andC is inactive and can be deleted from

else x = exp2;

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:48 from |IEEE Xplore. Restrictions apply.

FALLAH et al. OCCOM—EFFICIENT COMPUTATION OF OBSERVABILITY-BASED CODE COVERAGE METRICS 1011

the graph, as shown in Fig. 3(b). Tag propagation starts with in-In practice, the concurrent tag propagation algorithm uses a
jecting a tag in the first assignment. After processing the firgtaph that is slightly different than the graph used in the forward
line of the Verilog code, there will be a tag on variableNote tag propagation algorithm. Note that if we process the HDL
that this tag appears on all instances of variablef. Fig. 3(c)]. statements backward, there might be cases that there are several
In the next step, the second line of the Verilog code is processpdssibilities for propagating a tag through an operator. As an ex-
There is a tag in the right-hand side of the assignment, but lz@nple, consider the following Verilog statement (a! = b)
cause the value of the variabfieis zero, it prevents the tag fromwhen values of variables andb are equal to two and there is
being propagated to the left-hand side. As a result, there will Bgpositive tag on variable. A positive tag on variable and a
no tag on variabl€’ after processing the second assignment [afiegative tag on variable will result in a positive tag on vari-
Fig. 3(d)]. In the next step, theisplaystatement is processed.ablec. Similarly, a negative tag on variableand a positive tag
Because there is no tag on varialdle there will be no tag in on variableb will result in a positive tag on variable When
the output [cf. Fig. 3(e)]. This means that using the current testilding the graph, onlypne of the possibilities is considered
vector, the injected tag in the first line cannot be detected in thad the corresponding edges are added to the graph. Because
output. Note that in order to find out if the tag injected on thef this simplification, the result of the concurrent tag propaga-
second line is propagated to the output using the current tdeh algorithm can be different than the result of the forward tag
vector, it is necessary to do the analysis again. In this case, ipif®pagation algorithm. In particular, the concurrent tag propa-
possible to detect the tag injected on the second line. gation algorithm might report that some detectable tags are un-
detectable. In order to make the result consistent with the result
) of the forward tag propagation algorithm, it is necessary to try
C. Concurrent Tag Propagation both possibilities in the above example. This makes the worst
case running time of the algorithm exponential in the number of
For each vector, all the tags that can be propagated to the 8%'erators. A better solution is to use the forward tag propaga-
seryable vertex) can be defmed_, using concurrent tag propgy,, algorithm for the tags that have been reported undetectable
gation. The steps are the following. by the concurrent tag propagation and to check to see if they can
1) Each edge in the graph is first determined to be active loe detected. This needs to be done only in the case where cer-

inactive; see Section V-B. tain possibilities have been discarded during graph generation.
2) Allinactive edges are deleted from the graph. Fig. 4 shows the steps involved in running the concurrent algo-
3) A positive (negative) tag is injected on the observablihm on an example. Fig. 4(a) shows the Verilog description

vertexO. and the corresponding graph. Concurrent tag propagation starts

4) Starting from the observable vertéx and assuming a with injecting a tag on the observable verteXcf. Fig. 4(b)].
positive (negative) tag on the vertex, the edges are tuafter that algorithm proceeds with processing the last statement
versed in the graph backward, in the reverse order of siin-the descriptiondisplay statement. This results in backward
ulation trace, determining all nodesc V that can reach propagation of the tag through bold edge in the graph to node
the observable vertex. The vertéx is reachable from C [cf. Fig. 4(c)]. In the next step, the third statement is pro-
noden if before traversing any of’s fan-in edges, all cessed and tag on varialléis propagated to variablg3 and
traversed paths from to O have propagation multipliers A. Note that tag on variabld has negative sign [cf. Fig. 4(d)].
of the same sign. (The propagation multiplier of a path isfter processing the third statement, variablebecomes tag
simply the product of the propagation multipliers of thdree [cf. Fig. 4(e)]. The algorithm proceeds with processing the
constituent edges.) There will be a positive or negativsecond statement. A positive tag on variablas propagated
tag on reachable vertices. Note that paths with multipliets variableA. There is already a negative tag on varialdleso
of different signs might result in tag cancellation and iafter propagating the tag, they cancel each other. This situation
is conservatively assumed that the tag is not propagatéishown by putting a “?” on variabld which is an unknown
Also, note that after taking the last edge in a set of edgty [cf. Fig. 4(e)]. After processing the second statement, vari-
in the fan-in of a vertex corresponding to a single linable B becomes tag free [cf. Fig. 4(f)]. Finally, the first state-
in HDL code, the tag is removed from that vertex. Thenentis processed [cf. Fig. 4(f)]. In the next step, lines of Verilog
reason is that taking that edge corresponds to simulatiagde corresponding to edges taken when their head nodes where
a line of HDL description with the variable of that vertexreachable at the time those edges were taken are found. For this
in the left-hand side. example, there are the second and the third lines. Tags injected

5) Line numbers (in the unmodified HDL model) of edge# the second and the third lines can be detected in the output
taken whose head vertices are reachable from observattel other tags cannot be detected.
vertex before taking those edges determine the tags which
are observable 0. VI. RESULTS

Note that if a variable appears in two differatisplaystate-

ments, one with positive sign and the other with negative si
the concurrent tag propagation algorithm as described will find The examples used in Table V correspond to various algo-
that variable unreachable. Hence, it is pessimistic. In order to fithms and processors implemented in Verilog. Exangadgt

this, we would need different observability vertices for differerqueensis an algorithm to solve the eight queens problem in
displaystatements. chessdcnewis a train system relaygrd is a traffic controller,

Qﬁ' Metric Comparison

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:48 from |IEEE Xplore. Restrictions apply.

1012 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 8, AUGUST 2001

A =1 A e A =1
H =2A+1; BH = 34 & |
o
O =48 =4; L =8 - A;
Sdisplay (" C = %d", C): @ Sdisply(" C = ®d"

f =24+ 1;

' B o= A - C= 8= A
wy Edisplry " O = B’ Sdizplay (" C = Td", g
d
o= I - 4 =1
- H =24+ 1

H-"'l.ll_ .
C =8 - .-'|I;

K& i1l

Edisplay("C = Td", L)

Fig. 4. Concurrent tag propagation example.

TABLE V
COMPARING OCCOMAND A LINE COVERAGE METRIC

Directed Random

Examples #Lines | #Tags | #Vec | #0OCCOM Line #Vec OCCOM Line
Coverage% | Coverage% Coverage% | Coverage%

eight queens 220 146 179 87% 92% 2000 67% 90%
dcnew 353 256 338 86% 100% 3000 7% 100%
crd 120 88 156 94% 100% 2000 67% 90%
amp 288 198 168 68% 92% 3000 68% 92%
coherence 530 346 442 85% 91% 5000 54% 90%

amp is a general-purpose processor, @aotierenceis a cache testand the random tests. In general, the designer generates tests
coherence protocol. by exercising chosen paths through the HDL model. If a path

The results in Table V serve to illustrate the usefulnedm inputs to outputs is exercised by an input vector sequence,
of OCCOM in relation to vanilla controllability measures{he tags injected on the assignment statements on the path will
A simple example of how controllability information can bedlmost always be propagated to the output. (Using a path cov-
misleading in Fig. 1 was given. In Table V, statistics comparir@fage metric has the disadvantage that an exponential number
line coverage and OCCOM coverage for designer-generaf@idPaths existin the design and one cannot possibly exercise all
functional tests (labeled “Directed”) and randomly generatdtths. Further, many of these paths may be false, i.e., may not
tests (labeled “Random”) have been given. be exercisable.)

Itis clear that the extra observability information in OCCOM 45, exception is when tag propagation is blocked because of arithmetic
is required to distinguish between the “good” design-generate@rflow or underflow.

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:48 from |IEEE Xplore. Restrictions apply.

FALLAH et al. OCCOM—EFFICIENT COMPUTATION OF OBSERVABILITY-BASED CODE COVERAGE METRICS 1013

TABLE VI the tag further. The designer determines a legal change in vari-
CoMPARING TIMES REQUIRED TOCOMPUTEMETRICS able values and creates a new functional test, which is tag-simu-
Examples DL, 0CCOM Specialized Iated_, and the process repeated. If the deS|gn¢r is unable to come
Simulation | Phase 1 | Phase 2 | Total | Simulator [8] ~ UP with such a test, then it may be that there is a redundancy in
arbiter 9s 13 s 2%0s | 33s 150 s the HDL model or that there is a design error.
counter 7.5s 10s 1.5s 11.5s 25 s
crd 19 s 21s 19 s 40 s 100 s
ctlp3 115s 13 10s | 23s NA VII. FUTURE WORK
8251A 15s 22 20s | 42 NA

Itis possible to improve tag analysis method described in the
previous sections to achieve more accurate results at the expense
of the speed of the algorithm. In this section, some possible
improvements are described.

B. Performance Comparison

Comparison of the performance of concurrent tag propag%'- Relative Magnitude of a Tag

tion algorithm against functional simulation and the method of In the tag analysis described in the previous sections, it was
[8] has been given in the Table VI. Exam@lebiter is a bus ar- assumed that a variable is tag-free, has a positive tag, a negative
biter,counter is a 3-bit countergrd is a traffic controllerctlp3 tag, or an unknown tag. During tag propagation, the algorithm
is the logic for a Dining philosophers problem, a8@51Ais a only kept track of the sign of the tag, not its magnitude relative to
USART. The time required to simulate the original HDL modethe original injected tag. As an example, during the tag analysis
(prior to modification) for 10 000 vectors using a commercigbr A = 2 x B, whenB has positive tag (i.e4), the tag on4
Verilog simulator is given as a baseline for comparison puwas assumed to b, not2 x A.

poses. The same simulator and the same vectors were used fQfsing the sign of the tag helped to detect the possibility of
OCCOM computation. OCCOM computation is broken up inttag cancellation or asymmetric tag propagation (e.g., the propa-
two parts; time required to simulate the modified HDL modejation of tag through a control expression). This achieves more
and the time required for tag propagation. All times correspor@curate results than a method that ignores the sign. On the other
to seconds on a Sun Ultra-SPARC 30/300 with 256 MB of RAMand it requires performing tag analysis twice, once for each
running at 300 MHz. sign of the tag.

The simulator of [8] could not be run for some of the exam- It is possible to keep track of the relative magnitude of the
ples since the simulator does not handle certain Verilog camg during tag analysis. This will help to obtain more accurate
structs such as nested if statements. The described methokssilts for tag cancellation, but it means considering more cases
faster than the specialized tag simulation because it allows for a tag, which in turn will expend more CPU time.
the use of highly optimized commercial HDL simulator and it Note that, even in this case, it is necessary to make some
uses concurrent tag propagation. assumptions on the magnitude of the tag in order to perform

The concurrent tag propagation algorithm is significantl{ag analysis. Also, in some cases, it is necessary to approximate
faster than fault simulation. Note that in order to use the fadhe relative magnitude of the tag when it is propagated through
simulation strategy, the HDL model has to be converted thfferent operators. For example Af = B x C and both and
gate-level form and this by itself is a time-consuming operatiofy. are zero and have positive tags on them (i, the tag onA

The CPU time for modifying HDL description and simulatingwill be A2. In this case, it is possible to keep track of all powers
it grows linearly in terms of size of the description. Also, the tagf A, or to simply approximate it with' x A, whereK is an
propagation analysis can be done in the worst case in quadrétieger number.
time. Hence, it is possible to use this method for large designs.

In practice, the results show a linear increase in CPU time @) Absolute Magnitude of a Tag

comparison to simple HDL simulation. L . . L
P P A possible improvement on simple tag analysis, which ig-

nores the magnitude of the tag, is assuming a specific magnitude
C. Diagnosis—Feedback to Designer for the injected tag and performing more detailed analysis to see

if the values of any of the outputs are changed. This requires per-

OCCOM coverage obtained for a given HDL model can bfE)rming the tag analysis assuming the absolute magnitude of the

used to debug the. model or create better fungtlonal tests. ASacted tagiis 1, 2, 3, etc., all the way up to the maximum value
sume that a certain coverage has been obtained for an H

dol. Th h dioth he variable. This achieves the most accurate results; on the
model. The tags that are not propagated to the outputs are exgfje hang, it is too time consuming to do this for all possible
ined, one by one. For each such tag, the information regard%gnitudes of a tag

whether the line on which the tag was initially injected was ex-
ecuted (controllability information) is known. All the vectors
(if any) for which the line was executed are determined. Fc?r
each vector, the tag propagation path is examined to determinén the described OCCOM analysis, the design errors were
the blocking statement(s). The values of the variables in th@odeled with injection of tags on the assignments. Injecting tags
blocking statements need to be changed in order to propagaethe assignments can capture some design errors, but not all

. Injecting Tag on Expressions

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:48 from |IEEE Xplore. Restrictions apply.

1014 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 8, AUGUST 2001

of them. A better result can be achieved using injection of tag onf4] D. Brahme and J. A. Abraham, “Functional testing of microprocessors,”
every expression. For example, consider the following Verilog _ 'EEE Trans. Computvol. C-33, pp. 475-485, June 1984.
s [5] M. A. Breuer and A. D. FriedmarDiagnosis and Reliable Design of
descrlptlon. Digital Systems Rockville, MD: Computer Science, 1976.
[6] K.-T. Cheng, “Transition fault testing in sequential circuitSEEE
Trans. Computer-Aided Desigwol. 12, pp. 1971-1983, Dec. 1993.

A=0; [7] K.-T. Cheng and A. S. Krishnakumar, “Automatic functional test gen-
eration using the extended finite state machine modelPrioc. 30th
B=20; Design Automation Conflune 1993, pp. 86-91.
if (cC>4a) [8] S. Devadas, A. Ghosh, and K. Keutzer, “An observability-based code
coverage metric for functional simulation,” iAroc. Int. Conf. Com-
A=1,; puter-Aided DesignNov. 1996, pp. 418-425.
[9] F. Fallah, “Coverage directed validation of hardware models,” Ph.D. dis-
elseB=1; sertation, M.I.T., Cambridge, MA, 1999.

[10] D. Geist, M. Farkas, A. Landver, Y. Lichtenstein, S. Ur, and Y. Wols-
fthal, “Coverage-directed test generation using symbolic techniques,”

Assume that there is an error in the control expression of the g‘pprl"f,a;l”ltégconf' Formal Methods Computer-Aided Desigov. 1996,

if statement and that the expression should’be= 4 instead [11] T. Goradia, “Dynamic impact analysis: A cost effective technique to en-
of C' > 4. Every time thdf statement is simulated, the values force error propagation,” iRroc. Int. Symp. Software Testing Applica-

: . : tions Mar. 1993, pp. 171-181.
of both variables4 and B will be erroneous and there will be A Gupta, S. Malik, and P. Ashar, “Toward formalizing a validation

atag on them. Those tags can interact and possibly cancel each methodology using simulation coverage, Froc. 34th Design Automa-
other. tion Conf, June 1997, pp. 740-745.

s . .. r{13] R. C. Ho, C. H. Yang, M. A. Horowitz, and D. L. Dill, “Architecture
If a tag is injected only on the assignments, it is injected o validation for processors,” iRroc. 22nd Annu. Symp. Computer Archi-

only one of the assignmentstimenor elseat a time. As a result, tecture June 1995, pp. 404-413.

there will be no interaction or cancellation effect and the erroft4l Y. Hoskote, D. Moundanos, and J. A. Abraham, "Automatic extraction
of the control how machine and application to evaluating coverage of

in the control expression cannot be modeled. verification vectors,” inProc. Int. Conf. Computer Desigi®ct. 1995,
By injecting tags on the control expression this case can be pp. 532-537.
handled easily. [15] K. D. Jones and J. P. Privitera, “The automatic generation of functional

test vectors for Rambus designs,” Rroc. 33rd Design Automation
Conf, June 1996, pp. 415-420.
[16] S. Kang and S. A. Szygenda, “Modeling and simulation of design er-
. rors,” in Proc. Int. Conf. Computer Design: VLS| Computers and Pro-
D. Multiple Tag Model cessorsOct. 1992, pp. 443—446.
[17] M. Kantrowit and L. M. Noack, “I'm done simulating; now what?

; ; - ; Verification coverage analysis and correctness checking of the DECchip
During OCCOM angly3|s, asingle tag assumption has been 21164 ALPHA microprocessor,” ifProc. 33rd Design Automation
used. In other words it was assumed that there was only one cont, june 1996, pp. 325-330.
error in the design and effect of that error was modeled by inf18] J. P. Roth, “Diagnosis of automata failures: A calculus and a method,”
it i ; ; ; IBM J. Res. Developvol. 10, pp. 278-291, July 1966.
JeCtIhg a tag in one of the. assignments. It is pOSSIt.)Ie to useﬁg] S. M. Thatte and J. A. Abraham, “Test generation for microprocessors,”
multiple tag model and inject a tag on severf_;ll assignments IEEE Trans. Computvol. C-29, pp. 429-441, June 1980.
the same time and then perform tag propagation. Different tagg0] J. M. Voas, “PIE: A dynamic failure-based techniqu&EE Trans. Soft-
can interact during tag propagation and cancel each other. How- Ware Eng. vol. 18, pp. 717-727, Aug. 1992.
ever, the described algorithm will work for this case as well. To
achieve better results, some information regarding relative mag-
nitudes of the tags can be used.
The main issue with the multiple tag model is that there are
an exponential number of possible multiple tag injections and
methods to choose a small number of them are an absolute ne-
cessity. These methods may have to rely on designer intuition
and may be difficult to automate.

"‘ Farzan Fallah (S'97-M'99) received the B.S. de-
gree in electrical engineering from Sharif University

of Technology, Tehran, Iran, in 1992 and the M.S.
and Ph.D. degrees in electrical engineering and
computer science from the Massachusetts Institute
of Technology, Cambridge, in 1996 and 1999,
respectively.

He joined Fujitsu Laboratories of America, Inc.,
Sunnyvale, CA, in April 1999 as a Researcher. He has

REFERENCES

[1] M. Abramovici, M. A. Breuer, and A. D. Friedmamigital Systems
Testing and Testable DesignPiscataway, NJ: IEEE Press, 1990.

[2] A. Aharon, D. Goodman, M. Levinger, Y. Lichtenstein, Y. Malka, C. authored or coauthored several papers on design veri-
Metsger, M. Molcho, and G. Shurek, “Test program generation for func- fication and validation. His current research interests
tional verification of powerpc processors in ibm,”fmoc. 32rd Design are in the area of computer-aided design of integrated circuits with emphasis on

Automation Conf.June 1995, pp. 279-285. logic synthesis, design verification, and validation.
[3] B. Beizer,Software Testing Techniqueznd ed. New York: Van Nos- Dr. Fallah is a member of the ACM. He received the Best Paper Award at the
trand, 1990. Design Automation Conference in 1998.

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:48 from |IEEE Xplore. Restrictions apply.

FALLAH et al. OCCOM—EFFICIENT COMPUTATION OF OBSERVABILITY-BASED CODE COVERAGE METRICS 1015

)

Srinivas Devadas (S'87-M'88-SM'96-F'98)
received the B. Tech. degree in electrical engineerin
from the Indian Institute of Technology, Madras,
India, in 1985 and the M.S. and Ph.D. degree
in electrical engineering from the University of
California, Berkeley, in 1986 and 1988, respectively|

Since August 1988, he has been with the Mass
chusetts Institute of Technology, Cambridge, wher:
he is currently an Associate Professor of Electric
Engineering and Computer Science. From 2000 t
2001, he was a Principal Engineer at Sandburst Cor-

Kurt Keutzer (S'83-M'84—-SM’'94—-F'96) received
the B.S. degree in mathematics from Mabharishi In-
ternational University, Fairfield, A, in 1978 and the
M.S. and Ph.D. degrees in computer science from In-
diana University, Bloomington, in 1981 and 1984, re-
spectively.

In 1984, he joined AT&T Bell Laboratories,
where he worked to apply various computer science
disciplines to practical problems in computer-aided
design. In 1991, he joined Synopsys, Inc., where
he continued his research in a number of positions

poration, where he architected the QoS (Quality of Service) schedulers in Sacidminating in his position as as Chief Technical Officer and Senior Vice-Pres-

burst's high-speed internet router chips. He has authored or coauthored overitigat of Research. He left Synopsys in January 1998 to become a Professor of

technical papers in journals and conferences and has coauthored four booksldetrical Engineering and Computer Science at the University of California

held the Analog Devices Career Development Chair of Electrical EngineeriagBerkeley, where he is currently Associate Director of the Gigascale Silicon

from 1989 to 1991. His research interests include all aspects of synthesisReksearch Center. He has coauthdredic SynthesiéNew York: McGraw-Hill,

VLSI circuits, with emphasis on optimization techniques for synthesis at tl®94. His research interests include areas related to synthesis and high-level

logic, layout, and architectural levels, design for low power, testing of VLSlesign.

circuits, formal verification, hardware/software codesign, design-for-testability Dr. Keutzer received three Best Paper Awards at the Design Automation Con-

methods and interactions between synthesis, and testability of VLSI systemference (DAC), a Best Paper Award at the International Conference in Computer
Prof. Devadas is a member of the ACM. He received a National ScienBesign (ICCD), and a Distinguished Paper Citation from the International Con-

Foundation Young Investigator Award in 1992, seven awards at computer-aidecence on Computer-Aided Design (ICCAD). He was an Associate Editor of

design conferences and journals, including the IEERANSACTIONS ON |EEE TRANSACTIONS ONCOMPUTERAIDED DESIGNOF INTEGRATED CIRCUITS

COMPUTERAIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS Best AND SysTeMSfrom 1989 to 1995 and currently serves on the editorial boards

Paper Award in 1990 and the IEEERANSACTIONS ONVERY LARGE SCALE of Integration—the VLSI JournaDesign Automation of Embedded Systems

INTEGRATION (VLSI) SysTEMS Best Paper Award in 1996. He has servedandFormal Methods in System Desigtle has served on the technical program

on the technical program committees of several conferences and workshapsnmittees of DAC, ICCAD, and ICCD as well as the technical and executive

including the Design Automation Conference, the International Conferencemmittees of numerous other conferences and workshops.

on Computer Design, and the International Conference on Computer-Aided

Design and as the Technical Program Chair of VLSI'99 in Lisbon, Portugal. He

has served on the editorial board&EM Transactions on Design Automation

of Electronic Systemand currently serves on the editorial boardFofmal

Methods in VLSI DesigandDesign Automation of Embedded Systems

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:48 from |IEEE Xplore. Restrictions apply.

