
The Verilog Procedural Interface for the Verilog Hardware Description
Language

Charles Dawson, Sathyam K. Pattanam, David Roberts

Cadence Design Systems Inc.

Abstract

The Verilog Procedural Interface is a new C-
programming interface for the Verilog Hardware
Description Language. Different Verilog HDL based
tools such as simulators, synthesizers, timing analyzers,
and parsers could support this interface for
applications which extend the tool‘s functionality. VPI
is part of the IEEE 1364 Programming Language
Interface standard.

VPI is considered to be the third generation procedural
interface to Verilog HDL. The first two generations
evolved in conjunction with Verilog-XL and the Verilog
HDL. This process resulted in interfaces which lackd
consistency and functionality for applications. VPI
provides a consistent object-oriented access to the
complete Verilog HDL language as described in the
IEEE 1364 Language Reference Manual. VPI also
provides a well defined interface for supporting
Verilog-HDL based simulation. It is believed that this
interface can be easily extended to meet future needs.

A major portion of the VPI functionality is available in
the Verilog-XL 2.2 simulator released in 9502. The
complete VPIfunctionality will be available in the
Verilog-XL 2.3 simulator to be released in 9504.

This paper brieJy discusses the evolution of the Verilog
HDL programming language interfaces, features of the
VPI interface, and a set of possible powerful
applications.

1 Introduction
It wasn’t long after Verilog-XL was first introduced,
that it became apparent that an Application Procedural
Interface (API) for it would be extremely useful. This
API has been known as the Programming Language
Interface (PLI). It has been used so much that it has
become a defacto standard, along with the Verilog

language itself. Verilog HDL based tools such as logic
simulators, logic synthesizers, timing analyzers, ... etc.
provide the PLI as a mechanism for applications to
access the description and to control the behavior of the
tool. Possible applications are delay-calculators, delay-
annotators, test-vector injectors, debugging
environments, translators, and interfaces to software
and hardware models.

The PLI has evolved significantly over the years. The
first generation of the PLI was the “task-function
routines” also called as the “TF interface”. These
routines are primarily used for operations involving
arguments of user-defined system tasks and functions in
the Verilog description. User-defined system tasks and
functions are constructs in the Verilog-HDL that are
prefixed with the ‘$’ (dollar) sign. For each user-
defined system task and function the application could
register three callback functions:

checktf- called during compilation
calltf- called during simulation when the system
task or function is actually executed
misctf- called for miscellaneous reasons such as
when an argument changes value

The application’s calltf function can also return a value
for a user-defined function. Another capability this
interface has is the ability to write values to nets and to
be able to propagate these values to rest of the
description. The main drawbacks of this interface was
that it only provided very limited functionality and did
not provide any access to the Verilog description.

The second generation interface of the PLI was the
“access routines” also called as the “ACC interface”.
The major improvement which the ACC interface
provided was access to the design-hierarchy,
connectivity, and structural information. It provides
functionality to set and propagate values of regs, and to
modify delay values. It also has the ability to register

17
1085-9403/96 $5.00 0 1996 IEEE

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 10:01 from IEEE Xplore. Restrictions apply.

callbacks for value changes of nets, regs, and variables.
This callback mechanism is known as the Value Change
Link, or VCL. The ACC is similar to the TF inteface in
that it suffers from inconsistent and incomplete access
to the Verilog description.

The new interface called the “Verilog Procedural
Interface” (VPI) is considered the third generation
procedural interface. This interface provides a
consistent data-model of the complete Verilog HDL and
an object-oriented access to the data-model. This
interface has been designed to be independent of the TF
and ACC interfaces. Therefore, it has all of the
functionality provided by the other interfaces.

All the three generations of the Verilog programming
interfaces are part of the Verilog IEEE 1364 standard.
Cadence has played a significant role in defining these
interfaces, and will deliver the first simulator in the
industry to have this new interface along with the
previous interfaces. Verilog-XL version 2.3 to be
released in the last quarter of 1995 will have the new
VPI interface.

2. The VPI Interface

The VPI interface was designed to provide a uniform
access method to the data within a Verilog design. This
methodology has been separated from the data itself
which simplifies extensibility. VPI provides access in
terms of handles to objects which are recognizable to
the Verilog designer. Access to simulation specific
information has been designed systematically to
provide completeness and accuracy. A new callback
mechanism is included which provides more
functionality than VCL. Finally, the important
functionality of the older PLI utility routines has been
provided by utility routines within the VPI.

2.1 Access methodology

All data within a Verilog design is related in some way.
The VPI access methodology has been defined in terms
of these relationships. As far as a Verilog design is
concerned, there are only four types of relationships:

not-related
one-to-one
one-to-many
many -to -one

Conceivably, there could be a fifth relationship, many-

to-many, however a need for this not been found. In
other words, any given object within a Verilog design is
related to another type of object(s) in one of these four
ways. As an example, any given primitive instance
only lives within one module. The relationship
between the primitive instance and it’s containing
module instance is referred to as one-to-one. In
diagram 1, this relationship is illustrated by the single
arrow from primitive to module.

........................... ~

(m od u I e)+--- (primitive)

Diagram 1

The routine which is used to make this kind of traversal
is vpi-handle().

Any module instance could have many (zero or more)
primitive instances. Therefore, the relationship
between the module instance and the primitive
instances contained within it is referred to as one-to-
many. In diagram 1, this relationship is illustrated by
the double arrow from module to primitive. The
rouunes used to make this kind of traversal are
vpi-iterate() and vpi-scan{). vpi-iterate() retums an
object known as an iterator. An iterator holds the place
in the list of objects. vpi-scan() moves the place holder
to the next object in the list.

These relationships d e h e the basic methodology for
traversing the data structures which represent the
Verilog design.

Associated with any given object within the design is a
set of properties. These properties are almost always
expressed as either an integer or a string. Since most
properties have these two types, two routines which
will retum a property value have been created
(conceivably, there could be routines for other basic C
variable types, such as floats). More complicated
properties (such as values and delays) are handled
individually. Diagram 2 illustrates one of each of these
properties.

To access a property which is of type str, use the routine
vpi-get-str(). To access a property of type int, use the
routine vpi-geto. More complex properties have the

18

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 10:01 from IEEE Xplore. Restrictions apply.

net .’\ /-

-> name
str: vpiName
str: vpiFulName

-> location
int: VpiLineNo
str: vpiFile

-> value
vpi_get_value()
vpi_put_value()

Diagram 2

routine for accessing them directly in the diagram
describing the object. For example, to get the value of a
net, use vpi-get-vulue().

2.2 Classes and Methods

Sometimes it is convenient to group a set of objects
together. A group of objects are referred to as a class.
Diagram 3 illustrates a class definition.

I J :

[gate-)
I / 1:

switch)

-> name
str: vpiName
str: vpiFullName

Diagram 4

types, since they represent groups of objects. In other
words, the type of a gate object will be vpiGate, not the
class vpiprimitive. Another example would be using
the method vpiRhs. Using vpiRhs from a cont assign
will not retum an object whose type is vpiRhs. The
object will have a type of one of the objects within the
class vpiExpr.

2.3 Data Availability

The data which comprises a Verilog design and
simulation can be broken into three categories. The
first category of data is information which is contained
within any single module description. The second
category of data is connectivity and hierarchy
information created during linking (also known as
elaboration). The last category of data would be
simulation specific information created as the
simulation progresses. The first two categories contain
static information. The VPI as defined in IEEE 1364
allows access to all of the information within these two
categories. In other words, it is assumed that an
implementation of VPI will not attempt to allow
applications to access data until after elaboration.
However, it is possible to define a subset of the access
provided by the VPI to be available after compilation,
but prior to elaboration.

2.4 Static data Model
Diagram 3

The properties vpiName and vpiFullName apply to all
of the objects within the class primitive. It is possible
to access a class from some given object using a
method. Methods are illustrated by tags such as vpiRhs
and vpiLhs in diagram 4.

Methods and classes never correspond to actual object

Most of the information to which VPI provides access
is static in nature. It originates in the HDL itself, and
remains available throughout the simulation. This
static data model is encapsulated in the data model
diagrams described in sections 2.1 and 2.2. Often, this
information is not needed during the actual simulation
of the design. Most VPI applications will need at least
some of this information during their processing. This
can create a “conflict of interest” between the simulator
which is trying to simulate the design as efficiently as
possible, and the VPI application. Sometimes the VPI

19

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 10:01 from IEEE Xplore. Restrictions apply.

implementation will need to create objects which the
simulator does not keep. A routine, vpiffee-object()
has been created which allows the VPI application to
inform the interface that the object is no longer needed.

2.5 Simulation Specific Data

Access is provided through the VPI to simulation
specific information once simulation has begun.
Simulation specific information includes:

the values of non-constant objects such as nets or
regs
delay values, which can be modified by VPI appli-
cations such as an SDF annotator
the current simulation time
access to time slices in the time queue

Th~s information is also known as dynamic
information, since it will change as the simulation
progresses.

2.6 Callbacks

Process control is handled through a mechanism known
as callbacks. A VPI application tells the simulator to
call a specified routine when some kind of event occurs.
These events are separated into two categories:

Callbacks for event related to a specific HDL
object
Callbacks for simulator events

The first category includes events such as when a net
changes value or before a behavioral statement is
executed. The second category include events such as
the end of compilation, or before a save occurs.

VPI also defines a mechanism which allows the VPI
application to register new user defined system tasks
and functions with the simulator. Associated with the
system tasks are a set of routines which will be called
when events related to the task or function occur (i.e.
when the task or function is compiled, a routine can be
called to allow the VPI application to check that the
task or function is being used properly). These routines
are similar to the checktf, calltf, and misctf routines in
the TF interface. A new system task or function can be
register through the VPI at any time, which eliminates a
restriction of the previous interfaces.

Callbacks can also be removed. Routines which create
callbacks return a handle to an object whose type is

vpicallback. This handle can be passed to another
routine which will remove the callback.

2.7 Utility routines

VPI provides a set of utility routines which complement
the rest of the interface.

Utility routines provide the ability to write to files.
There is a routine which allows an application to write
to multiple files simultaneously. This mechanism is
known as Multi-Channel Descriptors, or MCDs.
Descriptors are reserved for the stderr, stdout, and the
simulator log file. There is a mechanism available to
open and close files as well. Another routine will
provide the name of a file given a channel descriptor.

VPI has a well defined error mechanism. This error
mechanism is passive. In other words, the VPI
application can choose to ignore errors. There is a
callback reason provided to allow a specified routine to
be called whenever an error occurs. Possible errors that
can be handled through this mechanism include errors
caused by the VPI application itself, and errors which
are simulation related, such as an error during
compilation.

3 Applications for the VPI

Any application which used the ACC and TF interfaces
can be written using the VPI interface. One of the
major benefits of using VPI is that it was designed to
provide access to the entire Verilog HDL. The ACC
interface was defined to handle the structural aspects of
a design, but largely ignored behavioral HDL objects.
Some examples of applications that can only be
accurately written with VPI are:

Verilog HDL Decompiler/Translator
Design Rule Checker
Driver Resolution

3.1 Verilog HDL Decompiler/’Ikanslator

An application can be written which will traverse the
entire design and decompile it in the exact syntactic
format of the original text. A very similar application
would be a translator (i.e. Verilog to VHDL). One
weakness of the VPI is that it does not handle the
definition and use of compiler macros. This weakness
can affect a decompiler/translator.

With the ability to access all parts of the language,

20

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 10:01 from IEEE Xplore. Restrictions apply.

applications can now deal with issues in a more natural
way. If an ACC application has to deal with an
expression, it would have to get the expression as a
string, then parse the string to perform the required
operations. A VPI application can get a handle to each
leaf element in the expression, eliminating the need for
an expression parser in the application.

3.2 Design Rule Checker

A design rule checker can be written to verify both
structural and behavioral code. Unlike design rule
checkers written as ACC applications, a VPI design
rule checker can now enforce design restrictions. There
are HDL constructs that the ACC interface cannot
detect, causing an ACC design rule checker to be
unable to accurately control a design style.

Some design methodologies could actually remove
restrictions, which were required because of
deficiencies in the ACC and TF interfaces.

Since VPI provides the ability to setup callbacks
without having a user defhed system task or function
within the HDL, VPI applications can now be built into
the simulator and executed automatically. A design
rule checker can be installed which would not require
the designer to call a system task or function in order to
invoke it. This application can persist throughout the
course of the simulation, without the designer aware of
it (providing he does not violate any design rules).

3.3 Driver Resolution

Using VPI, an application can now find all of the
contributors to a net’s value, not just the structural
drivers. The application is able to find continuous
as$gnments, primitives, forces, behavioral ports,
... etc. The VPI application can get the values and
strength of all these drivers. Except for finding future
scheduled values on a driver, an application can be
developed that produces the same output as the system
task $dumpvars.

An application can accurately detect two or more
contributors which are driving the same value on a net
at the same time. While this is allowed by the Verilog
HDL, this tends to be considered by designers to be a
run time error.

Another by-product of being able to find all the drivers
of a net is that delay calculators can now be enhanced to
deal with behavioral models. Since the ACC interface

cannot handle behavioral code, a design can attach a
behavioral model to a net and the delay calculator will
never know it is there.

4. Weaknesses of the VPI

There are several weaknesses with the present VPI
definition. Fortunately, because of the care which was
taken in it’s design, the VPI can easily be extended to
rectify these deficiencies. The weaknesses can be
broken into six categories:

Text biased applications
No concept of an object’s reference
Cannot create objects
Data model restricted to language concepts
Simulator control
Memory consumption

4.1 Text Biased Applications

The VPI interface was designed to provide access to a
compiled design. Because of this, a text biased
application cannot find and work with many of the
different compiler directives, including:

‘define macro ‘macro
‘if ‘else ‘endif

Properties needed for textual manipulation are also
missing. An example would be the column location of
an object within a file. Textual biased applications such
as GUIs and debuggers will need further extensions to
the VPI.

4.2 No Concept of Object References

Any object which can be termed “declared” in VPI has
a name. For example, any net has a name. Declared
objects can be referred to in many places. The VPI has
no concept of a reference to an object. Often, when a
VPI application is traversing a design and it encounters
an object reference the application can lose it’s context.

Access to expressions is a typical scenario for this type
of problem. As an example, given the following
expression:

a + b

Where a and b are declared as:

21

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 10:01 from IEEE Xplore. Restrictions apply.

wire a, b;

A handle to this expression would have a type of
vpioperation. You can get the line number of this
expression because it is complex. You can also get the
operands of the plus operator. The operands for the
expression are references to nets. When a VPI
application traverses to the operands, it will get objects
of type vpiNet. An attempt to get the line number for
these objects will return the line number for their
declaration, not the expression.

Further, once an application goes to the operands, there
is no way to traverse back up the expression tree to the
operator.

4.3 Data Model Restricted to Language Con-
cepts

The VPI was designed using terms which are familiar
to Verilog designers. Unfortunately, some situations
call for new types of objects which don’t necessarily fit
this criteria. As an example, take the following
continuous assign:

assign {a,b} = foo[1 :O];

If an application iterates on drivers for the scalar signal
“a” it will get the handle to the continuous assignment.
The expression on the left hand side can be obtained
and then scanned to find where the object of interest
exists in the expression. Determining which bit of the
continuous assignment is driving the signal could be
simplified with the creation of the concept of a
continuous assignment terminal and continuous
assignment terminal bits.

4.4 Cannot Create Objects

Another powerful concept which could be added to the
VPI interface would be the ability to create objects
from within the VPI application. At present VPI
cannot create objects, they must already exist within the
HDL.

Many applications would like the ability to create a
driver on a net. VPI is able to place values directly into
a net, but this is of little use on a net with any drivers.
Placing a value on a net will override the values of the
drivers, until one of them changes value again causing
the net to be re-evaluated. Using VPI to set the value of
a net is known a “soft forcing” the net. If an application
could create a persistent driver of a net, in which it has

control over both the value and drive strength, it could
influence the net in a more natural way. This driver
would be able to influence the net just as any other
driver would.

4.5 Simulator Control

Access to individual events was determined to be too
implementation specific to add to the IEEE 1364
specification. The problem is that there is no consensus
on the definition an event. Certainly, an event in a cycle
simulator may not be defined the same as an event in an
event driven simulator. Events mean different things in
a compiled simulator versus a interpreted simulator,
... etc.

Given the variety of Verilog simulators today, we could
not provide a general solution that would allow VPI
applications to access events, even though this could be
a very useful feature.

Other simulation control functions are missing,
including:

The equivalent to the system tasks $stop and

A graceful way to get the simulator to exit and

A signal handler which could call a VPI

$finish

control the exit status

application when it receives an interrupt.

4.6 Memory consumption

At present once a handle is given to an application it
must remain valid until the end of the simulation or
until the application calls vpifree-object(). Only when
an application calls vpiffee-object() does the simulator
know that the application is not retaining the handle for
some reason. There are situations when an application
will access an object that will force the VPI interface to
allocate memory for the handle in order to retum it to
the application. Currently there is no way to notify the
VPI application that this is occurring. Therefore, in
order to prevent memory leaks, the application will
need to call vpi_fi.ee-object() for every handle it
encounters.

Since a typical application will not retain copies of
most of the handles it encounters, this mechanism is too
awkward. A mechanism which would better fit the
most common use model would be to have the
application inform VPI that it is retaining the handle.
This would allow the VPI to free allocated storage in a

22

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 10:01 from IEEE Xplore. Restrictions apply.

more timely manner without overburdening the
application.

5. Extensions to the VPI and the Future

Clearly there is a lot of work left before there will be an
API for the Verilog language which completely satisfies
the needs of most applications. It was obvious from the
prior attempts to create an API for Verilog that any
attempt at a new API should be general and easily
extensible. In this regard, the VPI has been very
successful. Cadence is in the process of extending the
VPI to meet the needs of many of VPI’s customers.

5.1 Text Biased Applications

We have already begun extensions to the VPI to handle
text biased applications. Specifically, the new UI for
the INCA technology will be using VPI heavily. These
extensions include the ability to get handles to every
textual reference of a defined object (i.e. a net) in a
module, and to get the column properties needed for
selection of an object in a file.

the IEEE for inclusion in the next version of the IEEE
1364 document.

5.2 VPI and VHDL

There currently is no industry standard API for the
VHDL language. Each simulator has it’s own API.
This causes a great deal of problems for customers who
are trying to write applications for more than one
simulator.

Cadence is currently applying the knowledge gained
through the development of VPI on a new API for
VHDL. Essentially, this new API, known as VHPI,
will use the same or very similar access mechanism, but
it will have it’s own data model. VHPI may also use
the utility routines and callback mechanism which are
part of the VPI. Other parts of the VPI, such as access
to values and delays, may be too Verilog specific for
VHPI. However, expect VHPI to provide similar
functionality in a similar way.

Eventually, Cadence hopes to propose the VHPI to the
IEEE for inclusion in the VHDL standard.

Eventually Cadence hopes to propose the extensions to

29

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 10:01 from IEEE Xplore. Restrictions apply.

