
COMPUTATION OF THE MINIMAL SET OF PATHS FOR
OBSERVABILITY-BASED STATEMENT COVERAGE

J. COSTA, J. MONTEIRO
IST/INESC-ID, PORTUGAL

KEYWORDS: Embedded software, Validation, Observability,Coverage

ABSTRACT: Existing coverage-based validation methods guarantee theexecution of a certain percentage of the program
code under test, however they do not generally verify whether the statements executed have any influence on the program’s
output. Motivated by an observability coverage metric for embedded software we propose a coverage-directed path
generation method. In this method, a program statement is considered covered not only if it belongs to the executed
path, but also if its execution has influence in some output. The paths are generated by finding the longest path in a tree
representing the possible execution paths of the program. Generated paths are then validated to check for feasibility.If
a feasible path is found, then we determine and mark the statements actually observed using the computed inputs for
exercising the path. If unfeasible, we search for the next longest path. If the desired level of coverage was not obtained
yet then a new tree is built. This new tree will reflect the coverage obtained so far and also the information gathered when
checking the feasibility of previous paths. We present results that demonstrate the effectiveness of this methodology.

INTRODUCTION

Embedded systems are used in a growing number
of diverse applications. Examples include consumer
electronics, automotive systems and telecommunications,
among others. This prevalence is due to the
fact that embedded systems results from a mix of
hardware/software systems. The software part, which
runs on a processor, gives the system the flexibility, since
it can be easily changed depending on the application.
The hardware portion, which executes more specialized
functions, is used in time critical subsystems.
Techniques for the formal validation of such systems
are being developed [5]. Nevertheless, simulation is
still the best option when trying to validate a design.
Validation of embedded systems is hard because of
their heterogeneity. Software and hardware should be
simulated simultaneously, and furthermore hardware and
software simulations must be kept synchronized, so
that they behave as close as possible to the physical
implementation. Several methods have been proposed for
co-simulation [4],[3],[13].
Many of the co-validation fault models currently applied
to hardware/software designs have their origins in either
the hardware or the software domains [11]. A number
of these models are based on the traversal of paths
through a Control Dataflow Graph (CDFG) representing
the system behavior (Figure 1). Normally, these systems
are described in high level languages such as Verilog
or VHDL for hardware, and C or Java for software,
among others. Having a system described in a high
level language means that its description can be easily
converted intoCDFG descriptions. Having the hardware
description and the software description both inCDFG

format means that the entire system can be in the same
format. And having the entire system described in the
same format means that the same techniques applied
to hardwareCDFG-based methods can be applied to

software and vice-versa.
In this paper, we address the problem of, given an
embedded software program, finding a minimal set of
execution paths that guarantees a user-specified level of
observability coverage. The method starts by building a
Directed Acyclic Graph (DAG) from theCDFG. Using the
DAG a graph tree is build where each node corresponds
to a set of statements in the embedded program. To
obtain the longest path that also executes that set of
statements is obtained by climbing up the tree starting in
the mentioned node. The path is then validated against
an input value generator to test its feasibility, and if
feasible its observability-based coverage is computed.
The coverage obtained directs the choosing of the next
path by rearranging the tree accordingly. Paths are
generated until the specified coverage is achieved.
The method proposed is based on traversal of paths
through a CDFG and thus can be applied to either
software or hardware high level languages. Also,
the coverage metric we used is motivated by work
on observability-based coverage metrics for hardware
models described in a hardware description language [7]
and afterwards by the same metrics applied for embedded
software [2].
In the following sections we give an overview of the
field of automated testing of embedded systems and
describe our own method to obtain an observability-based
coverage. Later we present some examples. Finally, we
present some conclusions and future work.

RELATED WORK

Several types of coverage metrics exist that use aCDFG

description. The most complete is path coverage where
we achieve 100% path coverage when every possible path
in the CDFG is executed. This means that from the entry
point of theCDFGdescription all possible ways of getting
to an exit point were followed and executed. Reaching

void fibonacci(int num)
{

int i;
int F1, F2, Fn;
if (num <= 0){
printf("%i is not a valid number\n", num);

}
else if (num == 1 || num == 2){
printf("F(%i) = 1\\n", num);

}
else{
F1 = 1.0;
F2 = 1.0;
for(i = 2; i < num; i++){

Fn = F1 + F2;
F1 = F2;
F2 = Fn;

}
printf("F(%i) = %e\n", num, Fn);

}
}

0

1

3

5

6 4 2

7

8

9

10

num<=0

printf

num == 1 ||
num == 2

printf

F1 = 1.0
F2 = 1.0
i = 2

i < num

Fn = F1+F2
F1 = F2
F2 = Fn;
i++

printf

Fig. 1. C code for the Fibonacci program and itsCDFG.

100% path coverage is very often impractical due to the
large number of possible paths, or even impossible as
some of the paths may be infeasible. Branch coverage,
on the other hand, is not such a strong measure of the
system correctness, but good enough in practice for many
instances, and is relatively easy to achieve. Branch
coverage consists of exercising all alternatives for every
branch of theCDFG.

Embedded systems coverage
To obtain a set of input vectors that give a certain
coverage level of an embedded system several algorithms
can be used [1],[12],[18]. These algorithms heuristically
modify an existing test set to improve total coverage,
and then evaluate the fault coverage produced by the
modified test set. If the modified test set corresponds to
an improvement in fault coverage then the modification
is accepted. Otherwise the modification is either rejected
or another heuristic is used to determine the acceptability
of the modification.
Most of the covered directed algorithms are based on
fault activation without taking into account observability.
Observability consists of not only activating some fault,
but also in verifying explicitly its effect on some
observable point. Methods to measure observability
coverage were presented for both hardware and software.
An observability coverage-directed method for input
vector generation for hardware was introduced [6]. In
this paper we propose a method that achieves a similar
goal for software, and which can be adapted in order to
integrate the hardware and software methods.

Coverage-directed software path generation
Several methods have been proposed for
coverage-directed software path generation. Some
of those methods were intended for general software,
while others were intended specifically for embedded
software.
Evolutionary testing searches test data that fulfill a
given structural test criteria by means of evolutionary
computation. In general it starts with an initial test vector
that is generated at random. Afterwards, the test vectors
are evaluated to determine their fitness value. The test
vectors are then subject to mutations and/or combinations

in order to obtain new test vectors that try to fulfill the
test criteria. In [17] an evolutionary test method was
presented that could be applied to statement tests, branch
tests, condition tests and segment tests.
Dynamic methods generate input data by running the
program and gathering information along its execution.
In [8] input data for branch coverage is generated by
dynamically selecting a path in an attempt to exercise
a test branch in a given program. It uses the approach
presented in a test generation relaxation technique [9] to
guide the path selection. The path selection is done by
dynamically switching execution to a path that offers less
resistance in order to force execution to reach the given
branch. The resistance of a branch tries to measure how
difficult it is for that branch to be executed.
A method intended specifically for embedded software
was presented in [14]. This method is based on a
coverage-drivenvalidation approach in order to stress and
cover variables and function calls in embedded software,
running on a SystemC PowerPC microprocessor model.
While the methods mentioned here are representative
of the area, there are many other variations of
coverage-directed methods for software. These methods
are simply concerned with executing a certain percentage
of the program code under test. Yet, knowing
which executed percentage has some influence on the
program outputs is even a more relevant measure. To
our knowledge none of the existing coverage-directed
methods verify whether the statements executed have
any influence on the program’s output. In this paper
we propose a coverage-directed method based on an
observability metric.

PROPOSED METHODOLOGY

In the previous section we presented an observability
coverage-directed input vector generator for hardware.
To the best of our knowledge, there is no equivalent
for software. In this paper we propose an observability
coverage-directed method for input vector generation for
software. Our work is motivated by the observability
coverage metric for embedded software of [2]. In this
method, the software program is modified to give more
information on the original program. Then the modified
program is executed and an observability coverage is
computed.

Overview of our method
For every function in the program under test we first
obtain itsCDFG representation, as described in the next
section. In theseCDFG we clearly mark the vertices that
are decision points and the vertices that are function calls.
From theCDFG representations we obtain a single direct
acyclic graph (DAG) where the start vertex correspond
to the start of the program execution and the last vertex
is the exit of the program. In this graph the loops are
unrolled (see next section) and the function call vertices
are expanded with theCDFG of that function. When
expanding function calls we avoid at first doing recursion
more than once.
From thisDAG we obtain a tree representation where for
each node we can easily obtain the longest path. The path

obtained is then submitted to an input vector generation
tool in order to assess its feasibility. If it is not feasible
then the information obtained from that path is used to
modify the existing tree or build another one.
If it is feasible then we check its coverage using a
software coverage observability meter. If the added
coverage is equal or greater then the one we aimed
to obtain, then we exit the program. Otherwise we
mark those observed statements and build another tree
accordingly.
In the rest of this section we state the methods we
use in our own method. Later, in the next section,
we present how we integrate everything to obtain
an observability-based coverage-directed method for
software.

Input vector generation
When we obtain a path, at first we do not know if the
path is feasible or not. In order to test its feasibility, and
if feasible to measure its coverage, we must use an input
vector generation method. We use a dynamic method
based on relaxation techniques proposed by Gupta et
al [9]. In this method test data generation is initiated
with an arbitrarily chosen input from a given domain.
This input is then iteratively refined to obtain an input on
which all the branch conditions on the given path evaluate
to the desired outcome. In each iteration the program
statements relevant to the evaluation of each branch
condition on the path are executed, and a set of linear
constraints is derived. The constraints are then solved
to obtain the increments for the input values. These
increments are added to the current input values to obtain
the input for the next iteration. The relaxation technique
used in deriving the constraints provides feedback on the
amount by which each input variable should be adjusted
for the branches on the path to evaluate to the desired
outcome. When the branch conditions on a path are linear
functions of input variables, this technique either finds a
solution for such paths in one iteration or it guarantees
that the path is infeasible.

Software observability coverage metric
In order to know if the desired level has been attained, we
must measure the observability coverage for each input
data obtained from the input vector generator. We use
the observability coverage metric for embedded software
described in [2].
In that method, in order to achieve the observability
target, one keeps track of all the statements that assign
a variable. For that purpose, for each variable in the
program there is a list of statements the variable depends
on. When the execution arrives at a statement the variable
that will be assigned is stored. For that variable a list
of dependencies is built which is the set union of the
dependency lists of the variables that are at the right hand
side (RHS) of the assignment.
When an observable statement is reached, where the
content of some variable is passed to the exterior of the
program, the statements in its list of dependencies are
checked. The statements that are not on that list are not
observable from that output.

0

1
(1)

2
(1)

3
(1)

4
(1)

5
(3)

6
(1)

7
(4)

8
(1)

9
(0)

10

11

(1)

NULL

10

10

10

10

a)

0 (0)

1 (1)

3 (2) 2 (2)

5 (8) 4 (3)

6 (9)

7 (13)

11 (14)

NULL8 (15)

9 (15)

10 (15)

b)

Fig. 2. DAG of Fibonacci example and corresponding tree.

PROGRAM DAG

From the source program code, we extract multiple
control dataflow graphs (CDFG), one for each function
in the program. TheCDFGs obtained are directed
graphs, which can be cyclic if the functions have loops.
The vertices in theCDFGs correspond to the program
statements and each vertex can have more than one
statement. That is represented by its weight. Also, the
vertices symbolize blocks of code that if one statement
in that block is executed all other are also executed. The
vertices can also represent conditions and in that case the
vertex will have two outgoing edges that correspond to
the branches. Also, in order to interconnect theCDFGs as
in the program, when we have a function call vertex we
mark on theCDFG vertex whichCDFG the function call
corresponds to.
From theCDFGs we build a new graph that starts in the
CDFG that corresponds to the main function. We traverse
theCDFGs, expanding function calls and loops along the
way. In the end we get a directed acyclic graph,DAG,
of the program. Note that we do not expand function
calls and loops indefinitely. The first time the loops are
expanded just once. In Figure 2a) we show the unrolling
of a loop. Also, the first time the function calls are
expanded until we detect that the calling of some function
will enter into a recursion. The rest of the expansion is
done on demand:

• when all the paths of the current expanded graph
are categorized as either feasible or infeasible and
the coverage metric was not yet achieved, or

• the input vector generator returns the path as
infeasible in a vertex that is the start of the loop
because the loop is not further expanded.

FINDING THE LONGEST PATH

In order to increase our coverage we are interested in
getting a path that:

• was not yet executed or was not found to be
infeasible;

• has the greatest number of statements in order
to improve our chances of covering the greatest
number possible;

• has statements that were not yet observable by
previous paths.

We model this problem by representing it using a tree.
From the tree we get a path and test its feasibility using
an input vector generator. The information extracted from
the input vector generator will be used to rebuild the tree
and thus get another path as explained below.

Computation of the path
Computation of the longest path is done by building
a tree graph (Figure 2b). The nodes of this tree will
correspond to vertices on theDAG (numbers inside the
nodes in Figure 2b). Adjacent nodes correspond to
adjacent vertices. Traversing the tree upwards, from a
given node, will give us a sequence of vertices. Those
vertices define a path in theDAG. In the tree, only a small
set of path are defined at one time. Except for one special
case, the leaves of the tree will correspond to paths that
are infeasible (leave withNULL in Figure 2b), that were
already tested (there are none yet in this example) or that
will not give the longest path from start to finish of the
DAG (all nodes except 10). The special case leaf (node
10), corresponds to the last vertex in theDAG and thus
gives us the longest path. Also, for each node we have the
number of statements that correspond to the execution of
the path (numbers in parenthesis in Figure 2b).
To obtain this tree we start by obtaining a list of vertices
in topological order. Thus, by going through the list
we guarantee that when we process a vertexv we have
already processed the vertices whose edges are directed
to vertexv. For each vertex we build a new tree node.
That tree node will be connected to the node of the
ingoing vertex with the greatest distance. Afterwards, we
update the distance of the vertex and its node with the
sum of the obtained greatest distance and the number of
statements of the vertex. In Figure 2b, we connect the
node 9 with node 8 and not with nodes 2 or 4 because
that way we can achieve the greatest distance to node 9.
By doing this in a topological manner we end up with
a tree where each node gives us the maximum distance
from the start vertex and its corresponding path.

Avoiding infeasible paths
When we get a path that is infeasible we go through the
tree nodes until we get to the node corresponding to the
last executed vertex. That vertex will have two outgoing
vertices. One of them will correspond to the infeasible
path. Thus, all the nodes that are below the tree node
corresponding to that infeasible vertex will be removed.
Then, the node corresponding to the infeasible path is
marked as infeasible. Then we go up one node in the tree.
If that current node as all the nodes below it marked as
infeasible then those nodes are deleted. Then the current
node is marked as infeasible and again we repeat the
process of going up one node. We stop when one of the
nodes below the current node is not marked as infeasible.
This is done in order to reduce the size of the tree.
After we deleted the path from the tree we go through
the infeasible path and for each vertex in that path we
try to build an alternative path. The rationale here is that
we try in each decision vertex to choose a different path
of the infeasible one. So, for each vertex in that path
we check to see if there are any ingoing vertex whose

corresponding tree node is a leaf (if it not a leaf then it
means that through that node already exists a path and
the alternative will not be a better one). If there are then
we choose the leaf with the greatest distance value and
connect the new node to it. For this new node we compute
the distance value. Doing this for all the vertices in the
infeasible path we end up with an alternative path. When
we reach the end of the path we end up with a leaf that
most likely will not correspond to the last vertex of the
DAG. Thus we must compute the rest of the tree by doing
what we described in the previous subsection. But instead
of starting in the beginning of theDAG we start with the
last vertex of the infeasible path.

Observability vertices
Since we are interested in observability coverage we
want to execute at least one of the vertices that have
observability points. Also, when choosing the path we
want the longest one. Therefore, we go through the list
of tree nodes that correspond to observability vertices and
get the one with the greatest distance from the root of the
tree. Traversing the tree upwards from that node will give
us the longest path in theDAG already taking into account
all previous tried paths.

Loop unrolling / function expansion
When all paths in theDAG were already tested, then the
resulting tree is a one node tree where that node is marked
as infeasible. Thus, we must make further loop unrolling
of the loops and/or increase the depth of the function
recursions. This loop unrolling/function expansion is
done on the least possible number of loops/functions in
order not to increase greatly the size of theDAG.
Each loop/function that needs to be unrolled/expanded
have a vertex where the unrolling/expansion has stopped
(in the case of Figure 2a is vertex 11). If that
vertex was executed in any of the previous input vector
generations then the corresponding loop/function will be
unrolled/expanded. This avoids expanding the graph in
vertices where execution has not reached yet. If execution
of the program has reached some vertices and the paths
are infeasible then that means that those vertices must be
further expanded.

Input vector generator
The input vector generator is run to obtain the input
vector that allow execution of the path given by the path
in the tree. However, the path may be feasible or not.
If the path is feasible we obtain an input vector for that
path. Then, we run the program to obtain the coverage.
The coverage obtained will accumulate with the coverage
of previous input vectors. If the accumulated coverage
is greater or equal to the specified goal coverage then
the algorithm ends and we have a set of input vectors
that allow for a certain observability coverage. In case
the specified coverage is not reached then we get the
next path by rebuilding the tree. This rebuilding of the
tree involves turning the vertices weight of the covered
vertices into zero. This will force the tree to give us a
new path that goes through some uncovered edges, since
the tree always has the longest path.

TABLE 1. Program statistics.

decision
Program lines input points statements

bitcount 12 integer 1 6
fibonacci 24 integer 3 13
strmatch 39 text 4 35
dijkstra 141 integer 15 99
huffman 203 text 17 193

If the path is infeasible then it means that at some decision
point, the path that we want to follow diverges from a
feasible path. The fact that the tree gave a path that is not
feasible has to do with the fact that the building of the
tree does not take into account the values of the condition
variables. If it is possible to know the vertex where the
paths diverge then we assume as infeasible the path just
until that vertex (including the vertex). This information
is used to rebuild the tree (as described above). If
the vertex is not known then we make the whole path
infeasible. This later solution will decrease the number
of tree paths that we must obtain and consequently the
number of runs of the input vector generator.

RESULTS

Our method to generate the minimum number of paths
that achieve a specified observability coverage was
implemented into a framework. The framework uses
the methods described in the previous sections to fully
automate the process of finding the input vectors given
the program and the coverage we want to achieve. To
demonstrate the feasibility of the method we used several
example programs:

• Bit counting, which, given an integer, computes
the number of bits that are one;

• Fibonacci number, which, given an integer,
computes the corresponding Fibonacci number;

• String matching, which detects if a substring is
present in a string;

• Dijkstra, which computes the shortest path in a
graph;

• Huffman coding, which gives an Huffman coding
given a string of characters.

Dijkstra and Bit counting belong to MiBench [10], a
commercially representative embedded benchmark suite.
The implementation ofHuffman coding andFibonacci
number are found in Numerical Recipes in C [16].
String matching was implemented using the shift-and
algorithm [15].
In Table 1 we have the statistics of the programs that we
used as examples. In it we show the size of the programs
in number of lines, the type of input, the number of
decision points and the number of statements.
The examples were submitted to our framework to obtain
the input vectors. The machine where we run the tests
was an Intel(R) Pentium(R) 4 running at 3.2GHz with
1GB of physical memory.
In Table 2 we show the results we obtained. For each
program tested we have the feasible paths that increased
the observability coverage. For each of the feasible paths
obtained we show its observability coverage and also the
accumulated observability coverage. The size of the tree

is also shown and the number of paths extracted from the
tree before obtaining a feasible one. Also, for each path
we show the accumulatedCPU time to obtain the path.
In bitcount, we have a 100% observability coverage
using just one path. That has to do with the fact that the
program consists of a loop where by executing it once we
get that all statements have some influence on the output.
In fibonacci (represented in Figure 1), the longest path is
by executing the loop once. This path will give us 69%
coverage. The other two paths will be for executing the
conditions when we have the input value equal to0 or 1.
But this does not give us 100% observability coverage.
The fourth path gives us an accumulated observability
coverage of 100%. Note that the coverage for that path is
greater than the one for the other paths. Since our method
tries to find the longest path, that can be explained by
the fact that when obtaining paths 1-3 we only unrolled
the loop once. Looking at the example in Figure 1
and Figure 2 we can see that there are two statements
inside the loop that will only be observable if the loop is
executed once more.
In thestrmatch program, the observability point is only
executed when there is a match between the strings. The
results we obtained are, in the first path, the coverage
that corresponds to the matching of a string in its first
character. In order to obtain 100% coverage we have
to test the second character. Testing the string second
character means that we expand the loop once more and
end up obtaining 100% coverage with that path.
In dijkstra , we get 100% observability coverage with
the first path. That can be explained by mention that
this program finds a fixed set of shortest paths in a
graph. Thus, the longest path will have several passages
through the shortest path computation. By combining the
coverage of those passages we obtain 100% observability
coverage in the first path.
In huffman, we achieved 94% with an input vector that
had a one character input string. We achieve 99% with
two characters which caused the unrolling of some loops
and expansion of some recursive function. To obtain
100% coverage we have to further unroll/expand the
loops/functions. With that done we can obtain a new
path whose coverage combined with the first or second
path coverage give us 100% observability coverage. Note
that the number of paths that are obtained from the tree
before getting the feasible paths is larger than in the other
examples. That has to do, as mentioned before, with the
necessity of unrolling/expanding the loops/functions.
The results shown here confirm the feasibility of this
methodology. The fact that the tested programs chosen
are small allow us to know exactly why and how the
results presented are what they are. The results also
show small amount ofCPU time which seems to indicates
that this methodology can be scalable to larger real life
embedded software programs.

CONCLUSIONS
We presented an observability coverage-directed vector
generation method. In this method we address the
problem of finding a minimal set of execution paths that
achieve a user-specified level of observability coverage.

TABLE 2. Results of the tests.
tree paths tried accumulated accumulated

Program path # nodes % coverage % coverage CPU time

bitcount 1st 1 7 100% 100% 0.00s

fibonacci

1st 1 15 69% 69% 0.00s
2nd 3 21 23% 77% 0.00s
3rd 4 22 15% 85% 0.00s
4th 6 28 85% 100% 0.00s

strmatch
1st 1 36 87% 87% 0.00s
2nd 6 222 100% 100% 0.06s

dijkstra 1st 1 88 100% 100% 0.00s

huffman
1st 12 3576 94% 94% 13.71s
2nd 33 15240 99% 99% 152.93s
3nd 84 32111 87% 100% 1415.08s

We model this problem building a tree representing the
longest not yet tried paths. Thus in our greedy algorithm
we get the longest feasible path and, if the coverage was
not achieved, we refine our path search by modifying
the existing tree or building a new one. We presented
results that show the feasibility of our method. In any
coverage-directed method, improving the so far obtained
coverage can become a hard problem when we are trying
to obtain a test to cover the last statements and reach
100% coverage. Our method guarantees the best possible
convergence rate, as the next path to be computed to
improve coverage is the one that, among the feasible, will
maximize the coverage.
Our final goal is to implement an embedded systems
observability coverage-directed co-validation method.
Therefore, in the future we will integrate this method with
a hardware observability coverage-directed method such
as the one proposed by Fallah et al. [6].

REFERENCES

[1] F. Corno, P. Prinetto, M. Sonza Reorda, and D. e Inf.
Testability analysis and ATPG on behavioral
RT-level VHDL. Procs. of the International Test
Conference, 753–759, 1997.

[2] J. Costa, S. Devadas, and J. Monteiro.
Observability analysis of embedded software
for coverage-directed validation. InProcs. of the
ICCAD, 27–32, 2000.

[3] J. Davis et al. Ptolemy II: Heterogeneous
Concurrent Modeling and Design in Java.
Electronics Research Laboratory, College of
Engineering, University of California, 2001.

[4] G. De Michell and R. Gupta.Hardware/Software
Co-Design. Morgan Kaufmann, 2001.

[5] S. Edwards, L. Lavagno, E. Lee and
A. Sangiovanni-Vincentelli. Design of Embedded
Systems: Formal Models, Validation and Synthesis.
Procs. of the IEEE, 85(3):336–390, 1997.

[6] F. Fallah, P. Ashar, and S. Devadas. Simulation
vector generation from HDL descriptions for
observability-enhanced statement coverage.Procs.
of the 36th DAC, 666–671, 1999.

[7] F. Fallah, S. Devadas, and K. Keutzer. OCCOM:
Efficient Computation of Observability-Based Code
Coverage Metrics for Functional Simulation. In
Procs. of the35

th DAC, 152–157, June 1998.

[8] N. Gupta, A. Mathur, and M. Soffa. Generating test
data for branch coverage.Procs. of the 15th IEEE
International Conference on Automated Software
Engineering, 219–227, 2000.

[9] N. Gupta, A. P. Mathur, and M.Soffa. Automated
test data generation using an iterative relaxation
method. In Procs. of the 6th ACM SIGSOFT
international symposium on Foundations of
software engineering, 231–244, November 1998.

[10] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M.
Austin, T. Mudge, and R. B. Brown. Mibench:
A free, commercially representative embedded
benchmark suite. InIEEE 4th Annual Workshop on
Workload Characterization, 2001.

[11] I. Harris. Hardware/software covalidation.
Procs. of IEE Computers and Digital Techniques,
152(3):380–392, 2005.

[12] M. Lajolo, M. Rebaudengo, M. Reorda,
M. Violante, and L. Lavagno. Behavioral-level test
vector generation for system-on-chip designs. In
Procs. of the IEEE International High-Level Design
Validation and Test Workshop, 21–26, 2000.

[13] S. Lee and J. M. Rabaey. A Hardware-Software
Co-simulation Environment. InProcs. of the
International Workshop on Hardware-Software
Codesign, October 1993.

[14] D. Lettnin, M. Winterholer, A. Braun, J. Gerlach,
J. Ruf, T. Kropf, and W. Rosenstiel. Coverage
Driven Verification applied to Embedded Software.
VLSI, 2007. ISVLSI’07. IEEE Computer Society
Annual Symposium on, 159–164, 2007.

[15] U. Manber and S. Wu. Fast text search allowing
errors.Communications of the ACM, 35(10), 1992.

[16] W. H. Press, B. P. Flannery, S. A. Teukolsky, and
W. T. Vetterling.Numerical Recipes in C: The Art of
Scientific Computing. Cambridge University Press,
second edition, 1993.

[17] J. Wegener, A. Baresel, and H. Sthamer.
Evolutionary test environment for automatic
structural testing. Information & Software Tech.,
43(14):841–854, 2001.

[18] J. Yuan, K. Shultz, C. Pixley, H. Miller, A. Aziz,
M. Inc, and T. Austin. Modeling design constraints
and biasing in simulation using BDDs.IEEE/ACM
ICCAD. Digest of Tech. Papers, 584–589, 1999.

