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Abstract 

In current microprocessors and systems, an 
increasingly high silicon portion is derived through 
automatic synthesis, with designers working exclusively at 
the RT-level, and design productivity is greatly enhanced. 
However, in the new design flow, validation still remains a 
challenge: while new technologies based on formal 
verification are only marginally accepted, standard 
techniques based on simulation are beginning to fall 
behind the increased circuit complexity. This paper 
proposes a new approach to simulation-based validation, 
in which a Genetic Algorithm helps the designer in 
generating useful input sequences to be included in the test 
bench. The technique has been applied to an industrial 
circuit, showing that the quality of the validation process 
is increased. 

1 Introduction 

In the past years the ASIC design flow experienced 
radical changes, and due to the maturity of automatic logic 
synthesis tools most of the design activity is now 
performed at the RT-level, or higher. One of the main 
advantages of the new flow is the greater designer 
productivity, coming basically from the reduced size and 
higher readability of  high level descriptions. 

One important step of the new design flow still consists 
of design validation at the RT-level, i.e., the verification 
that the design is correct before starting logic synthesis 
and implementation. Although many techniques have been 
proposed in the past (e.g., static checks, formal 
verification [HuCh98], mutation testing [AHRo98]), none 
has gained enough popularity to compete with the current 
practice of validation by simulation. Designers (or 
verification engineers) typically resort to extensive 
simulation of each design unit, and of the complete 
system, in order to gain confidence over its correctness. 

This situation is far from ideal, and designers need to 
face many difficulties. Simulation technology is nowadays 
quite effective for synthesized circuits, but when it comes 
to mixed-signal circuits, or to complete systems composed 
of several boards, or to circuits containing embedded cores 
or large memories, simulation becomes very expensive (in 
terms of required CPU times), without providing the 
needed performance and versatility. 

Even if we restrict our attention to digital synthesized 
circuits, the fundamental issue of measuring the test bench 
quality is often unanswered. Many metrics have been 
proposed to evaluate the thoroughness of a given set of 
input stimuli, often adopted from the software testing 
domain [Beiz90], ranging from statement or branch 
coverage, state coverage (for finite state machine 
controllers), condition coverage (for complex 
conditionals), to the more complex path coverage. Many 
variants have been developed, mainly to cater for 
observability [DKGe96] and for the inherent parallelism of 
hardware descriptions [TAZa99], that are not taken into 
account by standard metrics. Since no well established 
metric is yet widely accepted for validation, some authors 
also propose to measure the quality of validation patterns 
with the stuck-at fault coverage. 

Several products (normally integrated into existing 
simulation environments) are now available that provide 
the user with the possibility of evaluating the coverage of 
given input stimuli with respect to a selected metric. 
Designers can therefore pinpoint the parts of their design 
that are poorly tested, and develop new patterns 
specifically addressing them. Currently, this is a very time 
consuming and difficult task, since all the details of the 
design must be understood for generating suitable input 
sequences. The right trade-off between designer’s time 
and validation accuracy is often difficult to find, and this 
often results in under-verified circuits. Moreover, in the 
generation of test vectors the designer may be “biased” by 
his knowledge of the desired system or module behavior, 



so that he often fails in identifying input sequences really 
able to activate possible critical points in the description. 

When faced with this problem, the CAD research 
community traditionally invested in formal verification 
[GDNe91] [HuCh98], in the hope that circuits can be 
proven correct by mathematical means. Although formal 
verification tools give good results on some domains, they 
still have too many limitations or they require too much 
expertise to be used as a mainstream validation tool. 
Designers are left waiting for the perfect formal 
verification system, while few or no innovative tools help 
them with simulation-based validation. 

The main goal of this paper is to propose an automatic 
input pattern generation tool able to assist designers in the 
generation of a test bench for difficult parts of the design. 
The approach we propose is suitable for simulation-based 
validation environments, and aims at integrating, rather 
than replacing, current manual simulation practices. 

While no metric is yet widely accepted by validation 
teams, we aimed at evaluating the effectiveness of our 
approach using some pre-defined metric. The algorithm is 
quite easily adapted to different metrics, but for the sake of 
the experiments we adopted branch coverage as a 
reference. We developed a prototypical system for 
generating test patterns based on branch coverage, 
applicable to synthesizable VHDL descriptions. We aim at 
addressing moderately sized circuits, that usually can not 
be handled by formal approaches, and at working directly 
on the VHDL description, without requiring any 
transformation nor imposing syntax limitations. 

The technique is based on a Genetic Algorithm, 
interacting with a VHDL simulator, that automatically 
derives an input sequence able to execute a given 
statement, or branch, in the RTL code. Whenever the test 
bench quality, as measured by one of the proposed 
metrics, is too low, our tool can be used to generate test 
patterns that are able to stimulate the parts of the design 
that are responsible for the low metric. The designer must 
manually analyze only those parts of the description that 
the tool failed to cover. Experimental results show that 
only a small fraction of “difficult” statements remain 
uncovered, and that many of them, upon closer inspection, 
indeed contain design errors or redundancies. 

In previous works we already applied Genetic 
Algorithms to generate sequences for performing 
approximate equivalence verification between gate-level 
[CSSq98] or RT-level [CSSq99] descriptions. The 
approach presented in this paper is radically different, 
since it aims at increasing an independent quantitative 
metric, rather than finding at least a difference in a couple 
of circuits. 

The approach has been evaluated by applying it during 
the design and validation of a circuit in Centro Ricerche 
FIAT, the research and development center of a leading 
automotive industry. The tool was seamlessly integrated in 

the design flow, without requiring circuit modifications or 
remodeling steps. Experimental results show that the 
manually derived validation suite did not adequately cover 
some parts of the design, and that new sequences have 
been generated by the tool to increase the overall 
coverage. Some portions still remained uncovered, and 
required a manual analysis that identified some design 
redundancies. 

The ability of generating RT-level test patterns that 
reach some specific goal makes a wide range of 
applications possible. Besides automatic test bench 
generation, that is described in this paper, and approximate 
equivalence checking [CSSq99], an interesting application 
is generation of test patterns for production testing 
(ATPG). Test pattern generation requires input sequences 
that are able to test faults in the netlist, and this concept 
can be approximated at the RT-level by controlling 
statements and branches (i.e., executing them, as in design 
validation) and by observing them (i.e., propagating their 
effects to at least some primary output). A different 
version of the algorithm presented in this paper has been 
developed for test generation [CSSq00] and is shown to 
reach a stuck-at Fault Coverage on the synthesized gate-
level description which is comparable with the one 
obtained by a gate-level ATPG. 

Section 2 gives an overview over the proposed 
approach for test bench generation, while experimental 
results on the industrial circuit are presented in Section 3. 
Section 4 concludes the paper. 

2 RT-level Test Bench Generation 

The goal of test bench generation is to develop a set of 
input sequences that attain the maximum value of a 
predefined validation metric. 

2.1 Adopted Metric 

Most available tools grade input patterns according to 
metrics derived from software testing [Beiz90]: statement 
coverage and branch coverage are the most widely known, 
but state/transition coverage (reaching all the 
states/transitions of a controller) and condition coverage 
(controlling all clauses of complex conditionals) are also 
used in hardware validation. Path coverage, although often 
advocated as the most precise one, is seldom used due to 
its complexity, and because it loses meaningfulness when 
multiple execution threads run concurrently in parallel 
processes. Some recent work extends those metrics to take 
also into account observability [DGKe96] and the 
structure of arithmetic units [TAZa99]. Those extensions 
are essential when the sequences have to be used as test 
patterns to cover stuck-at faults, but for validation they 
have lower importance since internal values are available. 



The metric we adopt in this paper is branch coverage, 
although the tool can be easily adapted to more 
sophisticated measures. Also, since synthesizable VHDL 
is a structured language, complete statement coverage 
implies complete branch coverage, and the tool takes 
advantage of this simplification. 

2.2 Overall Approach 

The adopted approach is an evolution of the one 
presented in [CPSo97], where a Genetic Algorithm uses a 
simulator to measure the effectiveness of the sequences it 
generates. Instead of trying to justify values across 
behavioral statements, that would require solving Boolean 
and arithmetic constraints [FADe99], thanks to the nature 
of Genetic Algorithms we just need to simulate some 
sequences and analyze the propagation of values. Each 
sequence is therefore associated with the value returned by 
a fitness function, that measures how much it is able to 
enhance the value of the validation metric, and the Genetic 
Algorithm evolves and recombines sequences to increase 
their fitness. 

The fitness function needs to be carefully defined, and 
accurately computed. In particular, the fitness function can 
not be just the value of the validation metric: it must also 
contain some terms that indicate how to increase the 
covered branches, not just to count the already covered 
ones. In a sense, the fitness function includes a dominant 
term, that measures the accomplished tasks (covered 
branches), and secondary terms, that describe sub-
objectives to be met in order to cover new branches. 

The computation of such function is accomplished by 
analyzing the simulation trace of the sequence, and by 
properly weighting the executed assignments, statements, 
and branches according to the target statements. In the 
implementation, to avoid arbitrary limitations in the 
VHDL syntax, simulation is delegated to a commercial 
simulator that runs an instrumented version of the VHDL 
code and records the simulation trace in the transcript file. 
Such trace is then interpreted according to control- and 
data-dependencies, that are extracted from a static analysis 
of the design description. Figure 1 shows a simplified 
view of the overall system architecture. 

2.3 VHDL Analysis 

The goal of the algorithm is to achieve complete 
coverage, but for efficiency reasons we do not consider 
each statement separately, and we group them into basic 
blocks [ASUl86]: a basic block is a set of VHDL 
statements that are guaranteed to be executed sequentially, 
i.e., they reside inside a process and do not contain any 
intermediate entry point nor any control statement (if, 
case, …). All the operations required for code 
instrumentation, dependency analysis, branch coverage 

evaluation, and fitness function computation are 
performed at the level of basic blocks. 

Since the Genetic Algorithm exploits the knowledge 
about data and control dependencies, we need to extract 
that information from the VHDL code: for this reason, we 
build a database (Fig. 2) containing a simplified structure 
and semantics of the design. The database is structured as 
follows: 
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Figure 1: System architecture 
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Figure 2: Abstract representation of 
RT-level designs 

• The hierarchy of component instantiations inside 
different entities is flattened (C1 and C2 in the 
figure). A dictionary of signal equivalencies is also 
built, that allow us to uniquely identify signals that 
span multiple hierarchical levels. 

• All VHDL processes occurring in the flattened circuit 
are given a unique identifier (Pi in the figure). This 
operation also converts standalone concurrent 
statements into their equivalent process. The design is 
thus represented as a network of processes 
interconnected by signals. 

• Each process is analyzed to define its interface, in 
terms of signals that it reads and writes. 



• The sequential part of each process is analyzed, its 
control flow graph (CFG) is extracted, and statements 
are grouped in basic blocks (BBs). The control 
structure of the process is described as a control flow 
of basic blocks (the figure reports the CFG for 
process P2). 

• A dependency matrix between basic blocks is 
computed, by assigning a probability that a basic 
block will be executed, given that another block has 
just been executed. These correlation probabilities 
take into account the branching and looping nature of 
the control flow. 

• Each basic block is entered, and the data flow graph 
(DFG) of the operations that occur inside each basic 
block is extracted. Since a basic block consists of 
multiple statements and/or conditions, multiple 
dependencies are associated to a single block. Fig. 2 
shows the DFG for the basic block BB4 of process 
P2. 

2.4 Genetic Algorithm 

The Genetic Algorithm (GA) is based on encoding 
potential test sequences as variable length bit matrices. A 
number of such sequences are randomly generated and 
constitute an initial population: the goal of the GA is to 
evolve this population to increase its fitness value. The 
fitness function measures the closeness of a sequence to 
the goal; currently, this function assumes different forms 
in the two phases in which the algorithm is organized. 

In a first phase, the goal is to find a single sequence 
that, when applied from the reset state, activates the 
highest number of branches. In this phase, the fitness 
function is simply the number of branches that have been 
traversed at least once. 

In the second phase, each yet uncovered branch is 
considered separately as a target, and a genetic experiment 
is run whose goal is to execute it. For each experiment, the 
fitness function computes the closeness of the current 
sequence to reaching the target, measured as the weighted 
average of the execution counts of the basic blocks in the 
input cone (taking into account both control and data 
dependencies, thus potentially spanning several processes) 
of the target. The adopted weights take into account the 
probabilities of conditional execution that were statically 
computed in the database. 

3 Experimental results 

The goal of the experimental evaluation was to apply 
the proposed validation methodology to an industrial 
design flow, in particular by selecting a circuit as a case 
study. 

The implementation consists of about 4,700 lines of C 
code for VHDL code analysis and instrumentation, linked 
to the LEDA LPI interface [LEDA95], and of 2,700 lines 
of C code for the Genetic Algorithm and the interface to 
the simulator. All experiments were run on a Sun Ultra 5 
running at 333 MHz with 256MB of memory. 

We applied the test bench generation procedure to an 
industrial circuit designed at Centro Ricerche FIAT 
(CRF). 

The circuit developed at CRF is essentially a large 
Finite State Machine which takes care of driving the 
control signals used to actuate electronic injectors in diesel 
engines. It is capable of driving 6 injectors separately, 
giving the possibility to an external microprocessor to 
program the actuator timings by writing some parameters 
into an internal 2-port RAM through a 16 bit data bus. The 
prototypal version of this circuit has been developed using 
a Field Programmable Gate Array (Xilinx XC4028EX) 
while the production version is being developed on an 
ASIC. 

This circuit is completely digital and described in 
synthesizable VHDL, and it contains memories, internal 3-
state busses, and a microprocessor interface. Its main 
characteristics are summarized in  Tab. 1. 

 
Parameter Value 

VHDL lines 10,013 
VHDL entities 118 
VHDL process declarations  116 
VHDL process instances 290 
Basic blocks 1,465 
Primary Inputs (ports/bits) 27 / 78 
Primary Outputs (ports/bits) 21 / 47 
Flip-Flops 452 
Equivalent gates ~12,000 

Table 1: Industrial circuit characteristics 

The VHDL description was taken without any 
modification, and was analyzed to build the database and 
instrumented. This proves that the tool can be inserted 
very easily into an existing design flow, and requires only 
a marginal design effort. The Genetic Algorithm was run 
for about 150 CPU hours, heavily dominated by 
simulation time, during which it generated 5,219 vectors, 
achieving a coverage of 77.13%. As a comparison, the test 
bench developed by the designer, that consisted of about 
400 vectors, reached a coverage of 63.17%, only. This 
proves that, with a negligible designer effort and an 
acceptable CPU time, test bench quality (and therefore 
validation effectiveness) is significantly improved. To 
prove that this result is due to the Genetic Algorithm, we 
compared the attained coverage with one coming from an 
equal number of completely random patterns: in this case 



the coverage is only 59.31%, showing that a clever 
optimization algorithm is effective and necessary over 
pseudo-random simulation. 

These results prove that the test bench generation 
algorithm is able to improve the quality of validation 
without any effort from the designers, and with an 
acceptable CPU time. The portions of the design that 
escaped both manual and automatic test benches are 
currently under analysis. Many branches correspond to 
redundant else or default branches for if or case 
statements that were inserted solely to prevent the 
synthesis tool from inferring sequential logic: these 
statements are unreachable by construction. The reset 
logic is another source of uncovered statements: since the 
asynchronous initialization sequence is applied before 
fitness computation starts, the reset instructions (that are 
indeed executed) are excluded from the count. Designers 
then analyzed the other uncovered VHDL branches, that 
are concentrated in few processes, and found some real 
design redundancies. 

4 Conclusions 

This paper presented a new approach to design 
validation based on automatic generation of a test bench. 
The approach resorts to a Genetic Algorithm that interacts 
with a simulator to generate new sequences able to 
increase the coverage of the test bench with respect to a 
predefined validation coverage metric. 

The methodology has been applied to an industrial 
circuit currently in production at Centro Ricerche FIAT, 
and a preliminary version of the tool has been used to 
generate the test bench for it. Experimental results prove 
that the method is able to increase the quality of the 
validation process both over manual simulation and 
pseudo-random sequence generation. The tool results have 
also been useful as a feedback for better understanding the 
most difficult parts of the design from the validation point 
of view. Currently, the design team at CRF is analyzing 
the best way to accommodate the proposed methodology 
into their standard design flow. 
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