
Automatic Test Bench Generation for Validation of RT-level Descriptions:
an Industrial Experience

F. Corno, M. Sonza Reorda, G. Squillero

Politecnico di Torino
Dipartimento di Automatica e Informatica

Torino, Italy
http://www.cad.polito.it/

A. Manzone, A. Pincetti

Centro Ricerche FIAT
Sistemi Elettronici, Progettazione HW

Orbassano (TO), Italy
http://www.crf.it/

Abstract

In current microprocessors and systems, an
increasingly high silicon portion is derived through
automatic synthesis, with designers working exclusively at
the RT-level, and design productivity is greatly enhanced.
However, in the new design flow, validation still remains a
challenge: while new technologies based on formal
verification are only marginally accepted, standard
techniques based on simulation are beginning to fall
behind the increased circuit complexity. This paper
proposes a new approach to simulation-based validation,
in which a Genetic Algorithm helps the designer in
generating useful input sequences to be included in the test
bench. The technique has been applied to an industrial
circuit, showing that the quality of the validation process
is increased.

1 Introduction

In the past years the ASIC design flow experienced
radical changes, and due to the maturity of automatic logic
synthesis tools most of the design activity is now
performed at the RT-level, or higher. One of the main
advantages of the new flow is the greater designer
productivity, coming basically from the reduced size and
higher readability of high level descriptions.

One important step of the new design flow still consists
of design validation at the RT-level, i.e., the verification
that the design is correct before starting logic synthesis
and implementation. Although many techniques have been
proposed in the past (e.g., static checks, formal
verification [HuCh98], mutation testing [AHRo98]), none
has gained enough popularity to compete with the current
practice of validation by simulation. Designers (or
verification engineers) typically resort to extensive
simulation of each design unit, and of the complete
system, in order to gain confidence over its correctness.

This situation is far from ideal, and designers need to
face many difficulties. Simulation technology is nowadays
quite effective for synthesized circuits, but when it comes
to mixed-signal circuits, or to complete systems composed
of several boards, or to circuits containing embedded cores
or large memories, simulation becomes very expensive (in
terms of required CPU times), without providing the
needed performance and versatility.

Even if we restrict our attention to digital synthesized
circuits, the fundamental issue of measuring the test bench
quality is often unanswered. Many metrics have been
proposed to evaluate the thoroughness of a given set of
input stimuli, often adopted from the software testing
domain [Beiz90], ranging from statement or branch
coverage, state coverage (for finite state machine
controllers), condition coverage (for complex
conditionals), to the more complex path coverage. Many
variants have been developed, mainly to cater for
observability [DKGe96] and for the inherent parallelism of
hardware descriptions [TAZa99], that are not taken into
account by standard metrics. Since no well established
metric is yet widely accepted for validation, some authors
also propose to measure the quality of validation patterns
with the stuck-at fault coverage.

Several products (normally integrated into existing
simulation environments) are now available that provide
the user with the possibility of evaluating the coverage of
given input stimuli with respect to a selected metric.
Designers can therefore pinpoint the parts of their design
that are poorly tested, and develop new patterns
specifically addressing them. Currently, this is a very time
consuming and difficult task, since all the details of the
design must be understood for generating suitable input
sequences. The right trade-off between designer’s time
and validation accuracy is often difficult to find, and this
often results in under-verified circuits. Moreover, in the
generation of test vectors the designer may be “biased” by
his knowledge of the desired system or module behavior,

so that he often fails in identifying input sequences really
able to activate possible critical points in the description.

When faced with this problem, the CAD research
community traditionally invested in formal verification
[GDNe91] [HuCh98], in the hope that circuits can be
proven correct by mathematical means. Although formal
verification tools give good results on some domains, they
still have too many limitations or they require too much
expertise to be used as a mainstream validation tool.
Designers are left waiting for the perfect formal
verification system, while few or no innovative tools help
them with simulation-based validation.

The main goal of this paper is to propose an automatic
input pattern generation tool able to assist designers in the
generation of a test bench for difficult parts of the design.
The approach we propose is suitable for simulation-based
validation environments, and aims at integrating, rather
than replacing, current manual simulation practices.

While no metric is yet widely accepted by validation
teams, we aimed at evaluating the effectiveness of our
approach using some pre-defined metric. The algorithm is
quite easily adapted to different metrics, but for the sake of
the experiments we adopted branch coverage as a
reference. We developed a prototypical system for
generating test patterns based on branch coverage,
applicable to synthesizable VHDL descriptions. We aim at
addressing moderately sized circuits, that usually can not
be handled by formal approaches, and at working directly
on the VHDL description, without requiring any
transformation nor imposing syntax limitations.

The technique is based on a Genetic Algorithm,
interacting with a VHDL simulator, that automatically
derives an input sequence able to execute a given
statement, or branch, in the RTL code. Whenever the test
bench quality, as measured by one of the proposed
metrics, is too low, our tool can be used to generate test
patterns that are able to stimulate the parts of the design
that are responsible for the low metric. The designer must
manually analyze only those parts of the description that
the tool failed to cover. Experimental results show that
only a small fraction of “difficult” statements remain
uncovered, and that many of them, upon closer inspection,
indeed contain design errors or redundancies.

In previous works we already applied Genetic
Algorithms to generate sequences for performing
approximate equivalence verification between gate-level
[CSSq98] or RT-level [CSSq99] descriptions. The
approach presented in this paper is radically different,
since it aims at increasing an independent quantitative
metric, rather than finding at least a difference in a couple
of circuits.

The approach has been evaluated by applying it during
the design and validation of a circuit in Centro Ricerche
FIAT, the research and development center of a leading
automotive industry. The tool was seamlessly integrated in

the design flow, without requiring circuit modifications or
remodeling steps. Experimental results show that the
manually derived validation suite did not adequately cover
some parts of the design, and that new sequences have
been generated by the tool to increase the overall
coverage. Some portions still remained uncovered, and
required a manual analysis that identified some design
redundancies.

The ability of generating RT-level test patterns that
reach some specific goal makes a wide range of
applications possible. Besides automatic test bench
generation, that is described in this paper, and approximate
equivalence checking [CSSq99], an interesting application
is generation of test patterns for production testing
(ATPG). Test pattern generation requires input sequences
that are able to test faults in the netlist, and this concept
can be approximated at the RT-level by controlling
statements and branches (i.e., executing them, as in design
validation) and by observing them (i.e., propagating their
effects to at least some primary output). A different
version of the algorithm presented in this paper has been
developed for test generation [CSSq00] and is shown to
reach a stuck-at Fault Coverage on the synthesized gate-
level description which is comparable with the one
obtained by a gate-level ATPG.

Section 2 gives an overview over the proposed
approach for test bench generation, while experimental
results on the industrial circuit are presented in Section 3.
Section 4 concludes the paper.

2 RT-level Test Bench Generation

The goal of test bench generation is to develop a set of
input sequences that attain the maximum value of a
predefined validation metric.

2.1 Adopted Metric

Most available tools grade input patterns according to
metrics derived from software testing [Beiz90]: statement
coverage and branch coverage are the most widely known,
but state/transition coverage (reaching all the
states/transitions of a controller) and condition coverage
(controlling all clauses of complex conditionals) are also
used in hardware validation. Path coverage, although often
advocated as the most precise one, is seldom used due to
its complexity, and because it loses meaningfulness when
multiple execution threads run concurrently in parallel
processes. Some recent work extends those metrics to take
also into account observability [DGKe96] and the
structure of arithmetic units [TAZa99]. Those extensions
are essential when the sequences have to be used as test
patterns to cover stuck-at faults, but for validation they
have lower importance since internal values are available.

The metric we adopt in this paper is branch coverage,
although the tool can be easily adapted to more
sophisticated measures. Also, since synthesizable VHDL
is a structured language, complete statement coverage
implies complete branch coverage, and the tool takes
advantage of this simplification.

2.2 Overall Approach

The adopted approach is an evolution of the one
presented in [CPSo97], where a Genetic Algorithm uses a
simulator to measure the effectiveness of the sequences it
generates. Instead of trying to justify values across
behavioral statements, that would require solving Boolean
and arithmetic constraints [FADe99], thanks to the nature
of Genetic Algorithms we just need to simulate some
sequences and analyze the propagation of values. Each
sequence is therefore associated with the value returned by
a fitness function, that measures how much it is able to
enhance the value of the validation metric, and the Genetic
Algorithm evolves and recombines sequences to increase
their fitness.

The fitness function needs to be carefully defined, and
accurately computed. In particular, the fitness function can
not be just the value of the validation metric: it must also
contain some terms that indicate how to increase the
covered branches, not just to count the already covered
ones. In a sense, the fitness function includes a dominant
term, that measures the accomplished tasks (covered
branches), and secondary terms, that describe sub-
objectives to be met in order to cover new branches.

The computation of such function is accomplished by
analyzing the simulation trace of the sequence, and by
properly weighting the executed assignments, statements,
and branches according to the target statements. In the
implementation, to avoid arbitrary limitations in the
VHDL syntax, simulation is delegated to a commercial
simulator that runs an instrumented version of the VHDL
code and records the simulation trace in the transcript file.
Such trace is then interpreted according to control- and
data-dependencies, that are extracted from a static analysis
of the design description. Figure 1 shows a simplified
view of the overall system architecture.

2.3 VHDL Analysis

The goal of the algorithm is to achieve complete
coverage, but for efficiency reasons we do not consider
each statement separately, and we group them into basic
blocks [ASUl86]: a basic block is a set of VHDL
statements that are guaranteed to be executed sequentially,
i.e., they reside inside a process and do not contain any
intermediate entry point nor any control statement (if,
case, …). All the operations required for code
instrumentation, dependency analysis, branch coverage

evaluation, and fitness function computation are
performed at the level of basic blocks.

Since the Genetic Algorithm exploits the knowledge
about data and control dependencies, we need to extract
that information from the VHDL code: for this reason, we
build a database (Fig. 2) containing a simplified structure
and semantics of the design. The database is structured as
follows:

RT-level
 VHDL

VHDL
Parser

DB

Analysis Basic
blocks

Genetic
Algorithm

ModelSim
EE 5.3

sequences

fitness

Code
instrumentation

sockets

Command file

LEDA LVS

Sys
tem

Transcript
file analysis

Correlation
matrix

Figure 1: System architecture

BB1
BB2 BB3

BB4
BB5

BB6
BB7

P1

P2

P3 P4

P5 P6

E1 E2

C1

C2

P7

A

B

C
+

DFG

Figure 2: Abstract representation of
RT-level designs

• The hierarchy of component instantiations inside
different entities is flattened (C1 and C2 in the
figure). A dictionary of signal equivalencies is also
built, that allow us to uniquely identify signals that
span multiple hierarchical levels.

• All VHDL processes occurring in the flattened circuit
are given a unique identifier (Pi in the figure). This
operation also converts standalone concurrent
statements into their equivalent process. The design is
thus represented as a network of processes
interconnected by signals.

• Each process is analyzed to define its interface, in
terms of signals that it reads and writes.

• The sequential part of each process is analyzed, its
control flow graph (CFG) is extracted, and statements
are grouped in basic blocks (BBs). The control
structure of the process is described as a control flow
of basic blocks (the figure reports the CFG for
process P2).

• A dependency matrix between basic blocks is
computed, by assigning a probability that a basic
block will be executed, given that another block has
just been executed. These correlation probabilities
take into account the branching and looping nature of
the control flow.

• Each basic block is entered, and the data flow graph
(DFG) of the operations that occur inside each basic
block is extracted. Since a basic block consists of
multiple statements and/or conditions, multiple
dependencies are associated to a single block. Fig. 2
shows the DFG for the basic block BB4 of process
P2.

2.4 Genetic Algorithm

The Genetic Algorithm (GA) is based on encoding
potential test sequences as variable length bit matrices. A
number of such sequences are randomly generated and
constitute an initial population: the goal of the GA is to
evolve this population to increase its fitness value. The
fitness function measures the closeness of a sequence to
the goal; currently, this function assumes different forms
in the two phases in which the algorithm is organized.

In a first phase, the goal is to find a single sequence
that, when applied from the reset state, activates the
highest number of branches. In this phase, the fitness
function is simply the number of branches that have been
traversed at least once.

In the second phase, each yet uncovered branch is
considered separately as a target, and a genetic experiment
is run whose goal is to execute it. For each experiment, the
fitness function computes the closeness of the current
sequence to reaching the target, measured as the weighted
average of the execution counts of the basic blocks in the
input cone (taking into account both control and data
dependencies, thus potentially spanning several processes)
of the target. The adopted weights take into account the
probabilities of conditional execution that were statically
computed in the database.

3 Experimental results

The goal of the experimental evaluation was to apply
the proposed validation methodology to an industrial
design flow, in particular by selecting a circuit as a case
study.

The implementation consists of about 4,700 lines of C
code for VHDL code analysis and instrumentation, linked
to the LEDA LPI interface [LEDA95], and of 2,700 lines
of C code for the Genetic Algorithm and the interface to
the simulator. All experiments were run on a Sun Ultra 5
running at 333 MHz with 256MB of memory.

We applied the test bench generation procedure to an
industrial circuit designed at Centro Ricerche FIAT
(CRF).

The circuit developed at CRF is essentially a large
Finite State Machine which takes care of driving the
control signals used to actuate electronic injectors in diesel
engines. It is capable of driving 6 injectors separately,
giving the possibility to an external microprocessor to
program the actuator timings by writing some parameters
into an internal 2-port RAM through a 16 bit data bus. The
prototypal version of this circuit has been developed using
a Field Programmable Gate Array (Xilinx XC4028EX)
while the production version is being developed on an
ASIC.

This circuit is completely digital and described in
synthesizable VHDL, and it contains memories, internal 3-
state busses, and a microprocessor interface. Its main
characteristics are summarized in Tab. 1.

Parameter Value

VHDL lines 10,013
VHDL entities 118
VHDL process declarations 116
VHDL process instances 290
Basic blocks 1,465
Primary Inputs (ports/bits) 27 / 78
Primary Outputs (ports/bits) 21 / 47
Flip-Flops 452
Equivalent gates ~12,000

Table 1: Industrial circuit characteristics

The VHDL description was taken without any
modification, and was analyzed to build the database and
instrumented. This proves that the tool can be inserted
very easily into an existing design flow, and requires only
a marginal design effort. The Genetic Algorithm was run
for about 150 CPU hours, heavily dominated by
simulation time, during which it generated 5,219 vectors,
achieving a coverage of 77.13%. As a comparison, the test
bench developed by the designer, that consisted of about
400 vectors, reached a coverage of 63.17%, only. This
proves that, with a negligible designer effort and an
acceptable CPU time, test bench quality (and therefore
validation effectiveness) is significantly improved. To
prove that this result is due to the Genetic Algorithm, we
compared the attained coverage with one coming from an
equal number of completely random patterns: in this case

the coverage is only 59.31%, showing that a clever
optimization algorithm is effective and necessary over
pseudo-random simulation.

These results prove that the test bench generation
algorithm is able to improve the quality of validation
without any effort from the designers, and with an
acceptable CPU time. The portions of the design that
escaped both manual and automatic test benches are
currently under analysis. Many branches correspond to
redundant else or default branches for if or case
statements that were inserted solely to prevent the
synthesis tool from inferring sequential logic: these
statements are unreachable by construction. The reset
logic is another source of uncovered statements: since the
asynchronous initialization sequence is applied before
fitness computation starts, the reset instructions (that are
indeed executed) are excluded from the count. Designers
then analyzed the other uncovered VHDL branches, that
are concentrated in few processes, and found some real
design redundancies.

4 Conclusions

This paper presented a new approach to design
validation based on automatic generation of a test bench.
The approach resorts to a Genetic Algorithm that interacts
with a simulator to generate new sequences able to
increase the coverage of the test bench with respect to a
predefined validation coverage metric.

The methodology has been applied to an industrial
circuit currently in production at Centro Ricerche FIAT,
and a preliminary version of the tool has been used to
generate the test bench for it. Experimental results prove
that the method is able to increase the quality of the
validation process both over manual simulation and
pseudo-random sequence generation. The tool results have
also been useful as a feedback for better understanding the
most difficult parts of the design from the validation point
of view. Currently, the design team at CRF is analyzing
the best way to accommodate the proposed methodology
into their standard design flow.

5 References

[AHRo98] G. Al-Hayek, C. Robach: From Design
Validation to Hardware Testing: A Unified
Approach, JETTA: The Journal of Electronic
Testing, Kluwer, No. 14, 1999, pp. 133-140

[ASUl86] A.V. Aho, R. Sethi, J.D. Ullman, Compilers,
Principles, Techniques, and Tools, Addison-
Wesley Publishing Company, 1986

[Beiz90] B. Beizer, Software Testing Techniques (2nd
ed.), Van Nostrand Rheinold, New York,
1990

[CPSo97] F. Corno, P. Prinetto, M. Sonza Reorda:
Testability analysis and ATPG on behavioral
RT-level VHDL, Proc. IEEE International Test
Conference, 1997, pp. 753-759

[CSSq98] F. Corno, M. Sonza Reorda, G. Squillero,
VEGA: A Verification Tool Based on Genetic
Algorithms, Intl. Conf. on Circuit Design,
1998, pp. 321-326

[CSSq99] F. Corno, M. Sonza Reorda, G. Squillero,
Simulation-Based Sequential Equivalence
Checking of RTL VHDL, ICECS'99: 6th IEEE
Intl. Conf. on Electronics, Circuits and
Systems, 1999

[CSSq00] F. Corno, M. Sonza Reorda, G. Squillero,
High-Level Observability for Effective High-
Level ATPG, to be presented at IEEE VLSI
Test Symposium, 2000

[DGKe96] S. Devadas, A. Ghosh, K. Keutzer: An
Observability-Based Code Coverage Metric
for Functional Simulation, Proc. ICCAD’96

[FADe99] F. Fallah, P. Ashar, S. Devadas: Simulation
Vector Generation from HDL Descriptions
for Observability-Enhanced Statement
Coverage, Proc. 36th DAC, New Orleans,
1999, pp. 666-671

[FDKe98] F. Fallah, S. Devadas, K. Keutzer: OCCOM:
Efficient Computation of Observability-Based
Code Coverage Metrics for Functional
Verification, Proc. 35th DAC, 1998

[GDNe91] A. Ghosh, S. Devadas, A.R. Newton,
Sequential Logic Testing and Verification,
Kluwer, 1991

[HuCh98] S.-Y. Huang, K.-T. Cheng, Formal
Equivalence Checking and Design
Debugging, Kluwer, 1998

[LEDA95] LVS System User’s Manual, LEDA
Languages for Design Automation, Meylan
(F), April 1995

[TAZa99] P.A. Thaker, V.D. Agrawal, M.E. Zaghloul:
Validation Vector Grade (VVG): A New
Coverage Metric for Validation and Test,
VTS’99: IEEE VLSI Test Symposium, 1999,
pp. 182-188

