
The Esterel Synchronous Programming Language:

Design, Semantics, Implementation

G�erard Berry, Georges Gonthier

Ecole Nationale Sup�erieure des Mines de Paris Place Sophie La�tte

(ENSMP) Sophia-Antipolis

Centre de Math�ematiques Appliqu�ees 06565 Valbonne { France

Institut National de Recherche Route des Lucioles

en Informatique et Automatique Sophia-Antipolis

(INRIA) 06565 Valbonne { France

Research funded by the French Coordinated Research Program C3

1. Introduction

TheEsterel programming language we present here is the oldest and presently most developed member

of a novel family of synchronous languages, which also includes the Lustre [19] and Signal [25] languages

and the Statecharts formalism [26]. These languages are speci�cally designed to program reactive systems,

a variety of computerized systems that includes real-time systems and all kinds of control automata. The

mathematical semantics of Esterel was developed together with the language; the implementation of

Esterel is simply a physical realization of its semantics. The paper presents the language concepts and

constructs, the mathematical semantics, and the Esterel implementations that are now under distribution.

See [8, 9] for complete reference manuals and [6, 7] for a short introduction to the Esterel programming

style.

1.1. Reactive systems and programs

Many computer applications involve programs that maintain a permanent interaction with their en-

vironment, reacting to inputs coming from this environment by sending outputs to it. We follow Harel

and Pnueli [27] and call these reactive programs; we call a system whose main component is a reactive

program a reactive system. Real time process controllers, signal processing units, digital watches, video

games are typical examples of reactive systems. Operating system drivers, mouse/keyboard interface drivers

(e.g., menubar or scrollbar drivers), communication protocol emitters and receivers are examples of reactive

programs embedded in complex systems. Notice the input-driven character of reactive programs.

It is often convenient to consider reactive programs as composed of three layers:

� An interface with the environment that is in charge of input reception and output production. It handles

interrupts, reads sensors, activates e�ectors; it transforms external physical events into internal logical

ones and conversely.

� A reactive kernel that contains the logic of the system. It handles the logical inputs and outputs. It

decides what computations and what outputs must be generated in reacting to inputs.

� A data handling layer that performs classical computations requested by the reactive kernel.

In the rest of this paper, we shall mostly be concerned by reactive kernels that constitute the central and

most di�cult part of reactive systems. In fact, Esterel is not a full-edged programming language, but

rather a program generator used to program reactive kernels in the same way as YACC [32] is used to

program parsers from grammars. The interface and data handling must be speci�ed in some host language.

1.2. Deterministic reactive programs

Determinism is an important characteristic of reactive programs. A deterministic reactive program

produces identical output sequences when fed with identical input sequences. All examples above are de-

terministic if physical time is considered as an input among others. The importance of determinism cannot

1

be overestimated: deterministic systems are one order of magnitude simpler to specify, debug, and analyze

than non-deterministic ones.

Purely sequential systems are obviously deterministic. But determinism does not mean sequentiality.

Most reactive systems can indeed be decomposed into concurrent deterministic subsystems that cooperate

in a deterministic way. For example, a typical digital wristwatch contains a timekeeper, a stopwatch, and

an alarm, all of which naturally cooperate deterministically. Deterministic concurrency is the key to the

modular development of reactive programs and, as we shall see, is only supported by synchronous languages

such as Esterel.

Some complex reactive systems can involve several subsystems running concurrently on di�erent pro-

cessors and communicating with each other via asynchronous links (e.g., a distributed robot arm controller).

Such systems are no longer globally deterministic. However, we think that it is always wise to isolate their

deterministic reactive subsystems and to use our speci�c techniques for them. Thus we extend Hoare's

Communicating Sequential Processes approach into a more general Asynchronously Communicating Deter-

ministic Reactive Systems approach.

1.3. The current tools in reactive programming

Before presenting Esterel, we briey review the tools that are currently in use for reactive program-

ming:

� Deterministic automata (also called �nite state machines) are often used to program relatively small

reactive kernels, typically in protocols or controllers. The interface part is realized using operating

system facilities. Data handling is done by calling routines written in conventional languages. Automata

obviously yield excellent and measurable run-time e�ciency. They are also mathematically well-known.

Non-trivial correctness proofs can be performed by automatic temporal-logic formula checkers such as

EMC [21], MEC [2], XESAR [39], or by automata observation systems such as AUTO [43, 42]. However,

the human design and maintenance of automata turns out to be very di�cult and error-prone. Non-

trivial automata are di�cult to draw and impossible to understand when not drawn. Small changes

in speci�cations can involve deep changes in automata. Run-time actions must be duplicated on many

transitions, thus increasing the chance of misplacing an action. Above all, automata are purely sequential

and do not support concurrency: combining concurrent automata into a single automaton is never an

easy task.

� Petri-Net inspired tools such as the GRAFCET [11] are widely used in programmable controllers. They

run on speci�c machines that do not easily communicate with each other and with conventional com-

puters. Although they include crude concurrency primitives, they do not support proper hierarchical

development. Interface and data handling facilities only support simple data types such as boolean,

integers, or reals. The programming and debugging tools are poor.

� Sequential tasks running under a \real-time" operating system are widely used. They provide some kind

of concurrency by splitting a complex system into simpler communicating tasks, which can themselves

be automata. Inter-task communication is often done by sharing memory, which is known to be error-

prone. It can also use system communication primitives, which are generally low-level and di�er from one

system to another, yielding ad-hoc and highly non-portable programs. The internal program behavior is

non-deterministic, unlike the applications one wants to treat. Task handling incurs run-time overhead.

Execution times are hard to control. There are almost no generic simulation and debugging tools.

� Concurrent programming languages such asAda [1] orOccam [31] are more elaborate. They naturally

permit hierarchical and modular program development. Their tasking mechanism and communication

primitives are de�ned at the language level and are portable. They often provide their user with interface

and data manipulation facilities, allowing him to program in a single language all the three layers de�ned

in section 1.1. Debugging environments exist or will exist. However, all classical concurrent languages are

non-deterministic. The semantics of their time-handling primitives is somewhat vague. The execution

overhead can be important, and execution times are unpredictable.

Quite amazingly, all the available techniques force the user to choose between determinism and concurrency,

for they base concurrency on asynchronous implementation models where processes non-deterministically

2

compete for computing resources. This leads to problems that are really unnatural when programming

reactive systems and when reasoning about such programs:

� Reactions can compete with each other. New inputs can arrive before the end of a reaction; actions

and communications in charge of performing the current reaction then compete with actions and com-

munications in charge of starting the new reaction. Since there is no rule telling if and when a signal

sent to another process will reach its destination, there is no systematic way of telling when a reaction

is complete. The only practical solution is to guarantee the atomicity of each reaction. Generally this

not supported by the systems and languages and it is never easy to do by hand.

� Temporal primitives such as watchdogs (e.g., \do a task in less than 3 seconds") have only tentative

meanings, for nothing forces them to be accurately executed. Since they usually play a crucial role in

real-time process control, one generally adds priority systems to improve the user con�dence in time

manipulations. Such additions burden programs and cannot be completely rigorous either.

� Each subprocess has its own perception of the whole system. One is even guaranteed that two distinct

subprocesses perceive di�erently their environment. For instance, a single sensor read by two concurrent

processes within a single reaction will probably return two di�erent values, since the read operations

are done at di�erent times.

1.4. The synchrony hypothesis

All the above problems disappear when one adopts the synchrony hypothesis: each reaction is assumed

to be instantaneous | and therefore atomic in any possible sense. Synchrony amounts to saying that the

underlying execution machine takes no time to execute the operations involved in instruction sequencing,

process handling, inter-process communication, and basic data handling (e.g., additions). To \take no time"

has to be understood in a very strong sense. First, a reaction takes no time with respect to the external

environment, which remains invariant during it. Second, each subprocess also takes no time with respect to

any other subprocess; subprocesses react instantly to each other. In synchronous languages, inter-process

communication is done by instantly broadcasting events; all processes therefore share the same vision of their

environment and of each other. Statements take time if and only if they say so; temporal statements mean

exactly what they say. For instance, the statement \await 30 MILLISECOND" lasts exactly 30 milliseconds,

and the statement

every 1000 MILLISECOND do emit SECOND end

means that a SECOND signal is sent exactly every thousandth MILLISECOND; in an asynchronous formalism,

a SECOND would never be synchronous with a MILLISECOND.

Moreover, the \time" taken by a statement does not need to be measured in some prede�ned \universal

time unit". One can as well write exact statements such as

every 1000 MILLIMETER do emit METER end

Synchrony is certainly natural from the user's point of view: the user of a watch does not worry about the

internal reaction times, as long as he perceives that his watch reacts instantly to his commands. Synchrony

is also natural from the programmer's point of view: it allows to reconcile concurrency and determinism, to

write simpler and more rigorous programs, to reason about them (synchronous systems compose very well),

and to dissociate the logic of a system from implementation-dependent features such as reaction times.

Of course, one should wonder how realistic the hypothesis can be from an implementor's point a view.

It turns out that synchronous programs can be e�ciently compiled into highly e�cient automata, yielding

excellent run-time e�ciency and predictability. Performance is as good as that of carefully hand-written

code. The obtained automata can be automatically implemented in any classical programming language,

achieving object code portability. They can also be used as input for automata veri�cation systems. We

stress that Esterel is a programming language yielding small and e�cient object code, not simply an

idealized speci�cation language that forces its user to rewrite a program after the speci�cation is �nished.

Notice that synchrony hypotheses are very classical in physics: instantaneous body interaction is the

basis of Newtonian Mechanics, instantaneous propagation of electricity is the basis of Kircho�'s laws.

3

Within their (broad) application range, they make reasoning about the world simpler than more exact

non-deterministic models such as Quantum Mechanics*. VLSI circuits rely on a similar but weaker syn-

chrony hypothesis: all reactions take one clock cycle, no matter how complex they are inside; the SML

reactive language [15] is based on the same hypothesis. This kind of half-way synchrony accurately reects

how circuits work. To our belief, it lacks good compositionality properties and cannot be used as the basis

of a general reactive programming language.

1.5. The Esterel imperative programming language

As we mentioned in the beginning, several languages or formalisms have fully adopted the synchrony

hypothesis. They have roughly the same power, but they di�er by their programming style. Lustre [19]

and Signal [25] are declarative data-ow languages very much in Kahn { Mac Queen style [33]. The

Statecharts [26] are based on a hierarchical presentation of automata using graphical structures named

higraphs that support concurrency and communication. Esterel adopts a more classical imperative style.

The Esterel statements handle either classical assignable variables that are local to concurrent state-

ments and cannot be shared, or signals that are used to communicate with the environment and between

concurrent processes. A signal carries a status, which is its presence or absence in a given reaction, and can

carry a value of arbitrary type. The sharing law of signals is instantaneous broadcasting: within a reaction,

all statements of a program see the same status and value for any signal. The events to which statements

react are composed of possibly simultaneous occurrences of signals.

The Esterel statements fall into two classes:

� standard imperative statements like assignment, signal emission, sequencing, conditional, loop, trap-exit

(or exception-block de�nition), and explicit concurrency. These statements are supposed to be executed

on an in�nitely fast machine (so that the null statement nothing does nothing in no time!).

� temporal statements such as triggers (await event do : : :), watchdogs (do : : : watching event), or

temporal loops (loop : : : each event).

As we have seen above with milliseconds and millimeters, the temporal primitives can be applied to any

signal: each signal is thought of as de�ning an independent time scale. The style we promote in Esterel

consists of freely mixing independent time scales. This favors the use of preemptive primitives such as

watchdogs (that de�ne for how long their body will be executed) and the nesting of such primitives. A

typical Esterel statement looks like

do

every STEP do

emit JUMP

end

watching 100 METER

which exactly means \jump every step during 100 meters". Alone the every STEP statement would last

forever but it is killed after 100 METER by the enclosing watching statement that makes the whole statement

terminate. Only a small example of Esterel programming will be given here, in section 5. More elaborate

examples can be found in [9].

The Esterel modules and module interface declarations are presented in section 2. We present the

Esterel statements in two steps. First, we present a set of basic Esterel statements in section 3, together

with their intuitive semantics based on the notion of instruction duration. Then we present a richer, user-

friendly set of plain Esterel statements in section 4. We show how to accurately expand plain Esterel

statements into basic Esterel.

1.6. The mathematical semantics of Esterel

The intuitive semantics of section 3 can be turned into a formal denotational semantics that globally

de�nes the output sequence of a program as a function of a timed input sequence. The denotational semantics

is presented in [24]; it is not detailed here since it is useless for compiling algorithms.

* No one would compute billiard ball trajectories in Quantum Mechanics!

4

Wepresent in detail twomathematical semantics, given by Plotkin style rewrite rules [38]: the behavioral

semantics and the computational semantics. Given an input I to a program P , both determine the output O

and a new program P

0

suited to treat the remaining inputs. The global temporal treatment of statements is

therefore replaced by a local computation of each reaction. The behavior of a program on any input sequence

can be computed in a step by step fashion.

The behavioral semantics is given in section 5. It de�nes globally each reaction. As in Kirsho�'s electrical

laws, the values O and P

0

are solutions of �xpoint equations that express the sharing law and determine

the instantaneous information exchanges between concurrent statements. Since we want the language to

be deterministic, we must require solutions to exist and to be unique. However, the equations involve non-

monotonic operators (e.g., negative tests for signal presence). There is no immediate way of solving them

and even of knowing whether unique solutions exist or not.

We exhibit in section 6 several kinds of paradoxical programs, that have very close electronic analogues.

For example, we show a program that should mean \emit a signal S if and only if this signal is not present";

the electronic analogue is a not gate whose output is plugged into its input. We also show a program

that should mean \the current integer value S of a signal S satis�es S = S + 1"; the electronic analogue

is a positive feedback obtained by plugging the output of an ampli�er into its input. For these nonsense

programs, the equations have no solution. We also exhibit programs for which the semantic equations have

several solutions.

In section 7, we present the computational semantics of programs. Instead of de�ning behaviors in

a global way, we compute them as results of sequences of actions of an execution machine. Signals are

implemented using shared memory, with the following read/write discipline to enforce the sharing law: a

signal cannot be read until it can no longer be written (apparently simpler disciplines fail to reject all

incorrect programs). A calculus of potentials allows us to compute action sequences that satisfy this new

law or to detect if such sequences do not exist. We state our main theorem: when correct action sequences

do exist, they all terminate and yield the same results (in technical terms, the computational semantics has

Church-Rosser and strong normalization properties [3]); furthermore, the results are exactly those de�ned

by the behavioral semantics. This theorem establishes the deterministic character of correct reactions.

1.7. From Esterel programs to automata

The computational semantics of programs can be rather e�ciently implemented; it can therefore serve

as basis for an Esterel interpreter. However, this interpreter would not be fast enough for actual real-time

applications. Our next step is to compile Esterel programs into sequential automata. This is the purpose

of section 7. We use a variant of Brzozowski's derivative algorithm [17, 10], which was originally designed

to transform regular expressions into automata. The idea is to formally iterate the computational semantic

calculations, building a graph whose nodes are Esterel terms and whose arcs bear the action sequences.

Starting from a node bearing the initial program, we compute all possible reactions iteratively. Each time a

new reaction is computed, the target Esterel term is compared to the previously computed terms. This

process is easily shown to terminate.

Compiling is made very fast in the Esterel v3 system, which does not use the original Esterel

language but a kernel reactive language described in [24]. For instance, the digital wristwatch described

in [8] compiles in about 5 seconds on a SUN3, yielding a 41 state automaton involving 2494 actions. This

automaton can be easily translated into C, LISP, ADA, or more generally into any suitable host language.

In �nal machine code, it would occupy about 3K bytes of memory and have very fast and predictable

reaction times, comparable to those of hand-coded automata. To perform behavior analysis and proofs, the

automaton can also be used as input to the above-mentioned automata veri�cation systems EMC, AUTO,

MEC, or XESAR.

By itself, the translation to automata justi�es the synchrony hypothesis. If not instantaneous, run-time

reactions are as fast as they can be. Microstep sequences only contain actions that must be done at run-time.

Process handling and synchronization are done at compile time, therefore produce no actions. This is clearly

the best way to be in�nitely fast.

5

As far as code size is concerned, the produced automata turn out to be minimal in most cases (we do not

know exactly why). Unlike in asynchronous formalisms, automata explosion is not the rule. For programs

that yield unreasonably big automata, the Esterel v3 system gives a way to replace the normal single

automaton by a cascade of small automata that behave equivalently. See [9] for details.

2. The Esterel module structure and the global declarations

In both basic and plain Esterel, the programming unit is the module. A module has a name, a

declaration part, a body, and ends with a period*:

module MOD :

declaration part

body

.

The declaration part declares the external objects used by the module: data objects to be implemented

in the data handling layer, signals and sensors that de�ne the reactive interface. Their declarations are

inter-dependent since signals and sensors can carry values of types declared in the data declarations. All

objects must be declared before they are used. The declarations are similar in basic and plain Esterel;

some restrictions apply to interface signals in basic Esterel.

The body is an executable statement, written either in a restricted instruction set in basic Esterel or

in a user-friendly instruction set in plain Esterel. The instruction sets will be detailed in sections 3 and 4.

2.1. Data declarations

Data declarations declare the types, constants, functions, and procedures that manipulate data. Esterel

has a few primitive types described below, but no compound type constructors such as record or array.

Complex data handling is done at an abstract level: data have abstract types and are manipulated by ab-

stract functions and procedures only known by their names, to be implemented in a host language. See [8]

for connecting Esterel declarations with actual de�nitions in host languages.

2.1.1. Type declarations

Basic Esterel has three primitive types: integer, boolean (with constants true and false), and

triv (with a unique constant also called triv). These types are necessary to translate plain Esterel into

basic Esterel (triv is used to turn plain Esterel pure signals into basic Esterel valued signals of type

triv, see below). For user's convenience, plain Esterel de�nes some other basic types such as string and

float, with the classical syntax of string and oat literals.

The user can declare his own abstract types by listing them after the type keyword:

type DOUBLE, TIME;

2.1.2. Constant declarations

One can declare constants of prede�ned or abstract types:

constant MEASURE_NUMBER: integer, PI : DOUBLE, NOON : TIME;

Of course the types must have already been declared. The values are given in the host language, not in

Esterel.

2.1.3. Function declarations

Functions are declared as usual:

function SQRT (DOUBLE) : DOUBLE,

EQUAL_TIME (TIME, TIME) : boolean;

* The lexical aspects of Esterel are classical; the keywords are in lower case and reserved; we write

identi�ers in upper-case but this is not compulsory.

6

Functions are assumed to be free of side e�ects. Their implementation is written in the host language.

2.1.4. Procedure declarations

Procedures have two argument lists: in a procedure call, the �rst list contains variables passed by

reference and subject to side-e�ects (like var parameters in Pascal or inout parameters in Ada); the

second list contains expressions passed by value (like val parameters in Pascal or in parameters in Ada).

In the declaration, only the argument types are declared. For example, to add-in-place a number of seconds

to a time, one can declare:

procedure INCREMENT_TIME_BY_SECONDS (TIME) (integer);

2.2. Interface declarations

One must declare the signals and sensors that constitute the module's reactive interface (a sensor is a

degenerate kind of signal available in plain Esterel). One can also declare input relations that restrict

possible input events and are important for compiling programs.

Signals have instantaneous ticks (i.e. interrupts) that serves as control information for the temporal

statements described in section 3 and 4. Clock pulses, button depressions, or message arrivals are typical

examples of ticks. A signal S can also have a persistent value of some type, that can be accessed at any

time in Esterel programs by the expression \?S". For example, the value of a message signal can be the

contents of the message.

The following relation between ticks and values is assumed to hold for input signals: the value of a signal

can change only when a tick occurs; in this case the new value instantly replaces the old value, which is

lost. In our message example, the message value can only change when a new message is received. Hence, a

program driven by the message ticks is guaranteed to correctly treat all messages. This fundamental relation

between ticks and values will automatically hold for output and local signals, see the sharing law in the next

section.

In plainEsterel, there is a special sensor declaration for passive external devices such as thermometers,

which yield values on demand but do not generate ticks. Only the value access operation \?" is available for

sensors.

2.2.1. Basic Esterel interface declarations

In basic Esterel, there are only two kinds of interface signals: input signals and output signals. Input

signals come from the environment; they cannot be emitted internally in basic Esterel. They are declared

with the form:

input S (type);

Conversely, output signals are emitted towards the environment of the module by the \emit" statement:

\emit S(exp)" emits a signal S with the value of the expression exp. Since control transmission is instan-

taneous in Esterel, several emitters can emit the same signal at the same time with di�erent values, as

in

emit S(1) || emit S(2)

where \||" is the Esterel parallel operator. We call this phenomenon a collision. When collisions occur,

we have to de�ne the actual value ?S of the signal. Following Milner [36], we associate an associative

commutative combination function comb with each signal S. If the emitters emits the values v

1

; v

2

; : : : ; v

n

,

the actual value of S is

comb(v

1

; comb(v

2

; : : : comb(v

n�1

; v

n

) : : :))

An output signal declaration has the form:

output S (combine type with comb);

where type and comb must already have been declared, with comb declared as

7

function comb(type,type):type;

Here are some useful combination functions:

1. In Ethernet-like local networks, signal broadcasting is physically realized on a cable. A special value

NAK represents the collision of any two messages. One sets comb(v

1

; v

2

) = NAK for all v

1

and v

2

.

2. In a request handling mechanism, several processes can request the same resource simultaneously, say by

broadcasting their name. A natural choice is to take as result the set of these names. The appropriate

combination operation is set union.

3. In the digital watch programmed in [9], the timekeeper, stopwatch, and alarm can operate a beeper. The

timekeeper beeps once a second, the stopwatch beeps twice a second, and the alarm beeps four times a

second. If some of these units beep together, the resulting number of beeps per second is obtained by

adding the individual numbers. Hence seven beeps per second occur when the three units beep together.

We simply de�ne a BEEP signal that carries an integer representing the required number of beeps and

choose integer addition as the comb function.

2.2.2. Plain Esterel interface declarations

In practice, one often uses pure control signals whose values are meaningless, such as SECOND, METER

etc. In basic Esterel one has to declare such signals of type triv. In plain Esterel, one can simply omit

the type declaration, writing

input SECOND, METER;

output ALARM;

Also, one may know that collisions will never take place for a given signal (this indeed tends to be the default

case). The combination function can then be omitted:

output SPEED (float);

The Esterel compiler then checks that collisions can never appear.

Basic Esterel establishes a sharp distinction between input and output signals. This restriction is

relaxed in plain Esterel, which allows for signals that can be both input and output. A natural example

is:

inputoutput BUS_REQUEST;

The semantics of inputoutput signals is a bit delicate and will not be detailed here. See [8] for details.

Finally, sensors are declared in the following way:

sensor TEMPERATURE (FAHRENHEIT);

The compiler will check that temporal instructions such as delays are not applied to sensors (remember that

only the \?" operator applies to them).

2.2.3. Relation declarations

Relation declarations restrict the possible input events of a module. There are two kind of relations:

1. incompatibility relations of the form S

1

#S

2

#S

3

; such a relation states that the signals S

1

, S

2

, and S

3

are mutually exclusive in input events.

2. synchrony relations of the form S

1

=>S

2

; this relation tells that S

2

will be present in an input event

whenever S

1

is.

Here is an example of relation declarations:

relation LEFT_BUTTON # RIGHT_BUTTON,

SECOND => HUNDREDTH_OF_SECOND;

There are two reasons to use input relations. First, the speci�cation may require signals not to appear

together: for a watch, it makes no sense to go simultaneously in stopwatch and alarm mode. Second,

relations are essential to reduce the size of the generated automaton. See section 9.3 for details.

8

3. The basic Esterel instruction set and its naive semantics

We describe the expressions and statements used in basic Esterel, together with their intuitive se-

mantics. The basic statements form the heart of Esterel. They are independent of each other. We

use the meta-variables type, exp, and stat to range over types, expressions, and statements; we also use

self-explanatory meta-variables in italic when necessary.

Esterel expressions and statements manipulate variables and signals, which can be declared locally at

any point. The variables and signals strongly di�er in that only signals can be shared. Within statements,

there is no di�erence between input, output, or local signals.

3.1. Expressions

Expressions are used in a classical way to denote values. They are built up from constants, variables,

and signal values, by operators and function calls. They are strongly typed in a classical way (see [8] for

precise type-checking laws).

The constants are the natural numbers such as 123, the boolean constants true and false, and the user-

de�ned constants declared in the module's constant declaration part. The variables are classical identi�ers

(see variable declarations below). If S is a signal of type type, then ?S is an expression of type type that

denotes the current value of the signal S at the time the expression is evaluated, see below.

The operators are the usual integer and boolean operators (+, *, <=, etc). The function calls are standard

(the function must be declared in the module's declaration part).

3.2. Basic statements

Here is the list of the basic statements:

nothing dummy statement

halt halting statement

X := exp assignment statement

call P (variable�list) (expression�list) external procedure call

emit S(exp) signal emission

stat

1

; stat

2

sequence

loop stat end in�nite loop

if exp then stat

1

else stat

2

end conditional

present S then stat

1

else stat

2

end test for signal presence

do stat watching S watchdog

stat

1

|| stat

2

parallel statement

trap T in stat end trap de�nition

exit T exit from trap

var X : type in stat end local variable declaration

signal S (combine type with comb) in stat end local signal declaration

The emit, present, and watching statements are speci�c to Esterel; they deal uniformly with input

signals, output signals, or local signals declared by local signal declarations. An exit statement exits a

control block de�ned by a trap statement. This kind of construct is well-known in LISP as the catch-throw

or tag-exit construct, in ML as the failure construct, or in ADA as the exception construct. In our case,

the interaction between exit and parallel statement has to be carefully de�ned; we shall give a �rst-class

semantic status to trap�exit statements, instead of explaining them loosely as control-ow diverters. All

other statements are common in imperative languages. Notice that the parallel statement can be used at

any level; there is no static notion of process as in CSP [29].

In compound statements, the sequencing operator \;" has priority over the parallel operator \||". When

necessary, statements can be grouped by bracketing them with square brackets, as in \[stat

1

||stat

2

];stat

3

".

9

All variables, signals, or trap labels must be declared before they are used. Their declarations have

static scope. Input, inputoutput, and output signals have global scope.

Variables cannot be shared: if a variable is updated in one branch of a parallel statement, it cannot be

read or updated in the other branch (a variable is updated by an assignment or a procedure call where it

appears in the �rst argument list).

The following additional restrictions apply to basic Esterel programs:

� Input signals cannot be internally emitted.

� The present S statement and the value access ?S are not allowed for output signals.

These restrictions simplify the mathematical semantics. They are suppressed in plain Esterel (however,

the compiler produces warnings when they are not satis�ed).

3.3. The intuitive semantics

The intuitive semantics describes the behavior of a module on a given input history. Let us call input

event the occurrence of one or possibly several simultaneous input signals coming from the environment.

The module reacts to each input event by updating local variables and emitting local and output signals.

The emitted output signals make up the output event sent to the module's environment. This whole process

is called the reaction to an input event. The reaction is assumed to be instantaneous: the output event is

synchronous with the input event. A sequence of input events is called an input history; the events de�ne the

instants of the history. Reactions only occur on input events; the underlying execution machine is inactive

between input events.

The signals that constitute the events all obey the following sharing law:

� A signal has a �xed status in each reaction: it is either present or absent. To be present, a signal must

either be present in the input event if it is an input signal or be emitted by the program if it is a local

or output signal.

� A signal has a unique current value ?S in each reaction. If a signal is present in a reaction, its value is

its current input value if the signal is input or is the combination of all the emitted values if the signal

is output or local. If a signal is absent, its current value is the same as in the previous reaction. Before

its �rst emission, the value of a local or output signal is the unde�ned value ?.

(Intuitively, the sharing law should imply program determinism; as we shall see in section 7, this is only true

for \correct programs".)

Since variables are not shared between statements, they can be updated several times within a single

reaction. Their initial value is also ?.

The key idea of the intuitive semantics is to describe formally not only the actions performed by each

statement (memory updates, signal emissions, or tests), but also their timing, that is, at which \instant"

they are performed. Signal current values and in general all subprocess interaction will be de�ned solely in

terms of timing.

To describe this timing in a structural way, the semantics relies on four notions. First, the context of each

statement in a program determines the instant this statement starts executing; second, the internal execution

of this statement determines when it terminates, if it ever does. When a statement terminates on the same

instant it starts, we say it terminates instantly, or that it is instantaneous. Almost everything in Esterel

is instantaneous: expression computations, memory updates, communication, and control transmission.

Third, since Esterel has block exits, the execution of a statement can also determine when it exits a trap;

a statement that exits a trap does not terminate in the above sense (however, it is inactive from there on). A

statement that does not terminate nor exit a trap instantly is said to take time. Finally, a statement can be

aborted or killed by some other part of the program, at some instant; it is then prevented from performing

any actions (or terminating, or exiting) from then on.

The semantics is structural and describes the relations between these notions for statements and their

substatements:

10

� The module body starts upon reception of the �rst input event. It never terminates (it is therefore

implicitly followed in sequence by a halt statement).

� nothing performs no action and terminates instantly.

� halt performs no action and never terminates nor exit traps.

� An assignment updates the memory and terminates instantly.

� A procedure call updates the memory and terminates instantly. (Long computations to be performed

while the program is running should not be realized by procedure calls. They should be realized by

sending the arguments to some external computing devices and waiting for the results, using signals

for value communication. A speci�c time-consuming exec primitive will be added to Esterel in

subsequent versions.)

� When it starts, an emit statement evaluates its expressions to a value, emits its signal with this value,

and terminates.

� The �rst statement of a sequence starts when the sequence starts. When the �rst statement exits a trap,

so does the sequence (the second statement then never starts). When the �rst statement terminates,

the second statement starts instantly and the sequence behaves as the second statement from then on.

� The body of a loop starts when the loop starts. When the body terminates, the loop is instantly

restarted. A loop never terminates. When the body exits a trap, so does the whole loop (hence exiting

an outer trap is the only way to exit a loop).

� When started, a conditional instantly evaluates its condition. If the condition is true, the then statement

starts instantly and the conditional behaves as this statement from then on. The behavior is symmetric

if the condition is false.

� A present S statement acts as a conditional, the condition being the presence of the signal S in the

current reaction (notice that this condition cannot be expressed by a boolean expression).

� A \do stat watching S" statement gives a time limit to the execution of its body stat; the limit is the

next reaction where S is present. The body starts instantly when the watching statement starts. If the

body terminates or exits a trap strictly before S occurs, so does the watching statement. Otherwise the

watching statement terminates as soon as S occurs. In this case, the body is instantly killed without

being executed; it performs no action and exits no trap*. (Unlike in other languages, there is no implicit

loop in a watching statement, which is not restarted when terminated.)

� The two branches of a parallel start when the parallel starts. If one of the branches exits a trap, so

does the parallel statement, and both branches are inactive from then on. If both branches exit traps

simultaneously, the parallel only exits the outermost trap, the other one being discarded. Otherwise a

parallel statement terminates if and when both its branches have terminated.

� A trap T construct de�nes an exit point for its body. The body starts instantly and determines the

behavior of the trap statement until it terminates or exits a trap. If the body terminates or exits T, the

trap statement instantly terminates. If the body exits an outer trap T

0

, so does the trap statement.

� An exit T statement exits T and doesn't terminate.

� A local variable declaration declares a variable initialized to ? and behaves as its body from then on.

� A local signal declaration declares a signal initialized to ?, and behaves as its body from then on.

3.4. Remarks on imperative statements

A reaction can instantly execute several actions. The following statement executes two successive

assignments to X and two signal emissions in the reaction that starts it:

* Be careful: an S present in the reaction that starts the watching statement is not taken into account

for termination; the watching statement described here was called \watching next S" in older versions of

Esterel; next is always the default in the present version.

11

X:= 1; X:=X+1

||

emit S1; emit S2

Even when they are done \simultaneously", variable updates are done in the speci�ed order; as expected,

the �nal value of X is 2. On the contrary, because of the sharing law, the ordering between the two signal

emissions is immaterial. One could just as well put them in parallel.

There is a problem with loops. One can write absurd loops such as

loop

X := X+1

end

where one should instantaneously execute in�nitely many additions and memory updates. To forbid this

situation, we impose that the body of a loop cannot terminate instantly when started (this is detected at

compile time).

Notice that we introduced two conditional statements: \if" that tests boolean expressions, and \present"

that tests for the presence of signals. We could as well introduce a boolean expression \present S" true if

and only if S is present in the current reaction and use the form \if present S then..." to test for the pres-

ence of S. However, signals and booleans behave di�erently: the presence and value of a signal are uniquely

de�ned in a reaction, while a boolean variable can be updated several times in an instant; moreover, the

watching primitive is available for signals and not for boolean expressions.

In conditionals, we allow ourselves to suppress nothing statements appearing after then or else key-

words, together with the corresponding keyword. For example:

if exp then stat end stands for if exp then stat else nothing end

present S else stat end stands for present S then nothing else stat end

This form is especially useful for the present statement: \present S else stat end" is a test for absence of

S.

Finally, to illustrate the interaction between exit and parallel statements, let us analyze a toy example:

trap T1 in

trap T2 in

X:=0

||

Y:=0; exit T2

||

Z:=0; exit T1; Z:=1

end;

U:=0

end

Here the assignments X:=0, Y:=0, and Z:=0 are performed simultaneously, as the actions of the parallel

branches. The assignment Z:=1 is not performed since it follows in sequence an exit statement that does

not terminate. The parallel branches exits both T1 and T2. Since the trap T1 construct encloses the trap T2

one, the T2 exit is discarded and only T1 is exited. Therefore the whole statement terminates instantly, and

the assignment U:=0 is not executed.

3.5. Remarks on temporal statements

According to our sharing law, two simultaneous actions are executed in the same signal environment

(for signals that are visible in both statements). This realizes communication by instantaneous broadcasting

between emitters and receivers. Consider the following example, where S in an integer signal with addition

as combination function:

emit S(2);

Y := ?S

||

emit S(1);

present S then

X:=?S

end

12

Here the two emissions are simultaneous, the present statement sees S as present, and both X and Y receive

the value ?S equal to 3=1+2.

The only way for a statement to take time is to involve a halt statement, which takes an in�nite amount

of time; conversely, a watching statement limits the time taken by its body. All temporal manipulations

in basic Esterel are combinations of halt and watching statements. The simplest example of such an

interaction is the following construct, which waits for the next occurrence of S and terminates:

do halt watching S

In plain Esterel, this construct is abbreviated into \await S". To simplify our examples, we also use this

abbreviation in basic Esterel examples.

To illustrate the temporal behavior of the watching statement, let us look at a simple example. Assume

that I1, I2, and I3 are input signals and that O1 and O2 are output signals. Let \I1! O1" be a statement

that emits O1 whenever it receives I1 (in plainEsterel, we shall write \every immediate I1 do emit O1 end",

see the next section). Then the statement

do

I1! O1

watching I2;

emit O2

emits O1 whenever it receives I1, up to the �rst reaction where I2 occurs in the input event, initial reaction

excluded; when I2 occurs, O1 is not emitted since the body of the watching statement is not executed, and

O2 is emitted since the watching statement terminates. Here are some behaviors:

input I1 I3 I1 I2 I1

output O1 � O1 O2 �

input I1 � I2 I3 I1 I2 I1

output O1 � O1 O2 �

input � I3 I1 I1 � I2 I1

output � � O1 O2 �

input I2 I2 I1 I2 I1

output � O2 � � �

In a watching S statement, the body is not executed if the reception of S terminates the watching construct.

We want to motivate this important choice. First, notice that the other choice, \execute the body action in

the instant where S is present and terminate", can be coded as

trap TERMINATE in

stat;

exit TERMINATE

||

await S;

exit TERMINATE

end

The trap construct is exited either when stat terminates or when S occurs. In the latter case, stat is executed

at the instant where S occurs, since it precedes the exit statement in a sequence. No simple reverse coding

exists to obtain our original semantics for watching from this alternative one.

Second, nesting watching statements establishes priorities between signals. Consider the example:

do

await S1;

X := 0

watching S2

The behavior is as follows:

� S1 occurs strictly before S2: when S1 occurs, X is set to 0 and the whole construct terminates.

13

� S2 occurs strictly before S1: the whole construct terminates when S2 occurs; the assignment is not

executed.

� S1 and S2 occur simultaneously: the body of the watching S2 is not executed when the signals occurs;

hence the whole construct terminates without executing the assignment, as in the previous case.

Therefore the outermost signal S2 has instantaneous priority over the innermost signal S1.

Asynchronous languages usually possess watchdogs analogous to our watching statement but restricted

to some \absolute time" measured in seconds (or worse, in some machine-dependent unit). Their semantics

cannot be made completely rigorous. In Esterel, watching statements are well-de�ned and applicable to

any signal, not just to absolute time; the nesting of watching statements on di�erent signals is one of the

basis of the Esterel programming style (see section 5).

Let us �nally mention a subtlety concerning local signals: a local signal can be emitted simultaneously

in di�erent scopes. Consider the example

module FOO:

input S1 (integer);

output S2 (integer), S3 (integer);

loop

signal S (integer) in

emit S(0);

await S1;

emit S(1)

||

emit S2(?S);

await S;

emit S3(?S)

end

end

When the loop starts, S is emitted with value 0 and S2 is output with value 0. Then, when S1 occurs, S is

emitted with value 1 and S3 is output with value 1, the parallel and local signal declarations terminate, the

body of the loop is restarted instantly with S reinitialized, S is instantly emitted with value 0, and S2 is

instantly output with value 0. The two simultaneous emissions of S don't occur in the same instance of the

local signal declaration and don't have to be combined; this is clear when one unfolds once the loop before

executing it.

The semantics presented here treats correctly this example, while the initial semantics of Esterel [5]

and the Esterel v2 system treated it incorrectly.

4. The plain Esterel instruction set

There are three kinds of extensions available in plain Esterel: extensions concerning the signals and

the signal interface, some user-friendly statements, and the copymodule directive for modular programming.

We have already detailed the plain Esterel signals in section 2; the copymodule directive will be described

at the end of this section.

The extended instructions are derived from the basic ones by macro-expansion. Being the most powerful

control structure, the trap-exit mechanism is heavily used in the expansions (we have already seen an

example in the previous section).

4.1. Miscellaneous easy extensions

We give some extensions without detail, see [8] for exact expansions. One can initialize variables at

declaration time (the appropriate assignment is generated). One can declare several variables or signals in

local variable or signal declaration. One can de�ne a repeat loop of the form

repeat exp times

stat

end

14

The repeat construct expands into a loop nested within a trap, an if-then-else statement exiting the

trap when the count expires.

4.2. Occurrence counts and timeouts in watching statements

In watching statements, it is often convenient to distinguish between the body's normal termination

and the timeout termination caused by the occurrence of the signal. For this, one adds a timeout clause:

do

stat

1

watching S

timeout stat

2

end

The expansion is easy:

trap TERMINATE in

do

stat

1

;

exit TERMINATE

watching S;

stat

2

end

In basic Esterel, a time limit is the next occurrence of some event; in plain Esterel, one allows two

other forms of time limits. The �rst one is an occurrence count of the form \exp S", where exp is an integer

expression. For instance, one can build seconds from milliseconds in the following way:

loop

await 1000 MILLISECOND;

emit SECOND

end

(This is still heavy and will be further improved later on.) The theoretical expansion uses an auxiliary local

signal and a repeat loop (we leave this to the reader). In practice, occurrence counters are so useful that

they are built-in primitives in the actual Esterel systems [8].

The second generalized occurrence form is called the immediate form. Remember that the starting event

is not taken into account for timeout in a watching statement. The following form takes it into account*:

do

stat

watching immediate S

The expansion is

present S else

do stat watching S

end

Occurrence counts and immediate occurrences are available for all the temporal statements described below.

4.3. The upto statement

The upto statement is similar to the watching statement, but it doesn't terminate when its body

terminates: only the timeout terminates an upto statement. The construct \do stat upto S" expands into

do

stat;

halt

watching S

Unless its body exits some enclosing tag, an upto statement is guaranteed to take the exact time mentioned

in its time limit.

* Be careful: \watching immediate" was called \watching" in older versions of Esterel!

15

The upto statement was taken as primitive in the older versions of Esterel [5]. One can indeed de�ne

watching from upto; however watching has several advantages as a semantic primitive (see [24]).

4.4. Await statements

We have already written \await S" for \do halt watching S". To point out the dependency of a

statement on the arrival of a signal S, one can also write

await S do stat end

instead of \await S; stat".

The most general form of the await statement is the multiple await. For example, one can write:

await

case SECOND do stat

1

case 2 METER do stat

2

case immediate ALARM do stat

3

end

The �rst elapsed delay determines the case to execute. Unlike the similar selection statement found in

classical asynchronous languages, ours is deterministic. If two delays elapse simultaneously, only the �rst

case in the list order is selected. For instance, if there is no ALARM and if 2 METER and SECOND are reached

simultaneously, only stat

1

is executed. See the expansion in [8].

4.5. Temporal loops

Let us come back to the production of seconds from milliseconds programmed above. A much simpler

form is

every 1000 MILLISECOND do

emit SECOND

end

The expansion of \every S do stat end" is simply

await S;

loop

do stat upto S

end

One �rst waits for the signal (or the signal's occurrence count). One then starts the body stat; this body is

restarted afresh at each occurrence of the signal (or of the signal's occurrence count).

The next temporal loop is similar but the body is started at once:

loop stat each S

expands into

loop

do stat upto S

end

4.6. Exceptions

PlainEsterel includes a general exception handling mechanism that extends the basic trapmechanism

by allowing exit handlers and value passing. Here is an example of the general construct:

trap ALARM(combine integer with +), ZERO_DIVIDE, TERMINATE in

stat

handle ALARM do stat

1

handle ZERO_DIVIDE do stat

2

end

We call stat the body and stat

1

and stat

2

the exception handlers. The body can contain generalized exit

statements of the form \exit ALARM(exp)" or \exit ZERO DIVIDE". If such a statement is executed when

executing the body then the body is instantly exited and the corresponding handler is instantly started if

present (here TERMINATE has no handler). As far as values are concerned, valued exits behave much like

16

signals: if several \exit ALARM(exp)" are raised then the value of the ALARM exit is obtained by combining the

values with the addition function; this value can be accessed in the ALARM handler via the special expression

??ALARM

The double question mark is used to distinguish exceptions from normal signals: the signals and exits don't

belong to the same name space. The expression \??ALARM" is only allowed in the ALARM handler.

Several di�erent exits can be raised simultaneously. If they belong to di�erent trap construct, only the

outermost ones matter. If they belong to a single trap construct, the corresponding handlers are executed

in parallel.

See [8] for the general expansion of this statement.

4.7. The copymodule directive

Plain Esterel has a limited form of modularity, given by the directive

copymodule MODULE

This directive can appear anywhere in a statement's place. It is replaced by the text of the copied module

with consistency veri�cations for interface and declarations. Copying cannot be recursive but can be nested

to any depth. Renamings are also allowed in the copying process, see [8]. See section 5 and annex 1 for an

example.

5. A programming example

As a simple but illustrative example, we program the reex game machine described in detail in [9]; a

more complex wristwatch example appears in the same paper. The full Esterel reex game program is

shown in Annex 1.

5.1. The reex game speci�cations

The player controls the machine with three commands : putting a coin in a COIN slot, to start the game;

pressing a READY button, to start a reex measure; pressing a STOP button, to end a measure.

The machine reacts to these commands by operating the following devices: a numerical display DISPLAY

that shows reex times; a GO lamp that signals the beginning of a measure; a GAME OVER lamp that signals

the end of a game; a RED lamp that signals that the player has tried to cheat or has abandoned the game; a

BELL that rings when the player hits a wrong button.

When the machine is turned on, the display shows 0, the GAME OVER lamp is on, the GO and RED lamps

are o�. The player then starts a game by inserting a coin. Each game is composed of a �xed number

MEASURE NUMBER of reex measures. A measure starts when the player presses the READY button; then, after

a random amount of time, the GO lamp turns on and the player must press the STOP button as fast as he

can. When he does so, the GO lamp turns o� and the reex time measured in milliseconds is displayed

on the numerical display. A new measure starts when the player presses READY again. When the cycle of

MEASURE NUMBER measures is completed, the average reex time is displayed after a pause of PAUSE LENGTH

milliseconds and the GAME OVER lamp is turned on.

There are �ve exception cases. Two of them are simple mistakes and make the bell ring:

� the player presses STOP instead of READY to start a measure

� the player presses READY during a measure

In the other three cases, the RED and GAME OVER lamps are turned on, the GO lamp is turned o�, and the

game ends:

� the player does not press the READY button within LIMIT TIME milliseconds when he is expected to (one

assumes that the player has abandoned the game)

� the player does not press the STOP button within LIMIT TIME milliseconds when he is expected to (that

is, after the GO light turns on; this is also assumed to be an abandon)

17

� the player presses the STOP button after he has pressed the READY button but before the machine turns

the GO light on, or at the same time that this happens (this is a cheat!)

A last anomaly appears if the player inserts a coin during a game. Then a new game is started afresh at

once.

5.2. The declarations of REFLEX GAME

There are three parameters to the game which are declared as integer constants. Notice that their values

are not given in the Esterel program; they must be given in the host language. To determine the random

delay length, we use an external function RANDOM also de�ned in the host language.

The input declarations declare the millisecond time unit MS and the three user commands. Notice that

no absolute time is prede�ned in Esterel: time is just one signal among others. As far as input relations

are concerned, all input signals are assumed to be incompatible, except MS and STOP: if the player presses

STOP simultaneously with the occurrence of MS that terminates the random delay then he must be considered

as a cheater.

To control a lamp (say GO), we introduce two output signals ON and OFF (hence GO ON and GO OFF). We

could as well use a single signal conveying a boolean value, as in the wristwatch example [9]. As well we

have output signals for the display and to ring the bell.

5.3. An AVERAGE submodule

We use a general-purpose submodule to compute the average response time. This simple module emits

AVERAGE VALUE whenever it receives INCREMENT AVERAGE with a new argument:

module AVERAGE :

input INCREMENT_AVERAGE(integer);

output AVERAGE_VALUE(integer);

var TOTAL:=0, NUMBER:=0 : integer in

every immediate INCREMENT_AVERAGE do

TOTAL := TOTAL + ? INCREMENT_AVERAGE;

NUMBER := NUMBER + 1;

emit AVERAGE_VALUE (TOTAL/NUMBER)

end

end.

5.4. The body of REFLEX GAME

The body is composed of two successive parts: some overall initializations and a main loop over a single

game which is restarted whenever a coin is inserted. This main loop is simply controlled by an \every

COIN" statement. Within a single game, we declare an ERROR exit to handle the cheating tentatives and an

END GAME exit to handle the normal game termination; we need this last exit since the actual statement that

treats a single game is put in parallel with a copy of the AVERAGE module which never terminates. A single

game is a sequence of a measure loop and a termination action (turning GAME OVER on). Each measure is

divided into three phases. In phase 1, one waits for READY with a time limit of LIMIT TIME MS, ringing the

bell whenever STOP is pressed. This is easily written, nesting three temporal statements bearing on three

di�erent time units:

do

do

every STOP do emit RING_BELL end

upto READY

watching LIMIT_TIME MS timeout exit ERROR end

Phase 2 consists of waiting for RANDOM MSwhile phase 3 is waiting for the STOP button. During these phases,

pressing READY rings the bell: this is treated by putting an \every READY" statement in parallel with the

phase 2 { phase 3 sequence. In phase 2, the speci�cation says \STOP should not be pressed within RANDOM

MS"; we rewrite this in the positive form \RANDOM MS should occur within a time limit of STOP", in Esterel:

do

await RANDOM() MS

watching STOP timeout exit ERROR end

18

This shows how useful temporal statements are for arbitrary signals and not just on some privileged absolute

time unit. The full code is in Annex 1. It should be self{explanatory.

6. The behavioral semantics of Esterel

Our purpose is to give a mathematical de�nition of the semantics of basic Esterel. The intuitive

semantics was given in terms of statement duration measured in signal occurrences. A formal denotational

semantics corresponding to this intuitive concept is presented in [24]. The behavioral semantics we present

in this section is di�erent in spirit and more suited to practical implementations. Given any program and

input event, it determines the output event generated by the program reaction and a new program able

to handle subsequent input events. The duration semantics is replaced by a one-shot semantics involving

program rewritings, in the spirit of natural deduction semantics based on structural deduction rules [38].

Usual natural deduction semantics are \executable": their rules can be directly used for building in-

terpreters. The behavioral semantics presented here doesn't have this property, since the treatment of the

sharing law involves an \une�ective" �xpoint operation in the local signal declaration rule. However, the be-

havioral semantics serves as a formal de�nition of Esterel: any operational semantics should agree with it

as far as input-output behavior is concerned. In section 8, we present such a more e�ective but more complex

execution semantics together with the theorem that ensures it agrees with the behavioral semantics.

6.1. Formal de�nitions of events and histories

An event E = S

1

(v

1

)�S

2

(v

2

) � � � S

n

(v

n

); n � 0, is a set of signals that are simultaneously emitted with the

corresponding values. If S appears in E with value v, we write S 2 E, S(v) 2 E, and E(S) = v. Otherwise

we write S 62 E. The empty event is called �; it contains no signal.

In semantic rules, we replace the Esterel notation comb(x; y) for signal value combinations in collisions

by the more convenient notation x ?

S

y. We extend the combination operation to events, de�ning the

synchronous product E = E

1

? E

2

of two events E

1

and E

2

componentwise on signals:

S(v

1

) 2 E if S(v

1

) 2 E

1

and S 62 E

2

S(v

2

) 2 E if S(v

2

) 2 E

2

and S 62 E

1

S(v

1

?

S

v

2

) 2 E if S(v

1

) 2 E

1

and S(v

2

) 2 E

2

S 62 E if S 62 E

1

and S 62 E

2

Clearly, E ? � = E holds for any event E.

Events only contain positive information about emitted signals. To model the persistence of values, we

introduce complete events

^

E that also include the value information of absent signals. Call a set of signals a

sort S. In a complete event, a signal of a given sort S can appear either as S

+

(v) if S is emitted with value

v or as S

�

(v) if S is not emitted and has current value v.

An history H = E

0

; E

1

; : : : ; E

n

; : : : is a possibly in�nite sequence of events; H[n] denotes the �nite his-

tory E

0

; E

1

; : : : ; E

n

. A complete history

^

H is a sequence of complete events

^

E

n

that respects the persistence

law for signal values. That is, it satis�es:

S

�

2

^

E

0

implies E

0

(S) = ?

S

�

(v) 2

^

E

n+1

implies

^

E

n

(S) = v

Assume that all signals in an history H belong to a sort S. Then the completion

^

H of H with respect to S

is de�ned as follows, for each S 2 S:

S

�

(?) 2

^

E

0

i� S 62 E

0

S

+

(v) 2

^

E

n

i� S(v) 2 E

n

S

�

(v) 2

^

E

n+1

i� S 62 E

n+1

and

^

E

n

(S) = v

Example: Consider the sort S = fS1; S2g. Here is an history and its completion:

19

H S1(0) S2(1) � S1(2) � S2(2)

^

H S1

+

(0) � S2

�

(?) S1

�

(0) � S2

+

(1) S1

�

(0) � S2

�

(1) S1

+

(2) � S2

+

(2)

The current value of a signal S at n-th step in an history H is thus

^

H

n

(S).

6.2. Module derivatives

Given an input history I, a program P computes an output history O such that the n-th output event

O

n

only depends on the input sequence I[n] formed by the n �rst events of I. A classical idea of natural

semantics [34, 38] is to compute the output history in a step-by-step fashion. To apply this idea, we build a

sequence of the form

P = P

0

O

0

7�!

^

I

0

P

1

O

1

7�!

^

I

1

P

2

O

2

7�!

^

I

2

� � � P

n

O

n

7�!

^

I

n

� � �

where the P

n

are basic Esterel programs and the

^

I

n

are the complete events of the completed input

history

^

I associated with I (we need to use complete input events to treat the fact that input signal values

are permanent).

The key point is to rewrite at each step the program P

n

into a new program P

n+1

called the derivative

of P

n

with respect to

^

I

n

. The derivative P

n+1

is the Esterel program that computes the output history

starting at step n+ 1 from the input history starting at step n + 1. It has the same declarations as P

n

but

a di�erent body.

Here is a simple illustrative example (using plain Esterel constructs):

module P:

input SECOND;

output BEEP;

await 2 SECOND do emit BEEP end;

halt.

The derivative by the empty event is the program itself. The derivative by the SECOND event is the program

having as body

await 1 SECOND do emit BEEP end;

halt

Upon reception of another SECOND, BEEP is emitted and the program stops; its body becomes the statement

\halt" that accepts input but never produces output.

The derivative technique transforms a temporal problem into two instantaneous ones: �nd the instan-

taneous reaction on an input and �nd the derivative. The technique was introduced by Brzozowski [17] to

compute the automaton recognizing the language generated by a regular expression.

6.3. Inductive rules

The 7! relation between programs is deduced from a similar ! relation between statements, which is

de�ned by deduction rules that determine the transition of any Esterel construct from the transitions of

its subconstructs. In order to handle control transmission and expression computation, the ! relation has

more components than the 7! relation. It has the form:

<stat ; �>

E

0

;b;T

����!

^

E

<stat

0

; �

0

>

with the following conventions:

� � and �

0

are memories that allocate the free variables of stat (memories are described below).

�

^

E is a complete event that represents the complete signal environment in which stat is executed. Its

sort is the set of input signals and of local signals visible from stat.

20

� E

0

is an event that contains the signals emitted by stat and their values. Its sort is the set of output

signals and of local signals visible from stat.

� b is a termination boolean having value tt if stat terminates and ff otherwise.

� T is a set of trap labels that contain the labels of the exit statements executed by stat. Our treatment

of parallel exits will slightly di�er from the one we gave in the intuitive semantics, but remain equivalent;

we said there \if the arms of a parallel exit several traps simultaneously, only the outermost trap matters,

the other ones being discarded". Mimicking such a statement in semantic equations would require a

preorder between trap labels that is heavy to compute in a structural way. Our formal solution will

be to retain all labels exited by a parallel in the set T , and to choose the action to perform at the

trap statement level: a trap T statement is considered as exited if its body exactly exits the set fTg;

otherwise, it simply propagates the other exits in T .

Memories � are manipulated as follows

� There is an empty memory � that allocates no variable.

� If � is a memory that allocates a set V of variables and if X is a variable, then �:(X=v) is a memory that

allocates V [fXg.

� If � allocates V and if X 2 V, then �(X) denotes the value of X in �, de�ned by �:(X=v)(X) = v and

�:(Y=v)(X) = �(X) if X 6= Y.

� If � allocates V and if X 2 V , then �[X v] denotes the memory � where X receives the new value v.

Formally, �:(X=v

0

)[X v] = �:(X=v) and �(Y=v

0

)[X v] = �[X v]:(Y=v

0

) if Y 6= X.

Notice that the memory handling respects static scoping: a memory � may allocate several times a variable

X, but the accesses to X concern the most recent allocation.

We are now in position to de�ne the relation between 7! and !. Let stat be the body of a program M.

For technical reasons, it is simpler to assume that a program body never terminates, adding a halt statement

in sequence if needed. Then we set

P

E

0

7�!

^

E

P

0

i� <stat ; �>

E

0

;ff;;

����!

^

E

<stat

0

; �>

where stat

0

is the body of P

0

. The memory and exited label set are always empty, since we deal with

syntactically correct programs for which there are no free variables or free exits.

Within the structural induction that computes �!, the di�culty will be to correctly compute the status

(presence or absence) of the signals and their values. The key idea of the behavioral semantics is to directly

exploit the synchrony hypothesis: all statements for which a signal S is visible see the same status and value

for this signal. For input signals, the status and value are simply determined by the input event of the global

program. A local signal is seen as present by all statements in its scope if and only if it is emitted by some

of them; the local signal rule below expresses this consistency constraint in a simple but non-e�ective way.

6.4. Expression evaluation

In addition to the inductive rules for statements, we need expression evaluation rules of the form

<exp ; �> �!

^

E

v

If C is a constant of semantic value c, the rule is

< C ; �> �!

^

E

c

The rule for a variable X is

21

< X ; �> �!

^

E

�(X)

If S is a signal, the rule for its value access ?S is

< ?S ; �> �!

^

E

^

E(S)

The rules for operators and function calls are obvious and left to the reader.

6.5. Inductive rules for statements

6.5.1. Axiom of nothing

A nothing statement terminates and leaves the memory unchanged:

< nothing ; �>

�;tt;;

���!

^

E

< nothing ; �>

6.5.2. Axiom of halt

A halt statement doesn't terminate and reproduces itself:

< halt ; �>

�;ff;;

���!

^

E

< halt ; �>

6.5.3. Rule for assignment

An assignment statement updates the memory and terminates; it becomes nothing:

<exp ; �> �!

^

E

v

< X:= exp ; �>

�;tt;;

���!

^

E

< nothing ; �[X v]>

6.5.4. Rule for procedure call

The procedure call rule is similar to the assignment rule, and is left to the reader. The expression list is

computed in the current memory and signal environment, and the external procedure updates the memory.

A procedure call terminates.

6.5.5. Rule for emit

An emit statement emits the expression's value and terminates:

<exp ; �> �!

^

E

v

< emit S(exp) ; �>

S(v);tt;;

�����!

^

E

<nothing ; �>

6.5.6. Rules for sequence

If the �rst statement doesn't terminates then the behavior of the sequence is that of the �rst statement.

The sequence is rewritten into the sequence of the �rst derivative and of the second statement:

22

<stat

1

; �>

E

0

1

;ff;T

1

�����!

^

E

<stat

0

1

; �

0

1

>

<stat

1

; stat

2

; �>

E

0

1

;ff;T

1

�����!

^

E

<stat

0

1

; stat

2

; �

0

1

>

If the �rst statement terminates then the second statement is executed in the memory state produced by

the �rst one; the global rewriting is that of the second statement except that emitted signals are merged:

<stat

1

; �>

E

0

1

;tt;;

����!

^

E

<stat

0

1

; �

0

1

> <stat

2

; �

0

1

>

E

0

2

;b

2

;T

2

�����!

^

E

<stat

0

2

; �

0

2

>

<stat

1

; stat

2

; �>

E

0

1

?E

0

2

;b

2

;T

2

��������!

^

E

<stat

0

2

; �

0

2

>

6.5.7. Rule for loop

The rule performs an instantaneous unfolding of the loop into a sequence. Note that a loop can never

terminate.

<stat; loop stat end ; �>

E

0

;ff;T

����!

^

E

<stat

0

; �

0

>

< loop stat end ; �>

E

0

;ff;T

����!

^

E

<stat

0

; �

0

>

6.5.8. Rule for if-then-else

The boolean expression is instantly evaluated and the selected branch is instantly executed. Here is the

rule for the true case

<exp ; �> �!

^

E

true <stat

1

; �>

E

0

1

;b

1

;T

1

�����!

^

E

<stat

0

1

; �

0

1

>

< if exp then stat

1

else stat

2

end ; �>

E

0

1

;b

1

;T

1

�����!

^

E

<stat

0

1

; �

0

1

>

The rule for the false case is symmetric:

<exp ; �> �!

^

E

false <stat

2

; �>

E

0

2

;b

2

;T

2

�����!

^

E

<stat

0

2

; �

0

2

>

< if exp then stat

1

else stat

2

end ; �>

E

0

2

;b

2

;T

2

�����!

^

E

<stat

0

2

; �

0

2

>

6.5.9. Rules for present

The rules for present are similar to the rules for \if-then-else". If the signal is present in the current event,

the then clause is instantly executed:

S

+

2

^

E <stat

1

; �>

E

0

1

;b

1

;T

1

�����!

^

E

<stat

0

1

; �

0

1

>

< present S then stat

1

else stat

2

end ; �>

E

0

1

;b

1

;T

1

�����!

^

E

<stat

0

1

; �

0

1

>

23

Otherwise, the else clause is instantly executed:

S

�

2

^

E <stat

2

; �>

E

0

2

;b

2

;T

2

�����!

^

E

<stat

0

2

; �

0

2

>

< present S then stat

1

else stat

2

end ; �>

E

0

2

;b

2

;T

2

�����!

^

E

<stat

0

2

; �

0

2

>

6.5.10. Rule for watching

A \do stat watching S" statement executes its body, stat, which yields a derivative stat

0

. The derivative

of the watching statement is

present S else do stat

0

watching S end

that is \do stat

0

watching immediate S" in plain Esterel: when receiving the next input, this derivative

will terminate instantly if S is present, or will behave like \do stat

0

watching S" if S is absent. This is

precisely the intuitive behavior of watching.

<stat ; �>

E

0

;b;T

����!

^

E

<stat

0

; �

0

>

<do stat watching S ; �>

E

0

;b;T

����!

^

E

< present S else do stat

0

watching S end ; �

0

>

6.5.11. Rule for parallel

The branches are executed independently but in the same signal environment. Their output events are

merged. Since there are no shared variables, the branches cannot update the same variable; the resulting

memory �

0

= merge(�; �

0

1

; �

0

2

) is obtained as follows: if �(X) = �

0

1

(X) = �

0

2

(X), then �

0

(X) = �(X); if �

0

1

(X) 6=

�(X) then �

0

(X) = �

0

1

(X); if �

0

2

(X) 6= �(X) then �

0

(X) = �

0

2

(X).

<stat

1

; �>

E

0

1

;b

1

;T

1

�����!

^

E

<stat

0

1

; �

0

1

> <stat

2

; �>

E

0

2

;b

2

;T

2

�����!

^

E

<stat

0

2

; �

0

2

>

<stat

1

|| stat

2

; �>

E

0

1

?E

0

2

;b

1

^b

2

;T

1

[T

2

�������������!

^

E

<stat

0

1

|| stat

0

2

; merge(�; �

0

1

; �

0

2

)>

6.5.12. Rules for trap

The trap terminates if its body terminates or if the body's exited label set contains exactly the trap's

label:

<stat ; �>

E

0

;b;T

����!

^

E

<stat

0

; �

0

> b = tt or T = fTg

< trap T in stat end ; �>

E

0

;tt;;

����!

^

E

< nothing ; �

0

>

Otherwise the trap statement behaves as its body, except that its own label is removed from the exited label

set (this handles correctly parallel exits from nested traps).

<stat ; �>

E

0

;ff;T

����!

^

E

<stat

0

; �

0

>

< trap T in stat end ; �>

E

0

;ff;T�fTg

��������!

^

E

< trap T in stat

0

end ; �

0

>

24

6.5.13. Axiom of exit

An exit doesn't terminate and puts its label in the exited label set:

< exit T ; �>

�;ff;fTg

�����!

^

E

< halt ; �>

6.5.14. Rule for local variable declaration

In order to retain the value of the variables from step to step when reacting to an input history, we

slightly modify the basic Esterel variable declaration construct. The new construct is

var X=
v

in stat end

The \ " operator transforms any semantic value into an Esterel constant of the appropriate type. The

new construct allows us to save the current value of a variable in the program text itself. The standard basic

Esterel declaration initially sets this value to ?.

The rule allocates the variable with the currently saved value, executes the body, and saves the new

value for the next step:

<stat ; �:(X=v)>

E

0

;b;T

����!

^

E

<stat

0

; �

0

:(X=v

0

)>

< var X=
v

in stat end ; �>

E

0

;b;T

����!

^

E

< var X=
v

0

in stat

0

end ; �

0

>

6.5.15. Rules for local signal declaration

These are the �xpoint rules that realize the sharing law. With respect to a declared signal S, we require

the body to work in the environment that it builds itself. To retain values between execution steps we use

the operator introduced for variables.

There is a slight problem due to the static scope of signals: the event

^

E may already contain a di�erent

signal having the same name S; we introduce the notation

^

EnS to denote the complete event obtained by

removing the S-component of

^

E, if present.

The �rst rule applies when the signal is emitted by the body: the signal is then received by the body, the

emitted and received values must coincide, and the new signal value is stored in the local signal declaration

of the derivative:

<stat ; �>

E

0

?S(v

0

);b;T

��������!

(

^

EnS)?S

+

(v

0

)

<stat

0

; �

0

> S 62 E

0

< signal S=

v

in stat end ; �>

E

0

;b;T

����!

^

E

< signal S=

v

0

in stat

0

end ; �>

The second rule applies when the signal is not emitted. Thus, it is not received and the previous signal value

is retained from the declaration:

<stat ; �>

E

0

;b;T

��������!

(

^

EnS)?S

�

(v)

<stat

0

; �

0

> S 62 E

0

< signal S=

v

in stat end ; �>

E

0

;b;T

����!

^

E

< signal S=

v

in stat

0

end ; �>

6.6. A simple example

As a simple example, we study two reactions of the following program:

25

module P:

input I(integer);

output O(combine integer with +);

signal S(integer) in

present I then emit S(?I+1); emit O(1) end

||

present S then

emit O(?S); halt

else

await I

end

end.

6.6.1. The input I is present

First assume that I is present with value 3. According to the intuitive semantics, we guess that S is

emitted with value 4, and O is emitted twice with values 1 and 4, yielding 5 as a combined value. The

derivative P

0

has body nothing || halt. Hence the reaction should be

< P ; �>

O(4)

7�!

I

+

(3)

< P

0

; �>

We sketch the proof, omitting expression evaluations and the memory part that are useless here. The body

of the declaration of S must be analyzed in the guessed complete event I

+

(3) � S

+

(4). Once this guess is

made, the branches of the parallel statement can be analyzed in any order. We start by analyzing the �rst

one. The emit rule yields

emit S(?I+1)

S(4);tt;;

�������!

I

+

(3)�S

+

(4)

nothing

emit O(1)

O(1);tt;;

�������!

I

+

(3)�S

+

(4)

nothing

The second sequence rule yields

emit S(?I+1); emit O(1)

S(4)�O(1);tt;;

��������!

I

+

(3)�S

+

(4)

nothing

The �rst rule for present yields

present I then � � � end

S(4)�O(1);tt;;

��������!

I

+

(3)�S

+

(4)

nothing

For the other half of the parallel, the rule for emit yields

emit O(?S)

O(4);tt;;

�������!

I

+

(3)�S

+

(4)

nothing

The axiom of halt and the second sequence rule yield

emit O(?S); halt

O(4);ff;;

�������!

I

+

(3)�S

+

(4)

halt

26

The �rst rule for present yields

present S then � � � end

O(4);tt;;

�������!

I

+

(3)�S

+

(4)

halt

The rule for parallel combines the emissions and terminations of both branches:

� � � || � � �

S(4)�O(5);ff;;

��������!

I

+

(3)�S

+

(4)

nothing || halt

We can �nally apply the �rst local signal rule to S. It yields

signal S=

?

in � � � end

O(5);ff;;

�����!

I

+

(3)

signal S=

4

in nothing || halt end

Our guess about S

+

(4) is easily seen to be the only possible one. The reaction is deterministic.

6.6.2. The input signal I is absent

Here an intuitive analysis shows that S and O are not emitted. The parallel statement must be computed

in the complete event I

�

(?) � S

�

(?). The �rst present statement emits no signal and terminates:

present I then � � � end

�;tt;;

��������!

I

�

(?)�S

�

(?)

nothing

For the second present statement, the else part is evaluated, using the halt and watching rules (according

to the de�nition of await)

await I

�;ff;;

��������!

I

�

(?)�S

�

(?)

present I else await I end

The parallel rule yields

� � � || � � �

�;ff;;

��������!

I

�

(?)�S

�

(?)

nothing || present I else await I end

and we can apply the second local signal rule; O is not emitted, and the body is the resulting parallel

statement above. As before, this is the only possible proof and the reaction is deterministic.

7. Determinism and program correctness

To establish a behavioral semantics proof, one has to guess the presence or absence of the local signals

as well as their values. In the above example, there was a unique correct guess found using the intuitive

semantics. To build simulators and compilers, we need a more e�ective process to determine the presence

and values of signals. Such a process will be presented in the next section. In the present section, we study

the determinism of the behavioral semantics.

According to our design rationale we want programs to be deterministic, hence to have a unique be-

havioral semantics for any input. However the sharing law is not enough to guarantee determinism: some

programs have no semantics and some have several semantics. To simplify the discussion, all the examples

given here will be closed programs without inputs and will yield problems on the execution of their initial

reaction.

Let us start with pure signal examples. The following program P

1

has two semantics:

27

signal S in

present S then emit S end

end

the signal S can be consistently considered as being emitted or not emitted. In both cases, the body becomes

signal S in nothing end.

Changing then into else yields a program P

2

that has no behavioral semantics:

signal S in

present S else emit S end

end

The signal S should be emitted if and only if S is not present, which is clearly nonsense.

The next example P

3

is similar to P

1

but involves two signals:

signal S1, S2 in

present S1 then emit S2 end

||

present S2 then emit S1 end

end

There are again two possible behavioral semantics: either S1 and S2 are not emitted, or they are both

emitted. Changing then into else yields a program P

4

with another form of nondeterminism:

signal S1, S2 in

present S1 else emit S2 end

||

present S2 else emit S1 end

end

There are again two solutions: either S1 is emitted and S2 is not, or S1 is not emitted and S2 is emitted.

Other problems appear with valued signals. Consider the program P

5

:

signal S(integer) in

emit S(?S+C)

end

where C is an integer constant. When S is emitted its value v must satisfy v = v + c if c is the value of C.

This equation has no solution for c 6= 0 and in�nitely many solutions if c = 0.

The above programs must clearly be rejected. Nondeterminism is, however, not a necessary condition

for rejection; if we build P

6

by changing in P

5

the type integer into a type triv that has only one

value, the semantics of P

6

becomes unique; the semantics of Esterel programs should not depend on type

implementation details and both P

5

and P

6

should be rejected for a common reason.

All the problems are due to the �xpoint form of the local signal rule which does not respect the intuitive

sequentiality constraints in program reactions. The \in�nitely fast machine" on which we run programs

should still behave sequentially as far as sequential control transmission is concerned. The �rst statement

of a semicolon should be executed \before" its second statement, the test in a conditional or in a present

statement should be computed \before" the then or else statements are started. As a consequence, the

second statement of a semicolon (resp. the arms of a conditional or present statement) should not interfere

with the execution of the �rst statement (resp. with the test). The programs P

1

-P

4

above should be rejected

for this reason. Similarly, the value of a signal should not be read \before" it is emitted, which is enough to

reject P

5

and P

6

.

Very similar problems exist in synchronous circuits: the logical behavior of circuit can be de�ned by

�xpoint equations on transistor states, provided that the circuit does not contain races; races can appear

whenever the sequential propagation of electrical currents is not compatible with the topological structure.

The program P

2

above is the Esterel version of a NOT gate with its output plugged into its input.

More formally, we say that a signal is written by an emit statement and is read by a present test

and by the ? operator. We say that the \before" relation is generated by sequences and tests. The right

correctness condition is as follows: a signal should not be read if it can still be written. This determines

28

correct executions; a program is correct (w.r.t. some input) if it can be correctly executed. Note that a

simpler correctness condition such as \a signal should not be written before it is read" is not enough to

reject programs P

1

, P

3

, and P

4

above.

Determining if a signal can be written from a given position in a program is in general unfeasible

(in particular because of uninterpreted conditionals). We cannot therefore obtain necessary and su�cient

correctness conditions. What we need are su�cient conditions that are e�ective and e�cient enough to be

used in compilers.

� We can perform a static dependency analysis on signals, based on a structural control ow analysis;

this analysis produces a signal dependency graph that contains an arrow from S1 to S2 whenever S1 is

read before S2 is written in some possible execution path. Any program that yields a cyclic dependency

graph must be rejected. This technique is proved correct in [23] and is used in the Esterel v2.2

compiler. It has two drawbacks: it sometimes rejects correct programs; when the graph is cyclic, the

debugging information is limited to a list of cycles in the graph which is hard to exploit.

� Following Boussinot [16] and Gonthier [24], we can consider that an Esterel program is executed on

a conventional sequential machine; the zero time reaction hypothesis then amounts to not observing its

computation time. Signals are handled by a shared memory with the above read/write discipline. This

technique is technically more involved but yields better results. It is used in the Esterel v3 compiler.

We present it in the next section.

The notion of correctness presented above is local to each reaction. A program can be correct for some input

and incorrect for another one. Assume that I is an input signal. Then the following program is incorrect if

and only if I is received:

signal S in

present I then

present S else emit S end

end

end

We say that a program is locally correct if it is correct for all inputs. A program can also become incorrect

after several reactions:

signal S in

await I;

present S else emit S end

end

This program is locally correct; upon receiving I, it becomes the locally incorrect program P

2

. We say that

a program is globally correct if it is locally correct and if any sequence of reactions only produces locally

correct programs.

8. An execution semantics

This section presents an execution semantics and its local correctness criterion. The underlying execution

machine is a conventional sequential machine. Signals are implemented as controlled shared variables with a

read/write discipline that ensures that any signal has a unique well-de�ned status (emitted or not emitted)

and a unique well-de�ned value in any reaction. Each reaction is realized by an execution, which is a sequence

of elementary actions (also called microsteps as in [28]), followed by an expansion step that prepares the

program for the next reaction. The expansion step can only be applied once the execution is properly halted.

A program is said to be correct w.r.t. an input if it has a halted execution for this input. That is, if the

reaction can be completed while respecting the signal memory read/write discipline.

The actions are determined by structural operational rules. The parallel operator interleaves the actions

of its branches, as in usual asynchronous models. The execution of correct programs is therefore non-

deterministic. However reactions of correct programs are deterministic: our main theorem states that all

halted executions of correct programs yield the same �nal results that agree with the behavioral semantics

after expansion, and, furthermore, that the behavioral semantics of correct programs is unique. Therefore

our read/write discipline is a correct realization of the sharing law where this law makes sense. The proofs

29

are omitted and not even sketched; they require the introduction of many technical concepts that are outside

the scope of this paper. See [24] for complete proofs.

8.1. The implementation of signals

The structure of the signal memory is similar to that of the standard memory of variables; there are

primitives to allocate cells, to write in cells, and to reads cell values. However, cells also contain status

information (written as an exponent) that describes the current status of their content. A cell can have four

forms:

� (S

?

=v): the cell S has not yet been written in the current reaction (its content v is that of the previous

reactions).

� (S

y

=v): the cell S has already been written in the current reaction; its current content is v; it cannot

yet be read since other write operations can still occur.

� (S

+

=v) the cell S has been written in the current instant, and it can no longer be written. Its content v

can be read as the current value ?S of the signal S, which is known to be present in the current reaction.

� (S

�

=v) the cell S has not been written in the current reaction, and it can no longer be written. Its

content v can be read as the current value ?S of the signal S, which is known to be absent in the current

reaction.

Signal memories � are constructed from the empty signal memory �. If � is a signal memory then �:(S

x

=v); x 2

f?; y;+;�g, is also a signal memory. The read operation �(S) can only be performed if the cell status is +

or �:

�:(S

x

=v)(S) = v if x 2 f+;�g

�:(S

x

1

=v)(S) = �(S) if S

1

6= S

Similarly, one can test for the status of a signal in a memory:

S

x

2 �:(S

y

1

=v) i�

�

y = x if S

1

= S

S

x

2 � if S

1

6= S

The result of writing a value v in a cell S of a signal memory � is denoted by �[S v]. Writing is done in

the most recently allocated occurrence of a signal, so

�:(S

x

1

=v

0

)[S v] = (�[S v]):(S

x

1

=v

0

) for S

1

6= S

There are two cases for the actual writing. If the memory has not yet been written, the new value replaces

the old value and the memory state goes from S

?

to S

y

; if the signal has already been written, the new value

is combined with the old one using the combination function associated with S.

�:(S

?

=v)[S v

0

] = �:(S

y

=v

0

)

�:(S

y

=v)[S v

0

] = �:(S

y

=v ?

S

v

0

)

There is no way to write in a cell of the form S

+

or S

�

. The potential rules below show when a memory

goes from S

?

to S

�

or from S

y

to S

+

.

To relate the execution semantics to the behavioral semantics, we have to relate signal memories to

complete input events and output events. Given a program of input sort I and of output sort O, we

associate a signal memory �

^

I

with any complete input event

^

I. This memory allocates the signals in I

and O; it is composed of the cells

(S

x

=v) for all S

x

(v) 2

^

I

(S

?

=?) for all output signals S 2 O

The order of the cells in �

I

is immaterial. Conversely, we associate to any �nal signal memory � an output

event O

�

containing all S(v) such that (S

y

=v) is a cell of � (thus the sort of O

�

is the set of all S 2 O such

30

that S

y

2 �; an output signal never gets gets a status + or �, but this does not matter, since it is never read

internally).

8.2. Computing actions

The execution semantics is given by a set of rules that determine actions of the form:

<stat; �; � > �! <stat

0

; �

0

; �

0

>

The action rules determine how the statements update the memories. Whenever writing triples <stat; �; � >,

we assume that � and � allocate the free variables and signals of stat.

We also need three auxiliary sets of rules, which are presented either as rules with arrows or as equations

with equal signs, the di�erence being somewhat immaterial here:

� Expression evaluation rules govern evaluations of the form

<exp; �; � > ! v

The signal memory discipline expresses that the \?S" operator can only be evaluated when the exponent

of S in � is + or �.

� Termination rules compute a partial function T (stat) = hb; T i where b is a termination boolean and

T is a set of exited trap labels, as in the behavioral semantics. Termination rules are used only on

terms that can perform no action. Execution and termination were treated together in the behavioral

semantics; here it is simpler to use separate rules for execution and termination. Termination rules are

used in two places: �rst, to detect completion of the current reaction; second, to start executing the

second statement of a sequence when its �rst statement is terminated (a terminated statement has the

form nothing, nothing || nothing, trap T in exit T end, etc).

� Potential rules compute the potential �(stat) of a statement, that is the set of signals that stat can emit

in some execution. Potentials are used to change the status of local signals in the signal memory: a

signal goes from S

?

to S

�

or from S

y

to S

+

when it can no longer be emitted, hence, when it does not

belong to the potential of the current term.

8.2.1. Action rules

An assignment can act if its expression can be evaluated:

<exp; �; � > ! v

< X := exp; �; � > �! < nothing; �[X v]; � >

The rule for procedure calls is similar and left to the reader.

An emission can be executed when its expression can be computed; it updates the signal memory � as

described earlier:

<exp; �; � > ! v

< emit S(exp); �; � > �! < nothing; �; �[S v]>

If the �rst statement of a sequence can act, so can the sequence:

<stat

1

; �; � > �! <stat

0

1

; �

0

1

; �

0

1

>

<stat

1

; stat

2

; �; � > �! <stat

0

1

; stat

2

; �

0

1

; �

0

1

>

31

If the �rst statement of the sequence is terminated, the second one can act (this is the only rule that connects

execution and termination rules):

T (stat

1

) = htt;;i <stat

2

; �; � > �! <stat

0

2

; �

0

2

; �

0

2

>

<stat

1

; stat

2

; �; � > �! <stat

0

2

; �

0

2

; �

0

2

>

A loop can act i� its body can; it then unfolds:

<stat; �; � > �! <stat

0

; �

0

; �

0

>

< loop stat end; �; � > �! <stat

0

; loop stat end; �

0

; �

0

>

A conditional acts when it can compute its condition. It selects the corresponding branch:

<exp; �; � > ! true

< if exp then stat

1

else stat

2

end; �; � > �! <stat

1

; �; � >

<exp; �; � > ! false

< if exp then stat

1

else stat

2

end; �; � > �! <stat

2

; �; � >

Similarly, a present statement can act as soon as its signal has status + or �; it selects the corresponding

branch (it is essential here that \present" statement can never be applied to output signals, which never

get the + or � status):

S

+

2 �

< present S then stat

1

else stat

2

end; �; � > �! <stat

1

; �; � >

S

�

2 �

< present S then stat

1

else stat

2

end; �; � > �! <stat

2

; �; � >

A watching statement acts as its body (remember that the temporal guard does not take e�ect immediately):

<stat; �; � > �! <stat

0

; �

0

; �

0

>

< do stat watching S; �; � > �! < do stat

0

watching S; �

0

; �

0

>

A parallel statement can act as any of its branches (standard interleaving semantics):

<stat

1

; �; � > �! <stat

0

1

; �

0

1

; �

0

1

>

<stat

1

|| stat

2

; �; � > �! <stat

0

1

|| stat

2

; �

0

1

; �

0

1

>

<stat

2

; �; � > �! <stat

0

2

; �

0

2

; �

0

2

>

<stat

1

|| stat

2

; �; � > �! <stat

1

|| stat

0

2

; �

0

2

; �

0

2

>

32

A trap statement can act i� its body can:

<stat; �; � > �! <stat

0

; �

0

; �

0

>

< trap T in stat end; �; � > �! < trap T in stat

0

end; �

0

; �

0

>

A local variable declaration can execute its body after binding its variable. The value of the variable is kept

in the variable declaration, as in the behavioral semantics:

<stat; �:(X=v); � > �! <stat

0

; �

0

:(X=v

0

); � >

< var X=

v

in stat end; �; � > �! < var X=

v

0

in stat

0

end; �

0

; � >

A local signal declaration binds its signal in the current signal memory �. As in the behavioral semantics,

the binding is stored in the signal declaration; here we store the value and the current signal status. If the

signal can no longer be emitted by the body, it is set to S

+

if it was S

y

and to S

�

if it was S

?

; this is the only

place where potentials are used. After execution, the new signal state is stored in the signal declaration. Let

us de�ne an auxiliary operation:

�(S; stat; x) =

(

+ if x = y and S 62 �(stat)

� if x = ? and S 62 �(stat)

x otherwise

The local signal rule is then:

y = �(S; stat; x) <stat; �; �:(S

y

=v)> �! <stat

0

; �

0

; �

0

:(S

z

=v

0

)>

< signal S

x

=
v

in stat end; �; � > �! < signal S

z

=
v

0

in stat

0

end; �

0

; �

0

>

8.2.2. Expression evaluation

A variable is evaluated as usual:

< X; �; � > ! �(X)

A signal value can be accessed only when it has status + or �:

S

�

2 � or S

+

2 �

< ?S; �; � > ! �(S)

An operator can operate as soon as its two arguments are computed:

<exp

1

; �; � > ! v

1

<exp

2

; �; � > ! v

2

<exp

1

op exp

2

; �; � > ! v

1

op v

2

8.2.3. Termination rules

The termination function can only be computed when execution is no longer possible. Assignments,

emit statements, conditionals, and present statements that can directly act have no termination rule. A

termination T (stat) is a pair of a termination status b and of an exited label set T . We say that stat is

terminated if b = tt (then T = ;); we say that stat is halted if b = ff and T = ;.

33

Clearly, nothing is terminated and halt is halted:

T (nothing) = htt;;i

T (halt) = hff; ;i

For sequences, there are two cases. If the �rst statement has a termination but is not terminated, so is the

sequence; if the �rst statement is terminated and if the termination of the second statement is de�ned, the

sequence has the same termination as the second statement (this rules handles actionless sequences such as

\nothing; nothing", \nothing; exit T", etc.):

T (stat

1

; stat

2

) =

�

hff; T i if T (stat

1

) = hff; T i

hb; T i if T (stat

1

) = htt;;i and T (stat

2

) = hb; T i

The body of a loop must not be terminated. The termination is that of the body.

T (loop stat end) = hff; T i if T (stat) = hff; T i

A watching statement has the same termination as its body:

T (do stat watching S) = T (stat)

As in the behavioral semantics, the termination of a parallel statement is obtained from the termination of

its branches:

T (stat

1

|| stat

2

) = hb

1

^ b

2

; T

1

[T

2

i if T (stat

1

) = hb

1

; T

1

i and T (stat

2

) = hb

2

; T

2

i

The terminations of a trap and of an exit are computed as in the behavioral semantics:

T (trap T in stat end) = hb _ (T = fTg); T � fTgi if T (stat) = hb; T i

T (exit T) = hff; fTgi

Local variable and signal declarations simply propagate the termination of their body:

T (var X in stat end) = T (stat)

T (signal S in stat end) = T (stat)

8.2.4. Potential rules

The potential �(stat) of a statement stat is the set of signals it can emit in some of its executions.

We compute potentials by a simple structural control ow analysis. To perform the structural induction,

we compute extended potentials �̂(stat) = h�; b; T i where � is the potential of stat, where the boolean

termination status b is true i� stat can terminate in some execution path, and where the exited label set T

is the set of trap labels that stat can exit in some execution path. The potential of a statement stat is then

de�ned by

�(stat) = � i� �̂(stat) = h�; b; T i

34

The computed termination status hb; T i is similar to the termination status computed by the termination

rules; it is really a statically computed approximation of it, which represents the termination information that

we can get without executing a statement*. A termination status like htt;fTgi can never be obtained from

termination rules; it can however be obtained when computing potentials, since it represents the information

that a statement can terminate and can also exit a trap labeled T, as in \if exp then nothing else exit T end".

The extended potentials of nothing, halt, and assignments are trivial:

�̂(nothing) = h;; tt;;i

�̂(halt) = h;; ff; ;i

�̂(X:= exp) = h;; tt;;i

An emit statement adds its signal to the potential and terminates:

�̂(emit S(exp)) = hfSg; tt;;i

If the �rst statement of a sequence cannot terminate, the extended potential of the sequence is that of the

�rst statement:

�̂(stat

1

) = h�

1

; ff; T

1

i

�̂(stat

1

; stat

2

) = h�

1

; ff; T

1

i

If the �rst statement of a sequence can terminate, the extended potential of the sequence is obtained by

taking the union of the potentials of the �rst and second statements, the termination boolean of the second

statement, and the labels potentially exited by both statements:

�̂(stat

1

) = h�

1

; tt; T

1

i �̂(stat

2

) = h�

2

; b

2

; T

2

i

�̂(stat

1

; stat

2

) = h�

1

[�

2

; b

2

; T

1

[T

2

i

The extended potential of a loop is obtained from that of its body by returning the ff boolean termination

status, since a loop can never terminate:

�̂(stat) = h�; b; T i

�̂(loop stat end) = h�; ff; T i

For a conditional or a present statement, the potential is the union of the potentials of the branches. The

conditional can terminate i� one of its branches can and a label can be exited i� it can be exited by one

arm:

�̂(stat

1

) = h�

1

; b

1

; T

1

i �̂(stat

2

) = h�

2

; b

2

; T

2

i

�̂(if exp then stat

1

else stat

2

end) = h�

1

[�

2

; b

1

_ b

2

; T

1

[T

2

i

* The potential rules implemented in the Esterel v3 system are a bit �ner than the one presented here,

see [24].

35

�̂(stat

1

) = h�

1

; b

1

; T

1

i �̂(stat

2

) = h�

2

; b

2

; T

2

i

�̂(present S then stat

1

else stat

2

end) = h�

1

[�

2

; b

1

_ b

2

; T

1

[T

2

i

The extended potential of a watching is that of its body:

�̂(do stat watching S) = �̂(stat)

The potential of a parallel is the union of the potentials of its branches; a parallel can terminate if both

branches can terminate; it can exit a label if one arm can:

�̂(stat

1

) = h�

1

; b

1

; T

1

i �̂(stat

2

) = h�

2

; b

2

; T

2

i

�̂(stat

1

|| stat

2

) = h�

1

[�

2

; b

1

^ b

2

; T

1

[T

2

i

The potential of a trap statement is that of its body; the trap statement can terminate if its body can

terminate or exit T; the label T is removed from the exited label set:

�̂(stat) = h�; b; T i

�̂(trap T in stat end) = h� ; b _ (T 2 T) ; T � fTgi

An exit generates the corresponding exited label:

�̂(exit T) = h;; ff; fTgi

A local variable declaration does not a�ect potentials:

�̂(var X in stat end) = �̂(stat)

Finally, a local signal declaration removes its signal from the potential:

�̂(stat) = h�; b; T i

�̂(signal S in stat end) = h�nS; b; T i

8.3. The conuence properties of executions

A reaction is realized by a �nite well-terminated execution sequence. As in the behavioral semantics,

we shall always assume that a program body is followed in sequence by a halt statement, so that it can halt

but never terminate. We shall also assume that all local signals have initial status and value ?, i.e. that all

local signal declarations signal S in stat end are initially replaced by signal S

?

=
?

in stat end.

De�nition: An execution is a sequence

<stat; �; � > �! <stat

1

; �

1

; �

1

> �! � � � �! <stat

n

; �

n

; �

n

>

It is maximal if <stat

n

; �

n

; �

n

> has no further action. It is halted if T (stat

n

) = hff;;i. For any halted

execution, <stat

n

; �

n

; �

n

> is called the result of the execution.

Halted execution sequences do not always exist. A statement such as

loop X:=X+1 end

36

has neither maximal nor halted execution sequences. The programs P

1

-P

6

of section 7 have no halted

execution sequences. Consider for example P

1

, that is the statement

signal S in

present S then emit S end

end

in the empty variable and signal memories. The potential of the present statement is fSg. Therefore the

signal execution rule imposes to �nd an execution of the triple

< present S then emit S end; �; �:(S

?

)>

The rule for present cannot be applied to such a triple, since it requires the exponent to be + or �. No

action step is possible. Hence the only execution of P

1

is the empty one. But the termination of P

1

is

unde�ned, since there is no termination rule for emit. Therefore the only possible execution is not halted.

The programs P

2

-P

6

are rejected in the same way, using the rule for ? instead of the rule for present for

P

5

and P

6

.

When halted executions do exist, there can be several executions for a reaction, since the parallel

execution rule is non-deterministic: if the two branches of a parallel can act, the parallel can act as any of

them. The conuence properties ensure that all these sequences yield the same result, or in other words,

that the order of actions is immaterial. This �rst property is classically called strong conuence [30]:

Theorem 1 (strong conuence theorem): For any two distinct actions

<stat; �; � > �! <stat

0

1

; �

0

1

; �

0

1

> and <stat; �; � > �! <stat

0

2

; �

0

2

; �

0

2

>

there exists stat

00

, �

00

and �

00

such that

<stat

0

1

; �

0

1

; �

0

1

> �! <stat

00

; �

00

; �

00

> and <stat

0

2

; �

0

2

; �

0

2

> �! <stat

00

; �

00

; �

00

>

From this theorem, it is easy to deduce the global conuence property of halted execution sequences, that

really expresses the determinism of reactions:

Corollary 2 (global conuence theorem): Let P be a program of body stat, let

^

I be an input event, let

� = �

^

I

be the corresponding signal memory. If <stat; �; � > has a halted execution sequence, then it has no

in�nite execution sequence, all its maximal sequences are halted, and they all yield the same result.

8.4. The expansion step

Unlike in the behavioral semantics, the statement that appears in the result of a reaction is not directly

ready for the following reaction. Three things must be done �rst:

� Reset the local signal status to ? in local signal declarations.

� Turn \do stat watching S" statements into \present S else do stat watching S end". This expansion

was done on the y in the behavioral semantics (see the rule for watching). It is easier to do at the end

of execution sequences in the execution semantics.

� Perform some cleanup: for example, a halted term such as \nothing; halt" must be transformed into

\halt" to match the behavioral semantics.

The following equations describe the expansion step:

E(nothing) = nothing

E(halt) = halt

37

E(stat

1

; stat

2

) =

�

E(stat

2

) if T (stat

1

) = htt;;i

E(stat

1

);stat

2

otherwise

E(loop stat end) = E(stat); loop stat end

E(do stat watching S) = present S else do E(stat) watching S

E(stat

1

|| stat

2

) = E(stat

1

) || E(stat

2

)

E(trap T in stat end) =

�

nothing if T (trap T in stat end) = htt;;i

trap T in E(stat) end otherwise

E(var X=

v

in stat end) = var X=

v

in E(stat) end

E(signal S

x

=

v

in stat end) = signal S

?

=

v

in E(stat) end

8.5. Equivalence of the behavioral and execution semantics

We are now in position to state our main theorem: the execution semantics matches the behavioral

semantics. We �rst associate a reaction with a halted execution sequence followed by an expansion step:

De�nition: Let P be a program of body stat, let

^

I be a complete input event. We say that P is causally

correct w.r.t.

^

I and write

P

O

=)

^

I

P

0

if stat has a halted execution sequence of the form

<stat; �; �

^

I

> �! <stat

0

; �; �

0

>

such that the body of P

0

is equal to E(stat

0

) and that O is equal to the output event E

�

0

determined by �

0

.

Theorem 3 (correctness and determinism theorem): Let P be a program, let

^

I be a complete input event

such that P is causally correct in �

^

I

. There exist a unique program P

0

and a unique output event O such

that P

O

7�!

^

I

P

0

and P

O

=)

^

I

P

0

.

8.6. An execution example

To illustrate the execution semantics, we sketch the executions of the example of section 6.6, that is:

38

module P:

input I(integer);

output O(combine integer with +);

signal S(integer) in

present I then emit S(?I+1); emit O(1) end

||

present S then

emit O(?S); halt

else

await I

end

end.

8.6.1. The input I is present

Assume that I is present with value 3. The initial signal memory is �:(I

+

=3):(O

?

=?). When entering

the body of the local signal declaration, we compute the potential fS; Og and therefore add (S

?

=?) to the

signal memory. The \present S" statement cannot act; we must execute the \present I" statement �rst.

This present statement selects its �rst branch. This ends the �rst action, which yields the term:

signal S

?

=
?

in

emit S(?I+1); emit O(1)

||

present S then

emit O(?S); halt

else

await I

end

end

The potential is unchanged. One must execute the �rst \emit" statement of the sequence. The S cell of the

signal memory becomes (S

y

=4). The second action therefore yields the following term result:

signal S

y

=

4

in

nothing; emit O(1)

||

present S then

emit O(?S); halt

else

await I

end

end

The potential of the body is now fOg. Hence the S cell of the signal memory on which the body executes is

(S

+

=4). Since nothing is terminated, both the \emit O" and the \present S" statement can be executed.

We have to choose one of them. Let us choose the \present" one. The third action yields the term

signal S

+

=
4

in

nothing; emit O(1)

||

emit O(?S); halt

end

Then the two emissions of O can be executed in any order. After the two corresponding actions, we get the

halted term

signal S

+

=

5

in

nothing

||

nothing; halt

end

in the signal memory f�:(I

+

=3):(O

y

=5). Therefore O(5) is output. The expansion step clears the status of S

and the second nothing, leaving the term

39

signal S

?

=
5
in

nothing

||

halt

end

8.6.2. The input I is absent

We enter the local signal declaration as before. In the �rst action, the \present I" statement selects

its second branch \nothing", leaves the signal memory unchanged and yields the term

signal S

?

=
?

in

nothing

||

present S then

emit O(?S); halt

else

do halt watching I

end

end

The potential of the body becomes fOg, the body's S signal memory becomes (S

�

=?). The second action

selects the \else" branch of the \present" statement, yielding the halted term

signal S

�

=
?

in

nothing

||

do halt watching I

end

The execution is �nished. The expansion step prepares the term for the next reaction, transforming it into

signal S

?

=
?

in

nothing

||

present I else

do halt watching I

end

end

9. Compiling Esterel programs into deterministic automata

The execution semantics is e�ective and can be used as a basis for building interpreters of the language.

Such interpreters exist in the Esterel v2.2 and Esterel v3 systems. Their performances are reasonable

(say reaction times of 1/100 to 1/10 second), but not su�cient for real-time applications. In this section,

we show how to produce very e�cient sequential automata that are behaviorally equivalent to a source

Esterel program. The algorithm is similar to the Brzozowski algorithm for translating regular expressions

into �nite automate, see [17, 10]. We discuss the pros and cons of this compiling technique and the practical

validity of the synchrony hypothesis.

9.1. Compiling pure synchronization programs

We �rst study the simple case of pure synchronization programs, that is of programs that only contain

pure signals (no variables, constants, nor values of any kind). For such programs, only the presence or

absence of signals matter. The memory parts are useless in the semantics equations.

A pure synchronization program P has �nitely many possible input events

^

I , corresponding at most to

all sets of input signals. Thus P has �nitely many immediate derivatives P

0

such that P

O

7�!

^

I

P

0

. The next

theorem shows that this �niteness property also holds for general derivatives of P, that is for programs P

0

obtained after arbitrary long sequences of reactions

P

O

0

7�!

^

I

0

P

1

O

1

7�!

^

I

1

P

2

O

2

7�!

^

I

2

� � � P

n

O

n

7�!

^

I

n

P

0

40

Theorem 4: Any pure synchronization program has only �nitely many derivatives.

We can therefore completely replace a program P by its reaction graph considered as a �nite state

automaton with derivatives as states. The automaton starts in state P. Given a current state P

0

and an

input

^

I, the automaton emits an output event O and goes to state P

00

i� P

0

O

7�!

^

I

P

00

. The reaction graph can

be fully computed at compile time; at run-time, the program texts are useless and can simply be replaced

by state numbers. For example, the program

module P :

input I;

output O;

signal S in

emit O;

loop

await I;

await I do emit S end

||

await S do emit O end

end

end.

yields the automaton

state 0 :

� -> output O; goto 1

I -> output O; goto 1

state 1 :

� -> goto 1

I -> goto 2

state 2 :

� -> goto 2

I -> output O; goto 1

where \output O" means \emit the output signal O" and \goto n" means \the current reaction is over, treat

the next reaction from state n". The body of state 2 is

signal S in

[

present I else await I end; emit S

||

present S else await S end; emit O

];

loop

await I;

await I do emit S end

||

await S do emit O end

end

end

Notice that our algorithm translates a concurrent program into a sequential one. Concurrency is treated

at compile time, not at run time. Notice also that the local signal S completely disappears in the compiled

code. A local signal acts as an auxiliary non-terminal in a parser generator [32]. Writing modular programs

that use many local signals for better architecture yields no run-time overhead.

9.2. Compiling general Esterel programs

Although they manipulate data, general Esterel programs can be translated to automata almost as

simply as pure synchronization ones. The key idea is to keep the memory actions formal at compile time since

they can only be performed at run-time. An automaton transition then consists of a sequence of run-time

actions (more precisely of a tree of actions due to conditionals).

The actions operate on globally allocated variables. An object code variable is allocated for each

explicitly declared variable or valued signal of the source code. Other implicit variables are allocated, such

41

as occurrence or repeat loop counters, booleans indicating input signal presence, etc. The following actions

can appear in transitions:

� assignments: they are generated by source assignments, by explicit or implicit variable initializations,

and by valued signal emissions (a source emit statement generates an assignment to the signal's variable).

� external procedure calls: they are generated simply by source procedure calls.

� tests. Three kinds of tests are generated: boolean expression tests appearing in conditionals, decrement-

and-tests of internal counter variables (for signal occurrences or repeat statements), and tests for

presence of input signals (instead of generating a transition per input event as suggested before, it is

better in practice to test for the presence of input signals on call-by-need basis).

� output signal emissions: they transmit the emission of a signal to the program's environment.

The actions are gathered in an action table, the transitions referring to entries in that table. Notice that

the synchronization needed for the internal communication of values is simply implemented by the order of

the assignments in the transitions; thus it generates no code.

The reex game program generates a 6 state automaton that is presented in Annex 2. See [8] for more

details.

9.3. Time and space e�ciency of the generated code

The run-time e�ciency of the automaton object code is obvious. Only actions that must be done at run-

time appear in the transitions. As we already mentioned, communication by pure internal signals generate

no code | which is a way to say that they are really in�nitely fast. Communication by valued local signals

are done by assignments and therefore as fast as possible. There is no process handling overhead.

If not in�nitely fast, the generated code is essentially as fast as it can be, comparable to carefully hand-

written low level code. By itself, this justi�es the synchrony hypothesis: if our code is not fast enough for a

given target machine then there might be no implementation of the desired reactive program on this machine,

at least at reasonable cost. Furthermore, since the code is sequential, the reaction speed is measurable on

any given processor. The user can verify whether its speed requirements will be satis�ed at run-time.

We have no general result concerning space e�ciency; this question is less clear. As for grammar parsers,

it is easy to build examples that produce an exponential blow-up in size. In practice, the obtained automata

tend to be of reasonable size; they are almost always minimal or close to minimal (the same property holds

for Brzozowski's original algorithm | the reason is not yet completely understood). When produced in a

host language, the automaton is generated in a compact byte code form [8]. For example, the reex game

automaton occupies about 300 bytes, and the automaton of the wristwatch program presented in [9] occupies

2.5 Kbytes.

There can be two causes of size explosion: the number of transitions from each state or the number

of states. The input signal relations presented in section 2 allow to control the �rst case. If a program

has n input signals, it has 2

n

possible input events, i.e. sets of input signals. Input relations dramatically

reduce this number. For example, if all signals are declared to be incompatible, the number of input events

decreases to n + 1 (including the empty event). The relations of the game example decrease the number of

input events from 16 to 9. The user should always be aware of the importance of relations when compiling

programs. The number of states is less controllable, as for parser generators. However, the size of practical

applications is resonable most of the time, say from 10 to 100 states. One has to notice that the \internal

moves" of a program do not generate states, unlike in asynchronous formalisms: the states really correspond

to observable input-output states. To our belief, this is a major advantage of deterministic synchronous

formalisms over non-deterministic asynchronous ones. Furthermore, it is often possible to obtain dramatic

size reductions by splitting big automata into cascades of small automata. The Esterel v3 compiler can

automatically perform such splits in some particular cases. We shall not discuss this subject here, see [8, 9]

for details.

9.4. E�ciency of the compiling process

The derivative algorithm is used as such in the Esterel v2 system, which is written in Le Lisp

[20]. It involves two rather expensive operations: the symbolic evaluation of programs on given inputs, the

42

storing and comparison of program text (or trees). It also involves a complex dynamic memory handling

that requires garbage collection in practice. To �x ideas, our standard wristwatch example (an average size

non-trivial program) compiles in 60 seconds on a SUN 3 machine, within 1.5 Mbyte of memory. Bigger

programs can require an order of magnitude more time and space.

The Esterel v3 compiler is based on a deeply optimized version of our algorithm (a similar but much

simpler optimization to the original Brzozowski algorithms for regular expressions is presented in [10]).

First, Esterel programs are translated in a low-level intermediate code that compiles away their

control structure, while preserving concurrency. The translation is structural, so that application of the

copymodule directive (inter-module linking) can be done at this code level. Then, the code is symbolically

executed to extract the automaton. This is done by operating an abstract execution machine on the code.

This machine has very simple execution states (basically described by a pair of stacks) and simple operations.

Derivatives are represented by sets of program pointers; they are easy to compare and inexpensive to store.

Moreover, the execution machine outputs the automaton and its transitions directly as a stream (without

backpatching). It operates in very little memory with a simple allocation strategy and no garbage collection.

Thus the v3 compiler can be implemented in a more traditional imperative language (we chose C++ [40]).

All of this makes the v3 compiler considerably more e�cient than its predecessor. On the SUN 3

workstation, the wristwatch example now compiles in less than 6 seconds, using about 100K bytes. The

payo� is even larger on bigger programs, since the v3 compiler is immune to the garbage collector thrashing

that occurs in v2 on larger examples. Compiling in v3 is qualitatively di�erent, since the performance of the

compiler is more limited by the size of its output than by its own time/space requirements.

10. Conclusion

We have presented in details the Esterel programming language, its temporal constructs based on the

synchrony hypothesis, its mathematical semantics, and its currently available implementationsEsterel v2

and Esterel v3 that translate concurrent synchronous programs into sequential automata. The Esterel

v3 implementation is now developed on an industrial basis. Numerous examples have been successfully

treated in di�erent areas such as real-time process control, graphics [22], and communication protocols.

We believe that the practical interest of synchronous programming compared to classical asynchronous

programming is now well-established in the framework of reactive systems. We pursue our work in the

following areas:

� Language Design: The kernel synchronous calculus developed by the second author [24] will allow us to

implement temporal statements that are not yet available in Esterel, such as process suspension. The

rather weak module structure of Esterel will be extended to support hierarchical module de�nitions,

following the Standard ML module structure [35, 37].

� Implementation: theEsterel v3 compiler is already e�cient. But we can still gain speed by improving

the internal coding of objects. Several codings of the output automaton should also be available to match

various time/space ratio constraints.

� Programming environments: we are currently building an interactive programming environment using

the CENTAUR system [12]. We plan to implement advanced features such as visual source stepping of

programs (this is of course harder for a concurrent language than for a sequential one, but determinism

should help keep the environment simple). The same source stepping facilities should be available from

the source or compiled code: we know how to maintain object/source correspondences at low cost.

� Esterel program proving: this is a very important area in practice, since reactive programs can control

devices for which safety is critical. We mentioned various kind of available proof techniques. They must

be evaluated on real examples. We must build nice interfaces between the Esterel compilers and the

proof systems so that non-specialists can also perform proofs.

� Large scale experiments: obviously, the synchronous programming style is not yet completely under-

stood. For large applications, it is clear to us that mixed synchronous/asynchronous strategies will be

43

needed. There should be no technical di�culty to asynchronously run communicating synchronous au-

tomata. But only experiments will show where it is reasonable to put the boundary between synchronous

and asynchronous techniques.

Acknowledgements: We would like to thank J-P. Marmorat and J-P. Rigault, who had the �rst ideas on

the design of Esterel and continue to participate the project, L. Cosserat who designed the �rst correct

behavioral semantics and was co-author of the initial version of this paper [5], P. Couronn�e who implemented

the Esterel v2 system with the authors, F. Boussinot who analyzed the causality problem, proposed

alternative semantics, and wrote the Esterel v3 compiler kernel, R. Bernhard, A. Ressouche, J-B. Saint,

J-M. Tanzi who wrote the rest of the Esterel v3 system, and J. Incerpi for her careful proof-reading.

44

References

[1] ADA, The Programming Language ADA Reference Manual, Springer-Verlag, LNCS 155 (1983).

[2] A. Arnold, Construction et analyse des syst�emes de transitions : le syst�eme MEC, Actes du Colloque

C3 d'Angoul�eme, CNRS (1985).

[3] H. Barendregt, The Lambda-Calculus: its Syntax and Semantics, North-Holland (1981).

[4] G. Berry, S. Moisan, J-P. Rigault, ESTEREL: Towards a Synchronous and Semantically Sound

High-Level Language for Real-Time Applications, Proc. IEEE Real-Time Systems Symposium, IEEE

Catalog 83CH1941-4, pp. 30-40 (1983).

[5] G. Berry, L. Cosserat, The Synchronous Programming Language ESTEREL and its Mathematical

Semantics, \Seminar on Concurrency", Springer-Verlag LNCS 197 (1984).

[6] G. Berry, P. Couronn

�

e, G. Gonthier, Programmation Synchrone des Syst�emes R�eactifs: le

Langage ESTEREL, Techniques et Sciences de l'Informatique vol. 6, n. 4, pp. 305-316 (1987).

[7] G. Berry, P. Couronn

�

e, G. Gonthier, Synchronous Programming of Reactive Systems: an

Introduction to ESTEREL, INRIA report 647 (1987).

[8] G. Berry, F. Boussinot, P. Couronn

�

e, G. Gonthier, ESTEREL System Manuals, Collection

of Technical Reports, Ecole des Mines / INRIA, Sophia-Antipolis (1986).

[9] G. Berry, F. Boussinot, P. Couronn

�

e, G. Gonthier, ESTEREL Programming Examples,

Collection of Technical Reports, Ecole des Mines / INRIA, Sophia-Antipolis (1986).

[10] G. Berry, R. Sethi, From Regular Expressions to Deterministic Automata, Theoretical Computer

Science 48, pp. 117-126 (1987).

[11] M. Blanchard, Comprendre, Maitriser et Appliquer le Grafcet, Cepadues Editions (1979).

[12] P. Borras, D. Cl

�

ement, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, V. Pascual,

CENTAUR: the System, INRIA report 777 (1987).

[13] G. Boudol, Communication is an Abstraction, Actes du Colloque C3 d'Angoul�eme, CNRS, and INRIA

Report 636 (1987).

[14] G. Boudol, I. Castellani, On the Semantics of Concurrency: Partial Orders and Transition

Systems, Proc. Coll. on Trees in Algebra in Programming (CAAP), Pisa, Italy (1987).

[15] M.C. Browne, E.M. Clarke, SML { A High Level Language for the Design and Veri�cation of

Finite State Machines, Carnegie-Mellon University Report CMU-CS-85-179 (1985).

[16] F. Boussinot, Une S�emantique du Langage ESTEREL, INRIA Report 577 (1986).

[17] J. A. Brzozowski, Derivatives of Regular Expressions, JACM, vol. 11, no. 4 (1964).

[18] L. Cardelli, R. Pike, SQUEAK, A Language for Communicating with Mice, AT&T Bell Labora-

tories Report, Bell Laboratories, Murray Hill, New Jersey 07974 (1985).

[19] P. Caspi, D. Pilaud, N. Halbwachs, J. Plaice, LUSTRE, a Declarative Language for Real-

Time Programming, Proc. Conf. on Principles of Programming Languages, Munich, (1987).

[20] J. Chailloux, LeLisp v15.2: Le Manuel de R�ef�erence, INRIA Technical Report (1986).

[21] E.M. Clarke, E.A. Emerson, A.P. Sistla, Automatic Veri�cation of Finite State Concurrent

Systems Using Temporal Logic Speci�cations: A Practical Approach, Department of Computer Science

Report, Carnegie-Mellon University (1983).

[22] D. Cl

�

ement, J. Incerpi, Specifying the Behavior of Graphical Objects Using ESTEREL, INRIA

report 836 (1988).

[23] L. Cosserat, S�emantique Op�erationnelle du Langage Synchrone ESTEREL, Th�ese de Docteur Ing�e-

nieur, Universit�e de Nice (1985).

45

[24] G. Gonthier, S�emantiques et mod�eles d'ex�ecution des langages r�eactifs synchrones; application �a

ESTEREL, Th�ese d'Informatique, Universit�e d'Orsay (1988).

[25] P. Le Guernic, A. Benveniste, P. Bournai, T. Gauthier, SIGNAL : A Data Flow Oriented

Language For Signal Processing, IRISA Report 246, IRISA, Rennes, France (1985).

[26] D. Harel, Statecharts : A visual Approach to Complex Systems, Science of Computer Programming,

Vol. 8-3, pp. 231-275 (1987).

[27] D. Harel, A. Pnueli, On the Development of Reactive Systems: Logic and Models of Concurrent

Systems, Proc. NATOAdvanced Study Institute on Logics and Models for Veri�cation and Speci�cation

of Concurrent Systems, NATO ASI Series F, vol.13, Springer-Verlag, pp. 477-498 (1985).

[28] D. Harel, A. Pnueli, J. Pruzan-Schmidt, R. Sherman, On the Formal Semantics of State-

charts, Proc. Symposium on Logic in Computer Science, pp. 54-64 (1987).

[29] C.A.R. Hoare, Communicating Sequential Processes, Comm. ACM vol. 21 no. 8, pp. 666-678

(1978).

[30] G. Huet, Conuent Reductions: Abstract Properties and Applications to Term Rewriting Systems,

Journal of ACM, vol 27, n. 4, pp. 797-821 (1980).

[31] Inmos Ltd., The Occam Programming Manual, Prentice-Hall International (1984).

[32] S. C. Johnson, YACC: Yet Another Compiler Compiler, Bell Laboratories, Murray Hill, New-Jersey

07974 (1978).

[33] G. Kahn, D. Mac Queen, Coroutines and Networks of Parallel Processes, Proc. IFIP 77, North-

Holland, Amsterdam, pp. 993-998 (1977).

[34] G. Kahn, Natural Semantics, Proceedings of STACS 1987 Conference, Lecture Notes in Computer

Science, Vol. 247, Springer-Verlag (1987).

[35] D. Mac Queen, Modules for Standard ML, Polymorphism, 2(2) (1985).

[36] R. Milner, Calculi for Synchrony and Asynchrony, Theoretical Computer Science, vol. 25, no. 3, pp.

267-310 (1983).

[37] J. Mitchell, R. Harper, The Essence of ML, Proc. ACM Conf. on Principles of Programming

Languages (1988).

[38] G.D. Plotkin, A Structural Approach to Operational Semantics, Lectures Notes, Aarhus University

(1981).

[39] J-P. Queille, J. Sifakis, Speci�cation and Veri�cation of Concurrent Systems in CESAR, Proc.

International Symposium on Programming, Springer-Verlag LNCS 137 (1982).

[40] B. Stroustrup, The C++ Programming Language, Addison-Wesley (1986).

[41] J-M. Tanzi, Traduction Structurelle des Programmes ESTEREL en Automates, Th�ese de Troisi�eme

Cycle, Universit�e de Nice (1985).

[42] D. Vergamini, Veri�cation by Means of Observational Equivalence on Automata, INRIA report 501

(1986).

[43] D. Vergamini, V�eri�cation de R�eseaux d'Automates Finis par Equivalences Observationnelles: le

syst�eme AUTO, Th�ese d'Informatique, Universit�e de Nice (1987).

46

Annex 1 : The Reex Game Esterel Program

module REFLEX_GAME :

constant LIMIT_TIME, MEASURE_NUMBER, PAUSE_LENGTH : integer;

function RANDOM():integer;

input MS, COIN, READY, STOP;

relation MS # COIN # READY, COIN # STOP, READY # STOP;

output DISPLAY(integer),

GO_ON, GO_OFF,

GAME_OVER_ON, GAME_OVER_OFF,

RED_ON, RED_OFF,

RING_BELL;

% overall initializations

emit DISPLAY(0);

emit GO_OFF;

emit GAME_OVER_ON;

emit RED_OFF;

% loop over a single game

every COIN do

% initializations

emit DISPLAY(0);

emit GO_OFF;

emit GAME_OVER_OFF;

emit RED_OFF;

% exception handling

trap END_GAME, ERROR in

signal INCREMENT_AVERAGE(integer),

AVERAGE_VALUE(integer) in

[

copymodule AVERAGE

||

repeat MEASURE_NUMBER times

% phase 1

do

do

every STOP do emit RING_BELL end

upto READY

watching LIMIT_TIME MS timeout exit ERROR end;

% phases 2 and 3

trap END_MEASURE in

[

every READY do emit RING_BELL end

||

% phase 2

do

await RANDOM() MS

watching STOP timeout exit ERROR end;

emit GO_ON;

47

The Reex Game Esterel v2.2 Program { Second Version

% phase 3

do

var TIME:=0:integer in

do

every MS do TIME:=TIME+1 end

upto STOP;

emit DISPLAY(TIME);

emit INCREMENT_AVERAGE (TIME)

end

watching LIMIT_TIME MS timeout exit ERROR end;

emit GO_OFF;

exit END_MEASURE

]

end

end;

% final display

await PAUSE_LENGTH MS do

emit DISPLAY(? AVERAGE_VALUE)

end;

exit END_GAME

]

end

handle ERROR do

emit RED_ON;

emit GO_OFF

end;

%end of the game

emit GAME_OVER_ON

end.

48

The Reex Game Esterel v2.2 Program { Second Version

Annex 2: the REFLEX GAME automaton

1. Memory allocation

V0 : boolean (presence of signal MS)

V1 : boolean (presence of signal COIN)

V2 : boolean (presence of signal READY)

V3 : boolean (presence of signal STOP)

V4 : integer (value of signal DISPLAY)

V5 : integer (value of signal INCREMENT_AVERAGE)

V6 : integer (value of signal AVERAGE_VALUE)

V7 : integer (count variable)

V8 : integer (count variable)

V9 : integer (count variable)

V10 : integer (source variable TIME)

V11 : integer (count variable)

V12 : integer (count variable)

V13 : integer (source variable TOTAL)

V14 : integer (source variable NUMBER)

2. Actions

2.1 Test expressions for input signals

A1 : V0 (presence of MS)

A2 : V1 (presence of COIN)

A3 : V2 (presence of READY)

A4 : V3 (presence of STOP)

2.2 Output signal actions

A5 : output DISPLAY(V4)

A6 : output GO_ON

A7 : output GO_OFF

A8 : output GAME_OVER_ON

A9 : output GAME_OVER_OFF

A10 : output RED_ON

A11 : output RED_OFF

A12 : output RING_BELL

2.3 Assignment actions

A13 : V4 := 0

A14 : V4 := 0

A15 : V7 := MEASURE_NUMBER

A16 : V8 := LIMIT_TIME

A17 : V9 := RANDOM()

A18 : V10 := 0

A19 : V10 := V10+1

A20 : V4 := V10

A21 : V5 := V10

A22 : V11 := LIMIT_TIME

A23 : V12 := PAUSE_LENGTH

A24 : V4 := V6

A25 : V13 := 0

A26 : V14 := 0

A27 : V13 := V13+V5

A28 : V14 := V14+1

A29 : V6 := V13/V14

2.4 Test expressions

A30: V7>0

49

The Reex Game Esterel v2.2 Program { Second Version

2.5 Decrement and test expressions

A31 : decr V7

A32 : decr V8

A33 : decr V9

A34 : decr V11

A35 : decr V12

3. The automaton

The full automaton has 6 states. We only list states 4 (READY pressed, waiting for GO ON) and 5 (GO ON

emitted, waiting for STOP). For input tests, we recall the input signal, as in A2 [COIN]. For output actions,

we recall the output signal, as in A11 {RED OFF}.

State 4

if A1 [MS] then

if A33 then

A22; A18; A6 {GO_ON}; goto 5

else

goto 4

end

end;

if A2 [COIN] then

A14; A15;

if A30 then

A16; A25; A26;

A5 {DISPLAY}; A7 {GO_OFF}; A9 {GAME_OVER_OFF}; A11 {RED_OFF}; goto 2

else

A23; A25; A26;

A5 {DISPLAY}; A7 {GO_OFF}; A9 {GAME_OVER_OFF}; A11 {RED_OFF}; goto 3

end;

end;

if A3 [READY] then A12 {RING_BELL}; goto 4 end;

if A4 [STOP] then A7 {GO_OFF}; A8 {GAME_OVER_ON}; A10 {RED_ON}; goto 1 end;

goto 4

50

The Reex Game Esterel v2.2 Program { Second Version

State 5

if A1 [MS] then

if A34 then

A7 {GO_OFF}; A8 {GAME_OVER_ON}; A10 {RED_ON}; goto 1

else

if A4 [STOP] then

A20; A21;

if A31 then

A23; A27; A28; A29; A5 {DISPLAY}; A7 {GO_OFF}; goto 3

else

A16; A27; A28; A29; A5 {DISPLAY}; A7 {GO_OFF}; goto 2

end

end;

A19; goto 5

end

end;

if A2 [COIN] then

A14; A15;

if A30 then

A16; A25; A26;

A5 {DISPLAY}; A7 {GO_OFF}; A9 {GAME_OVER_OFF}; A11 {RED_OFF}; goto 2

else

A23; A25; A26;

A5 {DISPLAY}; A7 {GO_OFF}; A9 {GAME_OVER_OFF}; A11 {RED_OFF}; goto 3

end

end;

if A3 [READY] then A12 {RING_BELL} goto 5 end;

if A4 [STOP] then

A20; A21;

if A31 then

A23; A27; A28; A29; A5 {DISPLAY}; A7 {GO_OFF}; goto 3

else

A16; A27; A28; A29; A5 {DISPLAY}; A7 {GO_OFF}; goto 2

end

end;

goto 5

51

