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Abstract— The main contribution of this paper is an exact
common subexpression elimination algorithm for the optimum
sharing of partial terms in Multiple Constant Multiplications
(MCM). We model this problem as a Boolean network that
covers all possible partial terms which may be used to generate
the set of coefficients in the MCM instance. We cast this
problem into a 0-1 Integer Linear Programming (ILP) problem
by requiring that the single output of this network is asserted
while minimizing the number of gates representing operations
in the MCM implementation that evaluate to one. A SAT-based
0-1 ILP solver is used to obtain the exact solution. We argue
that for many real problems the size of the problem is within
the capabilities of current SAT solvers. Because performance
is often a primary design parameter, we describe how this
algorithm can be modified to target the minimum area solution
under a user-specified delay constraint. Additionally, we propose
an approximate algorithm based on the exact approach with
extremely competitive results. We have applied these algorithms
on the design of digital filters and present a comprehensive set of
results, that evaluate ours and existing approximation schemes
against exact solutions, under different number representations,
and using different SAT solvers.

Index Terms— Multiple Constant Multiplications (MCM),
Common Subexpression Elimination (CSE), Canonical Signed
Digit (CSD), Minimal Signed Digit (MSD), delay constraints,
Pseudo-Boolean Optimization (PBO)

I. I NTRODUCTION

In several computationally intensive operations, such as,
Finite Impulse Response (FIR) filters, as illustrated in Figure 1,
and Fast Fourier Transforms (FFT), the same input is to be
multiplied by a set of coefficients, an operation known as
Multiple Constant Multiplications (MCM). These operations
are typical in Digital Signal Processing (DSP) applications
and hardwired dedicated architectures are the best option for
maximum performance and minimum power consumption.

Constant coefficients allow for a great simplification of the
multipliers, which can be reduced to a set of shift-adds [1].
When the same input is to be multiplied by a set of constant
coefficients, significant reductions in hardware, and conse-
quently power, can be obtained by sharing the partial products
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Fig. 1. Transposed form of a hardwired FIR filter implementation.

of the input among the set of multiplications. We propose
an algorithm that optimally solves the maximal sharing of
partial terms. Although this problem has been proven to be
NP-hard [2], we show that for many practical instances the
size of the problem still allows for the computation of the
optimum solution.

This maximal sharing problem has been the subject of
extensive research in recent years. Several strategies have been
proposed for the optimization of MCM. One is to consider not
only adders, but also subtracters to combine partial terms.A
second approach is the usage of the Canonical Signed Digit
(CSD) representation for the coefficients. This representation
minimizes the number of non-zero digits, hence the maximal
subexpression sharing search starts from a minimal level of
complexity [3]. In a recent paper, Park et al. [4] propose
the usage of a Minimal Signed Digit (MSD) representation
for the coefficients. Under the MSD representation a given
numerical value can have multiple representations. However,
in all of them, the number of non-zero digits is minimal and
therefore the same as the CSD representation. In this paper,we
demonstrate that the signed digit used in these representations
actually hinders the amount of sharing with respect to a two-
digit binary representation.

To the best of our knowledge, all previous solutions to the
maximal sharing problem have been heuristic, providing no
indication as to how far from the optimum their solutions
are. We propose an exact common subexpression elimination
algorithm that is feasible for many real situations [5]. The
proposed algorithm can be applied to coefficients represented
in binary, CSD, or MSD. We model this problem as a Boolean
network that covers all possible partial terms which may be
used to generate the set of coefficients in the MCM instance.
The inputs to this network are shifted versions of the value
that serves as an input to the MCM operation. Each adder
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and subtracter used to generate a partial term is represented
as an AND gate. All partial terms that result in the same
numerical value areORed together. There is a single output,
which is anAND over all the partial terms that represent the
coefficients in the MCM instance. We cast this problem into a
0-1 Integer Linear Programming (ILP) problem by requiring
that the output is asserted, meaning that all coefficients are
covered by the set of partial terms found, while minimizing the
total number ofAND gates that evaluate to one,i.e., the number
of adders/subtracters that are effectively used. A genericSAT-
based 0-1 ILP solver is used to compute the exact solution.

In many designs, particularly in DSP systems, performance
is a critical parameter. Hence, circuit area is generally expend-
able in order to achieve a given performance target. The exact
algorithm we propose is able to be parameterized with a delay
constraint so that only solutions that meet the desired delay
are considered [6]. Thus, the obtained solution is the minimum
area solution under the specified maximum delay.

Although the exact algorithm can handle many real-sized
designs, it naturally breaks down on some large instances. We
have developed approximate algorithms, ASSUME, for both
unconstrained and delay-constrained area minimization [7].
These algorithms are based on the same Boolean network
model constructed for the exact algorithm. This network
provides a top-down approach in the implementation of co-
efficients, whereas previous approaches use a bottom-up ap-
proach, combining simpler partial terms until the coefficients
are implemented, thus more easily falling into local minima.
We show that our approximate algorithms are extremely com-
petitive, being able to find the exact solution in many cases.

We present results on experiments with randomly generated
instances and with concrete filter instances. We compare so-
lutions obtained with approximate algorithms, ours and previ-
ously proposed, to the exact solutions, for both unconstrained
and delay-constrained area minimization. In this comparison,
we use different coefficient representations, namely binary,
CSD, and MSD. Several conclusions can be drawn from the
results. One is that our exact algorithm is able to handle
very large problem instances. The other is that the heuristic
algorithm, ASSUME, produces many times the optimum so-
lutions, or a solution very close to the optimum, in a fraction
of the CPU time. At a different level, we show that the
CSD, while starting from a simpler coefficient representation,
performs significantly worse than the binary representation.
The redundancy of the MSD representation does provide the
best solutions in most cases, however at the cost of a more
complex model. On the other hand, the binary representation
yields solutions with greater delay than the solutions obtained
under CSD and MSD representations.

This paper is organized as follows. In Section II, we give
the basic background concepts and an overview of relevant
related work. The model developed for the exact algorithm is
described in Section III. Section IV presents how this model
can be extended to limit the search to solutions that meet a
maximum delay constraint. The approximate algorithms, based
on the same model, are described in Section V. Section VI
presents and discusses a set of results on selected benchmarks.
Finally, Section VII concludes the paper, summarizing the

main contributions and giving directions for future work.

II. D EFINITIONS

In this section, we start by defining the problem for which
we propose exact and approximate algorithms, followed by
definitions of background concepts and end with an overview
of related work.

A. Problem Definition

We address the problem of minimizing the hardware re-
quired for a parallel multiplication of an input value over a
set of constant coefficients (multiple constant multiplications
- MCM). A paradigmatic example of an application where
MCM are realized is the implementation of a digital FIR filter,
as illustrated in Figure 1.

Since each coefficient is constant, we can replace a full-
fledged multiplier by a set of additions of shifted versions of
the input [1]. A bit set to 1 in positionm of the coefficient
implies that the input (x) shifted left by m positions is to
be added to the partial sum. Shifts are free in terms of
hardware, hence the hardware required for a multiplication
with a constant withn bits set to 1 is simplyn − 1 adders.
Figure 2 presents an example of how11x can be implemented
using a shift-add approach.
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Fig. 2. Computation of11x using: (a) multiplier; (b) shift-adds.

Each addition generates a partial term. If the same input is to
be multiplied by a set of constant coefficients, significant sav-
ings can be accomplished by sharing partial terms among the
coefficients multiplications. To illustrate this point, consider
that we need to implement both7x and11x. Instead of using
two adders per coefficient as in Figure 3(a), we can share the
adder that generates the value3x to obtain an implementation
with a total of three adders, Figure 3(b).
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Fig. 3. Simultaneous computation of7x and11x: (a) no sharing; (b) sharing
the partial term3x.

We make two immediate notes about the sharing of partial
terms. The first is that all values obtained through a shift ofany
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partial term can be considered. The second is that the sharing
depends on how the coefficient is decomposed, because the
partial terms depend on the sequence of additions. Returning to
our example, the sharing exploited in Figure 3(b) was possible,
because we used the decomposition11x = 23x + (21x + x).
If instead we had used11x = (23x + 21x) + x, the same
level of sharing could be obtained, albeit using the partial
term (23x + 21x), equivalent to(22x + x) shifted left by one.
However, if the decomposition is11x = 21x + (23x + x), no
sharing is possible with partial terms of7x.

This problem can be regarded as a particular case of
a more general problem known as Common Subexpression
Elimination (CSE) [3].

Definition 1: We define theunconstrained maximum shar-
ing problemas: Given a set of coefficients, find the minimum
number of operations (additions or subtractions) requiredto
implement the MCM.

We extend this problem so that we can limit the maximum
number of operations in series, generally called as the num-
ber of adder-steps. Clearly, the maximum number of adder-
steps over all coefficients defines the maximum delay of one
computation. For example, as shown in Figure 4,23x can be
implemented as23x = 24x + (22x + (21x + x)) with three
adder-steps, or as23x = (24x + 22x) + (21x + x) with two.
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Fig. 4. Two implementations of23x: (a) 23x = 24
x+(22

x+(21
x+x)),

with three adder-steps; (b)23x = (24
x + 22

x) + (21
x + x), with two

adder-steps.

Definition 2: We define themaximum sharing problem un-
der a delay constraintas: Given a set of coefficients and a
maximum number of adder-steps, find the minimum number
of operations (additions or subtractions) required to implement
the MCM so that the user-specified maximum number of
adder-steps is not exceeded.

B. Background

1) Number Representation:In the previous section, all
examples use the binary representation for the numerical
values, where a number is decomposed as a sum of powers of
two. Although this is the numerical representation of choice for
computer arithmetic, alternative representations can offer some
advantages when implementing multiplications with known
constants based on shift-adds.

The Canonical Signed Digit(CSD) representation [3] is a
signed digit system with the digit set{1, 0,−1} (we will be

representing the digit−1 by 1). The CSD representation is
unique and has two main properties: (i) the number of non-zero
digits is minimal, (ii) two non-zero digits are not adjacent. This
representation is widely used in multiplierless implementa-
tions, because it reduces the hardware requirements due to the
number of non-zero digits being reduced by 33% on average
when compared with the binary representation [8]. TheMin-
imum Signed Digit(MSD) representation [4] is obtained by
dropping the second property of the CSD representation. Thus,
a constant can have several representations under MSD, but
all with a minimum number of non-zero digits. For example,
suppose the constant 23 defined in six bits. The representation
of 23 in binary, 010111, includes 4 non-zero digits. The
constant is represented as101001 in CSD and both101001
and011001 denote 23 in MSD with 3 non-zero digits.

The representation of constants in CSD yields a simpler
optimization problem when compared with the binary and
MSD representations, because the representation of a constant
in binary includes more non-zero digits than CSD, and MSD
includes several representations for a given constant.

2) Binate Covering Problem:The unconstrained maximum
sharing problem we are addressing can be seen as a binate
covering problem (BCP), a special case of a 0-1 ILP problem,
and can be represented as a Boolean network.

An instanceP of a covering problem is defined as follows:

Minimize c
T · x (1)

Subject to A · x ≥ b, x ∈ {0, 1}n (2)

wherecj in c is a non-negative integer cost associated with
each of then variablesxj , 1 ≤ j ≤ n, in the cost function
(1), A · x ≥ b denotes the set ofm linear constraints(2).
If every entry in them × n matrix A is in the set{0,1} and
bi = 1, 1 ≤ i ≤ m, thenP is an instance of theunate covering
problem. Moreover, if the entriesaij of A belong to{-1,0,1}
and bi = 1− | {aij : aij = −1, 1 ≤ j ≤ n} |, then P is
an instance of thebinate covering problem. Observe that, if
P is an instance of the binate covering problem, then each
constraint can be interpreted as a propositional clause.

A propositional formula denotes a Boolean function
f : {0, 1}n → {0, 1}. A Conjunctive Normal Form(CNF) is
a representation of a propositional formulaϕ consisting of a
conjunction of propositional clauses where each clauseω is a
disjunction of literals, and a literallj is either a variablexj or
its complementxj . If a literal assumes value 1, then the clause
is satisfied. If all literals of a clause assume value 0, then the
clause is unsatisfied. The derivation of CNF formulas of the
basic gates can be found in [9], where the CNF formula of each
gate denotes the valid input-output assignments to the gate. A
clauseω to be satisfied in the formula,l1+. . .+lk, k ≤ n, can
be interpreted as a linear inequality,l1 + . . . + lk ≥ 1, where
the complement of variablexj is represented by1 − xj .

3) SAT-based 0-1 ILP Solvers:Recent advances in algo-
rithms for Boolean Satisfiability (SAT) have led to a significant
increase in the capacity and applicability of SAT solvers.
One of these applications is the Pseudo-Boolean Optimization
(PBO) that is a generalization of the BCP. In [10], a linear
search is performed on the possible values of the cost function,
starting from the highest, at each step requiring the next



4

computed solution to have a cost lower than the most recently
computed upper bound. Whenever a new solution is found that
satisfies all the constraints, the value of the cost functionis
recorded as the current lowest computed upper bound. If the
resulting instance of the SAT problem is unsatisfiable, thenthe
solution to the instance of BCP is given by the last recorded
solution. This approach is considered in the algorithm of [11]
by converting PBO constraints to Boolean clauses efficiently
and then, calling an SAT solver [12] iteratively to find a
minimal cost assignment. The algorithm of [13] incorporates
the most significant features from both approaches, namely
lower bound estimation methods such as linear programming
and Lagrangian relaxations and the reduction techniques from
branch-and-bound algorithms and the search pruning tech-
niques from SAT algorithms.

Although there have been additional SAT-based 0-1 ILP
solvers [14], in this work, we use and evaluate the algorithms
of [11] and [13], because they propose different approaches
and obtain better solutions than other successful solvers.

C. Related Work

A large amount of work that considers the unconstrained
maximum sharing problem has addressed the use of efficient
implementations of multiplierless MCM. The techniques in-
clude the use of different architectures, implementation styles,
and coefficient optimization techniques,e.g., [15], [16], [17].
The methods restricted to a number representation of the
constants basically find common non-zero digit combinations
on the representations of the constants and are generally called
CSE algorithms. In [18], the CSE method based on CSD
representation is introduced and in [3], two algorithms, one
considers all subexpressions and the other considers only
the two most common subexpressions, are presented. The
algorithm of [19] applies two-term CSE technique iteratively
while generating two-term divisors. Also, the use of different
selection criteria for the common subexpressions in CSE
algorithms are described in [20], [21]. In [4], it is shown
that by properly exploiting the redundancy of the MSD rep-
resentation, the hardware implementation can be significantly
optimized with respect to the solutions obtained under CSD
representation. The effect of number representation on the
achievable minimum number of operations is evaluated in [22]
and it is shown that the use of binary representation achieves
superior solutions than CSD and better results than MSD as the
number of constants and bit-width increase. Furthermore, to
extend the number of possible implementations of a constant,
the algorithm of [23] applies the CSE technique to all signed-
digit representations of a constant taking into account up to
k additional signed digits to the CSD representation,i.e., for
a constant includingn signed digits in CSD, the constant is
represented with up ton + k signed digits. This approach is
applied to multiple constants using exhaustive searches in[24].

The algorithms that are not restricted to a particular rep-
resentation of a constant synthesize a constant iteratively by
constructing a graph and are generally called graph-based al-
gorithms. For single constant multiplication problem, an exact
algorithm that finds the minimum number of required opera-
tions for a constant up to 12 bit-width is introduced in [25] and

it is extended up to 19 bit-width in [26]. Four algorithms, ’add-
only’, ’add/subtract’, ’add/shift’, and ’add/subtract/shift’, are
proposed for multiple constants in [27]. The latter algorithm,
i.e., ’add/subtract/shift’, is modified in [28] by extending the
possible implementations of a constant, considering only odd
numbers, and processing constants in order of increasing single
constant multiplication cost, that is evaluated by the algorithm
of [25]. It is shown that the modified algorithm gives much
better results with these improvements. Also, in this paper,
a heuristic algorithm that uses the results of [25] in the
selection of operations to be synthesized is introduced. In[29],
another prominent algorithm that uses a better heuristic for
synthesizing partial terms and explores a very large search
space than existing graph-based algorithms is proposed.

It is shown in [29] that graph-based algorithms give better
results than CSE algorithms, since they consider more possible
implementations of a constant than CSE algorithms that are
restricted to a number representation.

Despite the large number of techniques proposed for the
optimization of the number of operations, there are not many
methods that also consider the delay of the design, which is
essential for high-speed systems. In [30], [31], while mini-
mizing area, delay is also considered in the selection criteria
of the partial terms. In [32], [33], initially, the number of
addition/subtraction operations is reduced and then, a setof
transformations in an iterative loop is used to reduce the delay.

Although the described CSE algorithms obtain good so-
lutions for an MCM problem, they are based on heuristics.
In this paper, we introduce exact CSE algorithms for the
unconstrained maximum sharing problem and the maximum
sharing problem under a delay constraint where multiple
constants are considered under a given number representation.

III. E XACT ALGORITHM

In this section, we describe the proposed exact algorithm
for the maximal sharing of partial terms. It consists of two
steps: first, we construct a Boolean network that represents
the computation of all the partial terms that may be used to
generate the set of coefficients in the MCM instance; second,
we translate this network into a set of 0-1 ILP constraints and
generate the cost function that serve as an input to a generic
SAT-based 0-1 ILP solver.

A. Modeling the Problem as a Boolean Network

We model the maximal sharing of partial terms by a Boolean
network consisting of onlyAND and OR gates. EachAND

gate represents an operation (addition or subtraction) that
produces a partial term value. EachOR gate representing
a partial term combines all operations that yield the same
value. This model readily lends itself to different number
representations, as partial terms are simply the decompositions
of the coefficients in the given representation. In the presence
of a redundant number representation, such as MSD, all
operations that produce the same value areORed together.

The Boolean network that models the computation of all
possible partial terms presents the following characteristics:
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Fig. 5. Boolean network representing the coverage of coefficient 15.

• the primary inputs (PIs) of the network are the input value
(the value we are applying the MCM operation to) or its
shifted versions;

• there is a 2-inputAND gate to represent a simpleop-
eration (addition or subtraction) that generates a given
partial term. Since shifts are free, the output of anAND

gate can be used for any power of two times the partial
term value. AnAND gate evaluating to1 indicates that
this operation is available;

• there is anOR gate to assemble all the different opera-
tions that yield a givenpartial term value. An OR gate
evaluating to1 indicates that this value is available;

• the primary outputs (POs) of the network are the outputs
of the OR gates associated with the coefficients in the
MCM problem. By forcing that all POs evaluate to1, we
ensure that all the coefficients are covered.

Given this model, the SAT-based 0-1 ILP solver has to
search for a combination of variables that sets all POs to1,
while minimizing the cost function, defined as the number of
AND gates that are selected.

As an illustrative example, consider a single 4-bit coeffi-
cient,15 (in binary,1111). The value can be obtained as8+7

(1 111 ), 11+4 ( ̂
1 1 11 ), 13+2 ( ̂

11 1 1 ), or 14+1 ( 111 1),

by adding the input to a partial sum, or as9 + 6 ( ̂
1 11 1 ),

12 + 3 (11 11 ), or 10 + 5 ( ̂
1 1 1 1), by adding two partial

sums. In turn,8 + 7, for instance, requires 7 to be obtained

either as6 + 1 (0 11 1), 5 + 2 (0 ̂
1 1 1 ), or 4 + 3 (01 11 ).

The same analysis applies to all the remaining partial sums.
In general, a coefficient with valuev can be obtained with

at most⌈ v
2
⌉ partial sums. However, we can create equivalent

classes from cases that can be computed from each other by a
shifting operation, thus reducing significantly the total number
of cases. From the example above,14 + 1 and 7 + 8 are
equivalent because14 and7 are partial sums that differ only
on a shift and the same is valid for1 and8. Similarly for 6+1
and3 + 4. The complete Boolean network for this example is
presented in Figure 5 where equivalent cases are omitted.

When the coefficients are represented in CSD or MSD,

the model generates a similar network. However, anAND in
the network may represent either an adder or a subtracter.
Consider, for example, a single 3-bit coefficient with the value
3. The CSD representation of the coefficient is101 (1 stands
for -1). Therefore, this value can be obtained with a single
subtracter as4 − 1. In MSD, the value3 can be represented
both by 011 and 101 that can be obtained with an adder as
2 + 1 and with a subtracter as4 − 1 respectively.

B. Boolean Network Generation

The implemented algorithm that generates the above opti-
mization model can be used for any type of coefficient rep-
resentation: binary, CSD, or MSD. However, using the MSD
representation results in a more elaborated algorithm, because
several representations may exist for the same value. We
describe the MSD implementation of the algorithm, and then
summarize the changes for binary and CSD representations.

In a preprocessing phase, all coefficients are converted to
positive, and then made odd by successive divisions by 2,i.e.,
we shift all coefficients to the right so that zero bits on the
right are eliminated. Each new resulting coefficient is added
to the set of coefficients to be synthesized, theIset. This set
represents the minimum set of values necessary to synthesize
the MCM implementation.

For each elementi in the Iset, all MSD representations
are determined using⌈log2(i)⌉ + 1 bits and inserted in the
Cset. Therefore,Cset begins with all the MSD coefficients
representations as in [4]. However, during the execution ofour
algorithm Csetwill be augmented with MSD representations
of partial terms.

Then, we enter in the main algorithm loop where an
elementc, removed fromCset and representing a numberi,
is processed to determine its covers:

1) compute all partial term pairs that cover the elementc;
2) for each of these cover pairs, make each element of the

pair positive and odd;
3) ignore cover pairs that are equivalent to a previously

generated pair, by simply checking for equality of an
already existing pair (after the conversion in step 2);

4) add each cover pair to the corresponding set of covers
of the value being processed,Aseti;

5) add the MSD representations of each element of the
cover pair toCset, if the representation has not been
processed yet and it is not in the set. Elements with
only one non-zero digit are discarded.

This loop is repeated until there are no more elements in
Cset. The pair of elements in eachAseti represents all possible
implementations of partial terms for a valuei based on its
MSD representations. The generation of the Boolean network
model is then straightforward:

1) for each element pair inAseti generate the corresponding
AND gate;

2) generate anOR gate for the valuei with the outputs of
all the ANDs resulting fromAseti;

3) identify all the OR outputs that represent a coefficient
(values belonging toIset) and make them primary out-
puts.
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This algorithm can be easily adapted to obtain the network
using different coefficient representations. In the procedure
above, instead of starting and generating MSD representations,
we perform this decomposition on the binary or CSD repre-
sentations instead.

C. Addition of Optimization Variables for the Cost Function

In the generated Boolean network model, we need to include
free variables to be used in the cost function. There are
basically two variations on how to create these variables: we
either associate them with the use of a partial term or with
the implementation of a particular operation. As we will see,
both these metrics lead to the same optimum solution.

1) Minimizing Partial Terms:The minimization of the total
number of partial terms is equivalent to minimizing the number
of OR gates in the Boolean network that evaluate to one. Under
our model, we can achieve this objective by adding a 2-input
AND gate for eachOR gate in the network, where one input
is the output of theOR gate and the other is the optimization
variable. This is illustrated in Figure 6.

Lemma 1: If the optimization variable evaluates to1 in the
optimum solution, then the output of the correspondingOR

gate evaluates to1.
Since the cost function that we are minimizing is the

summation of the optimization variables, if the optimization
variable evaluates to1, then the output of the corresponding
OR gate is required in the optimum solution. Otherwise, the
optimization variable could be set to0 and we would have a
better solution, which is a contradiction. 2

Note that the converse is not true. If a pair of partial terms
that can be combined to generate a partial term with a single
operation is available, then the output of theOR gate will
evaluate to1. For the example in Figure 6, even if15 is not
required as a partial term, if the partial term3 is available, then
the output of theOR gate will automatically be1. The meaning
of this is that the partial term could be computed using a single
operation with available partial terms. However, this doesnot
mean that this particular partial term is going to be computed,
i.e., that operation will actually be implemented.

We select the operations that we need to compute by
choosing one, from possibly several, of theAND gates of each
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Fig. 7. Addition of an extra input perAND gate to create an optimization
variable associated with each possible operation.

OR gate with an optimization variable set to1. Hence, the
number of operations will be the same as the optimum value
of the cost function.

2) Minimizing Operations:The alternative approach is to
associate the optimization variables with the operations them-
selves. For this, we add a third input to eachAND gate, as
exemplified in Figure 7. The solution to the minimization of
the sum of the optimization variables will indicate directly
which operations are required for the optimum solution.

We make two simple observations.
Lemma 2: There is only one optimization variable set to1

among theAND gates that feed the sameOR gate.
We first note that any optimization variable in anAND gate

with one other input set to0 will necessarily be0. Otherwise,
we have a contradiction as setting it to0 would be a solution
with a lower cost function.

For the remainingAND gates, one suffices to set the output
of theOR gate to1. Hence, only one optimization variable over
those gates will be1 in order to minimize the cost function.2

Lemma 3: Minimizing the number of operations is equiva-
lent to minimizing the number of partial terms.

In the minimization of the number of partial terms, if the
optimization variable at the output of anOR gate evaluates
to 1, then we will select, arbitrarily, one of theAND gates at
its inputs that evaluate to1. Thus, we obtain one operation
per required partial term (which, by Lemma 1, is the same as
optimization variables set to1).

In the minimization of the number of operations, Lemma 2
shows that we also obtain one operation per partial term.

In both approaches, since we have a one to one correspon-
dence between operation and partial term, and since these both
solutions are optimum, they have to yield the same cost.2

One advantage of this approach is that the result indicates
directly which operations to use. For the unconstrained mini-
mization this is not so relevant, because it is indifferent which
of the available operations is used to compute a partial term.
However, as we will discuss in Section IV, it is essential for
the delay-constrained optimization, where each operationwill
correspond to a given level in terms of adder-steps.

One potential downside of this approach is that the number
of optimization variables is increased with respect to the
approach based on partial terms. As we will show, while this
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Fig. 8. Simplification of the network of Figure 5 after optimization variables
for minimizing partial terms were added.

may signify an increased difficulty for some SAT-based 0-1
ILP solvers, others do perform better with a larger number of
optimization variables.

3) Network Simplification:Once we have added the opti-
mization variables to the Boolean network (using either of the
previous approaches), we use the following rules to simplify
the model. While these rules can be safely applied to the
unconstrained maximum sharing problem, only rules 1 and
2 can be applied to the maximum sharing problem under a
delay constraint.

1) shifted versions of the input value are available freely,
hence we set these inputs to 1 in the Boolean network
and propagate this value to remove unnecessary gates.

2) if the requirements of an operation are more stringent
than another operation that generates the same partial
term, we may remove it. For example,15 = 9 + 3≪1

requires partial terms9 and 3, whereas15 = 3≪2 + 3
only requires partial term3, thus we may eliminate the
former, because if partial term3 is available, we can
always use the latter.

3) if a coefficient can be implemented with a single oper-
ation whose inputs are the primary inputs and/or other
coefficients, then we do not need to represent this filter
coefficient in the Boolean network.

The impact of these simplifications depends heavily on
the particular instance. They may yield few simplifications
in the network or an immediate solution, hence avoiding the
0-1 ILP solver altogether. To exemplify the impact of these
simplifications, we present in Figure 8 the network of Figure5
where optimization variables for minimizing the number of
partial terms (i.e., an extraAND gate at the output of each
OR gate) were added and the described simplifications were
applied. Figure 9 shows the simplified network of Figure 5
when using optimization variables that minimize the number
of operations (i.e., adding an extra input to eachAND gate).

Additionally, during the construction of the network and the
translation of the network into CNF for both problems, the
issues described in [34] that speed-up a generic SAT-based
0-1 ILP solver are also considered.

D. Mapping into a 0-1 ILP Optimization Model

We construct the cost function to be minimized as the
linear function of the optimization variables, where the cost
value of each optimization variable is set to1. Then, we

optvar3 7

11

13

optvar15_7

15

optvar5

optvar7_3

optvar11_5

optvar9

optvar13_3

optvar7_5

optvar11_9

optvar15_13

optvar11_3

optvar13_5

optvar15_11

optvar13_9

optvar3

optvar5

optvar15_5

optvar15_3

Fig. 9. Simplification of the network of Figure 5 after optimization variables
for minimizing operations were added.

map the Boolean network into a 0-1 ILP optimization model
by representing each gate in CNF format [35]. For example,
a 2-input AND gate, c = a ∧ b, is translated to CNF as
(a+c)(b+c)(a+b+c). Each clause is converted into a 0-1 ILP
constraint using the straightforward mapping presented in[10].
The 2-inputAND gate would be described by the following set
of restrictions:

a − c ≥ 0

b − c ≥ 0

−a − b + c ≥ −1

a, b, c ∈ {0, 1}

To guarantee that all coefficients are covered we add a
constraint that all primary outputs must evaluate to1. Thus, the
obtained model can serve as an input to a generic SAT-based
0-1 ILP solver.

E. Analysis of 0-1 ILP Problem Complexity

Consider the coefficient represented in binary withn bits all
set to 1. In this case, the Boolean network includes all partial
terms withb bits, b ≤ n, set to1. Thus, all coefficients that
include the number of 1 bits less thann are considered in the
network. Hence, forn-bit coefficients in any representation,
the complexity of the problem is bounded above by the case
of a single coefficient with all then bits set to1. Table I
gives the size of the Boolean network in terms of the number
of AND and OR gates, and the size of the 0-1 ILP problem in
terms of the number of variables, constraints, and optimization
variables for a single coefficient with different values ofn

bits, all set to1. We note that these results are obtained, when
the most complex case,i.e., the minimization of operations
model, is considered without taking into account the network
simplifications described in Section III-C.3. Hence, an upper
bound on the size of the 0-1 ILP problem is found.

Although we can observe the exponential growth in com-
plexity, the size of the 0-1 ILP problem for up ton = 12
is within the reach of current SAT-based 0-1 ILP solvers. In
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TABLE I

UPPER BOUNDS ON THE SIZE OF NETWORK AND0-1 ILP PROBLEM.

n #OR #AND #variables #constraints #opt. variables
8 120 2,059 2,187 10,415 2,059
10 502 19,171 19,683 96,357 19,171
12 2,036 175,099 177,147 877,531 175,099
14 8,178 1,586,131 1,594,323 7,938,833 1,586,131
16 32,752 14,316,139 14,348,907 71,613,447 14,316,119

practice, coefficients with 12 bits set to1 may suffice for
many real problems. Observe that the exact algorithm can be
efficiently applied to larger coefficients, when they are defined
in CSD or MSD. We also note that the network simplifications
described in Section III-C.3 reduce significantly the problem
size, especially for the model of minimizing partial terms,
hence allowing the exact algorithm to be applied to larger
designs.

IV. M INIMIZING AREA UNDER A DELAY CONSTRAINT

In this section, we describe the exact algorithm designed for
the problem of maximum sharing under a delay constraint. We
use the Boolean network model described in Section III-C.2
and consider the delay as the number of adder-steps, which
denotes the maximal number of adders/subtracters in seriesto
produce any multiplication. Since, the definition of adder-steps
is identical to the definition of level in combinational circuits,
in the following, we use both definitions interchangeably.

The exact algorithm can find a solution with either the
minimum delay that the network can have,min delay, or a
user-specified maximum delay constraint,userdelay.

A. Computing the Levels of the Operations

In general, a partial term can be implemented with opera-
tions that have different adder-steps. Therefore, we can define
a range of levels for each partial term, and consequently, a
range of levels for the operations that use this partial term.

For a partial term withn non-zero digits, the minimum
latency implementation has⌈log2 n⌉ adder-steps and the max-
imum latency implementation of a partial term hasn−1 adder-
steps. In the network, anOR gate associated with the partial
term gathers all of these operations. So, a partial term can
be generated with the number of adder-steps ranging from its
minimum to maximum latency implementations. As can be
seen from Figure 5, the coefficient15 can be implemented
with minimum 2 and maximum 3 adders-steps, determined,
for instance, by15 = 3≪2 + 3 which has a minimum and a
maximum of 2 adder-steps and by15 = 1≪3 + 7 which has a
minimum and a maximum of 3 adder-steps.

After the Boolean network has been constructed, we com-
pute the minimum level (min level) and maximum level
(max level) values of each operation and partial term by
traversing the network from primary inputs to primary outputs.
Then, we find themin delayvalue by computing the maximum
of the min level values of the primary outputs. By setting
userdelay=min delay as the maximum delay constraint, the
algorithm that we propose is an exact algorithm for the
minimum area design that achieves minimum delay. Naturally,
if the user setsuserdelay<min delay, no solution is possible.

B. Incorporating the Delay Information in the 0-1 ILP Model

Using the information on minimum and maximum levels,
we compute the paths in the network that exceed the maximum
delay constraint (over-delay paths). For each path we add a
delay constraint to the 0-1 ILP problem to prevent the set of
operations in the path from being selected in the final solution.

Our algorithm starts by determining the primary outputs of
the network withmax level values higher than theuserdelay
and storing these outputs in a set calledPset. The elements of
thePsetare the filter coefficients that can be implemented in a
greater delay than theuserdelay. Then, for each element in the
Pset, Pseti, if an operation that implementsPseti hasmin level
value higher thanuserdelay, this operation is deleted from
the network, since it can never be used in order to meet the
userdelay. Otherwise, if an operation hasmax level value
higher thanuserdelay, then this operation is added to a set
called pathj as an initial node. Also, this operation is added
to a set calledOset with a target level, userdelay−1, and
the associated path identifier,j. When all elements in thePset
have been considered, the initial nodes of the paths that violate
the userdelayconstraint are found. In the following iterative
loop, all these paths are constructed in a breadth-first manner.

1) remove an operation from theOsetwith its target level,
target, and the associated path identifier,j. For each
input of the operation,Pi, i.e., a partial term,

a) if an operation that implementsPi has min level
value higher thantarget, then add this operation to
pathj as a terminal node,i.e., identify the complete
over-delay path.

b) otherwise, if an operation hasmax level value
higher thantarget, then create an extended path by
adding this operation, as a non-terminal node, to
the pathj . Also, insert this operation into theOset
with its target level,target−1, and a path identifier.

2) repeat Step 1 until there is no element left in theOset.

We note that theOset includes the last added operations
with their target level values of the associated paths that have
not been constructed yet.

As an example, suppose that a situation as illustrated in
Figure 10 is encountered when finding the paths that exceed
the userdelay=5. In this figure, optimization variables are
omitted and the relevant paths are highlighted for the sake
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Fig. 10. An illustrative example of determining the paths thatexceed the
maximum delay.
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of clarity. The operations and partial terms are labeled with
letters inside the gates and themin level andmax level values
are given with amin-maxpair above the gates.path includes
the operations that exceed theuserdelay, determined when
traversing the network from the outputs to the inputs.

Suppose that the operationG with target level,target(G)=4,
and associated path identifier,n, is removed from theOset.
Also, suppose that the partial termH is considered as the
input of G. The operationK is added to thepathn as a
terminal node and the path is constructed, since the operation
K can be implemented in minimum 5 adder-steps that exceeds
the target(G). Also, a new path,pathn+1, is formed by
inserting the operationI to the pathn, since themax level
value of the operationI is higher thantarget(G) indicating
that there is(are) operation(s) that cause greater delay than the
userdelaywith the operations in this path. So, the operationI

with its target leveltarget(I)=target(G)−1 and associated path
identifier,n+1, is added to theOset. We note that the operation
J is not considered to be added to thepathn, because it can
be implemented in maximum of 4 adder-steps that does not
exceed thetarget(G)value.

After all paths that violateuserdelay have been found, a
single additional constraint for each complete over-delaypath
is added to the 0-1 ILP problem:−optvar1−optvar2− . . .−
optvarm ≥ 1 − m, whereoptvarj , 1 ≤ j ≤ m, denotes the
optimization variable of an operation in the path andm is
the number of operations in the path. The delay constraints
express that the operations in the path must not be included
together in the solution. This guarantees that the solutionto
be found by the 0-1 ILP solver respects the delay constraints
and allows for the possible sharing of partial terms in the
paths with other partial terms not in the critical paths. Finally,
using the same cost function, the constraints obtained from
the Boolean network together with these delay constraints are
given to the 0-1 ILP solver to find a solution with minimum
area.

V. A PPROXIMATE ALGORITHMS

Although the exact algorithms presented in the two previous
sections can be applied effectively to relatively large MCM
problems, the execution time does tend to grow exponentially,
limiting its application to more complex instances.

The heuristic algorithms we propose use as the underlying
model the Boolean network generated by the exact algorithm,
as described in Section III. In these heuristics, each coefficient
is synthesized one at a time by selecting an operation among
the set of possible operations, rather than finding the minimum
solution of the binate covering problem that considers all
coefficients as done in the proposed exact algorithms. In the
selection of an operation, initially, the implementation costs
of all operations are found by considering not-yet synthesized
coefficients and then, the operation that has the minimum
implementation cost is chosen to implement the coefficient.
The advantages of the proposed heuristics are the use of
the network that has the view of all the possible manners
a coefficient can be synthesized and the use of a selection
criteria that also considers not-yet synthesized coefficients

while choosing an operation to implement a coefficient. The
given properties make these heuristics quite different from
the heuristics that find pairs of the most common non-zero
digits [3] or the two-term common subexpressions [19]. Since
the heuristics of [3] and [19] build coefficients starting atthe
most simple (in the number of non-zero digits) to the most
complex by combining existing partial terms, this bottom-up
approach yields a much more limited view of the search space.

In this section, initially, we describe the heuristic called
ASSUME-A designed for optimization of area and then, the
heuristic called ASSUME-D designed for optimization of area
under a delay constraint. We note that the definitions given in
Section IV are also used in the description of these algorithms.

A. Unconstrained Area Optimization: ASSUME-A

In a preprocessing phase, by traversing the Boolean network
from primary inputs to primary outputs, themin adder and
max level values of each operation and partial term are com-
puted. Themin adder is the minimum number of operations
that are required to implement an operation or a partial
term. The min adder value of a partial term (OR gate) is
determined by finding the minimum of themin adder values
of operations (AND gates) that implement the partial term.
The min adder value of an operation (AND gate) is the sum
of the min addervalues of its inputs plus 1, if the inputs are
different; otherwise it is themin addervalue of an input plus
1. Themin addervalue of a primary input is assigned to 0. As
an example, consider again the network given in Figure 5 with
the coefficient15. Themin addervalue of the coefficient15 is
2, determined, for instance, by15 = 3≪2+3 and3 = 1≪2−1
operations.

In a similar manner to the algorithm of [28], ASSUME-A
has two main parts: optimal and heuristic. The algorithm is as
follows:

1) store the pre-processed coefficients of the filter (primary
outputs of the network, all made positive and odd) in a
set calledAsetand label them as unimplemented.

2) the optimal part: for each element labeled as unim-
plemented inAset, if the element is implemented in
the network with an operation whose inputs are either
primary inputs or are inAset, then synthesize the element
with this operation and label it as implemented.

3) if there are not more elements labeled as unimplemented
in the Aset, return the solution and stop.

4) theheuristicpart: take an unimplemented element from
Aset, Aset(i), that has the lowestmax level value.

5) for each operation,O(j), that implementsAset(i), set its
cost value,C(j), to its min addervalue, as determined
in the preprocessing phase and for each unimplemented
element inAset, Aset(k), with i 6= k:

a) determineCbefore(k) by finding the min adder
value ofAset(k), when themin addervalues of the
elements inAsetare assigned to0. (Cbefore(k) is
the cost of implementation ofAset(k) at this phase
of the algorithm, since all elements inAsetwill be
implemented at the end of the algorithm.)
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b) determineCafter(k) as done in a), but alsoassume
that the inputs ofO(j) are in Aset. (Cafter(k) is
the cost of implementingAset(k), if Aset(i) is syn-
thesized withO(j) at this phase of the algorithm).

c) update the cost value,C(j), as C(j) = C(j) −
(Cbefore(k) − Cafter(k)).

6) after the cost value of each operation,C(j), has been
computed, select the operation to synthesizeAset(i) that
has the minimum cost. If there are operations that have
the same minimum cost, select the operation that has
the minimummin addervalue among these operations.
Label Aset(i) as implemented.

7) add each input of the selected operation toAset, provided
that they do not already exist inAset, and label them as
unimplemented. Go to Step 2.

We note that in the first iteration, the elements ofAset
are the filter coefficients and in later iterations,Aset may
include the partial terms needed for the synthesized operations.
Observe that all elements ofAsetare implemented at the end
of the algorithm. Also, we note that if all elements ofAsetare
implemented in the optimal part, then the global minimum
solution is obtained. If an element ofAset is implemented in
the heuristic part, the local minimum solution is obtained.

B. Area Optimization under a Delay Constraint: ASSUME-D

Just as the exact version, ASSUME-D can find a solution
with either the minimum delay of the network,min delay, or
a maximum user-specified delay constraint,userdelay.

Again, we start by traversing the Boolean network to obtain
the min adder, min level, andmax level values of each opera-
tion and partial term. As defined in Section IV, themin delay
is determined as the maximum of themin level values of the
primary outputs. A minimum delay solution can be obtained
when theuserdelay is assigned to themin delay.

ASSUME-D synthesizes the coefficients of the filter one
at a time in a top-down approach that yields more possible
implementations of a partial term while controlling the delay.
The algorithm is as follows:

1) store the pre-processed coefficients of the filter (primary
outputs of the network, all made positive and odd) in
a set calledDset and label them as unimplemented.
Assign thedelay limit value of each element inDset
to userdelay.

2) take an element labeled as unimplemented fromDset,
Dset(i), that has the highestmax level value. Store the
operations that implementDset(i) and whosemin level
value does not exceed thedelay limit(i) in an empty set
calledOset.

3) if Dset(i) can be implemented with an operation
in Oset whose inputs are primary inputs or are
in Dset, then synthesizeDset(i) with the operation
and label it as implemented. Assign the delay limit
of each input of the operation,delay limit(j), to
min(delay limit(j), delay limit(i) − 1).

4) otherwise, choose an operation fromOsetto synthesize
Dset(i) as done in steps 5 and 6 of ASSUME-A, and
label it as implemented. If the input(s) of the operation
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Fig. 11. Comparison of the number representations on the unconstrained
maximum sharing problem.

is in Dset, then assign the delay limit of the input
delay limit(j) = min(delay limit(j), delay limit(i)− 1).
If not, add this element toDset, label it as unim-
plemented, and assign its delay limit value tode-
lay limit(i)−1.

5) if there is an element left labeled as unimplemented in
Dset, go to step 2, otherwise return the solution.

VI. EXPERIMENTAL RESULTS

In this section, we present the results obtained with the
exact and heuristic algorithms proposed for the unconstrained
maximum sharing problem, as well as the same problem under
a delay constraint. The benchmarks used in our experiments
include randomly generated and filter instances. In the algo-
rithms designed for maximum sharing problem under a delay
constraint, we set theuserdelay to the min delay, i.e., we
find the minimum area under minimum delay solutions. We
compare our results with several previously proposed CSE
heuristics, namely with the heuristics of [3] and [4], which
we have implemented, and the heuristics of [19] and [30],
whose results were provided by Anup Hosangadi.

As the first experiment set, we used randomly generated
instances where constants are defined in 12 bit-width. The
number of constants ranges between 10 and 100, and for each
of them we generated 30 instances. We compare the effect of
different number representations,i.e., binary, CSD, and MSD,
on the minimum number of operations and delay solutions.
The results of the exact algorithms on unconstrained maximum
sharing problem and maximum sharing problem under a delay
constraint are given in Figures 11 and 12, respectively.

We can observe that these three representations yield about
the same solutions for instances with few constants. For
instances with larger number of constants, the CSD repre-
sentation achieves worse solutions than the binary and MSD
representations, requiring more than 2 additional operations on
average. Binary and MSD representations yield very similar
results, with the binary performing better as the number of
constants increases. This demonstrates that having a third
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Fig. 12. Comparison of number representations on the maximum sharing
problem under a delay constraint.
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Fig. 13. Comparison of the average number of minimum delay under binary,
CSD, and MSD representations.

digit, the signed digit, while desirable in representing one or
a few constants, creates a more varied set of patterns that
limits the amount of sharing for a larger number of constants.
This is partially overcome by the redundancy in the MSD
representation.

We compare the minimum delay solutions achievable with
the different number representations for the maximum sharing
problem under a delay constraint in Figure 13. We observe that
the CSD and MSD representations provide solutions with at
most three operations in series, while the binary representation
on average requires more operations in series, and this number
increases with the number of constants. Hence, the minimum
delay solutions presented in Figure 12, while similar in area,
have a much smaller delay in the cases of the CSD and MSD.

We also compare the exact solutions with the heuris-
tics, [3], [4], and ASSUME-A, for unconstrained maximum
sharing problem and with ASSUME-D for the maximum shar-
ing problem under a delay constraint on randomly generated
instances where constants are represented in CSD. The results
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Fig. 14. Comparison of the exact and heuristic algorithms for the uncon-
strained maximum sharing problem.
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Fig. 15. Comparison of the exact and heuristic algorithms for the maximum
sharing problem under a delay constraint.

are given in Figure 14 and 15.
In this experiment, we observe that for the unconstrained

maximum sharing problem, while the average number of
operations between the ASSUME-A and the exact algorithm
is almost 1 on all instances, the average number of operations
between the heuristic of [4] and the exact algorithm reaches
up to 7.4 operations. Also, since the heuristic of [3] is a
greedy algorithm that finds the most common subexpression
in each iteration of the algorithm, it is easily trapped to the
local minima on instances that include more than 40 constants.
On the instances with 100 constants, the average number
of operations between this heuristic and the exact algorithm
is almost 10 operations. For the maximum sharing problem
under a delay constraint, ASSUME-D finds solutions with
almost 2 additional operations on average compared to the
exact solutions. This clearly shows that exact algorithms find
better solutions than the heuristic algorithms and among the
heuristics, the ASSUME-A finds much better solutions than
the heuristics of [3] and [4].

As the second experiment set, we used FIR filters where
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filter coefficients were computed with theremezalgorithm in
MATLAB . The specifications of filters are presented in Table II
where:passand stop are normalized frequencies that define
the passband and stopband respectively; #tap is the number of
coefficients; andwidth is the bit-width of the coefficients.

TABLE II

CHARACTERISTICS OF THEFIR FILTERS.

Filter pass stop #tap width

1 0.20 0.25 120 8
2 0.10 0.25 100 10
3 0.15 0.25 40 12
4 0.20 0.25 80 12
5 0.24 0.25 120 12
6 0.15 0.25 60 14
7 0.15 0.20 60 14
8 0.10 0.15 60 14
9 0.10 0.15 100 16

We compare our exact and heuristic algorithms with other
heuristic algorithms under binary, CSD, and MSD represen-
tations. The results are given in Tables III and IV for un-
constrained maximum sharing problem and maximum sharing
problem under a delay constraint respectively. In these tables,
adderstands for the number of operations andstpdenotes the
maximum number of operations in series.

We note that the proposed exact algorithms can find min-
imum solutions for real-sized filter instances. As can be
observed from Tables III and IV, while ASSUME-A and
ASSUME-D find similar solutions to the exact algorithms,
they find better solutions than other heuristics on overall filter
instances. While the average difference of the number of
operations between [4] and the exact algorithm is almost 1,
the average difference of the number of operations between
the heuristics of [3], [19], and [30] and the exact algorithms
is greater than 1.

The 0-1 ILP problem size of the proposed models (the
minimization of partial terms and minimization of operations
models for the unconstrained maximum sharing problem and
the minimization of operations with a delay constraint model
for the maximum sharing problem under a delay constraint)
for the filter coefficients defined under MSD representation are
given in Table V wherevars, cons, delay cons, and optvars
denote total number of variables, constraints, delay constraints,
and optimization variables respectively.

As can be seen from the Table V, when the unconstrained
maximum sharing problem is defined using the model that
considers the minimization of partial terms, a smaller 0-1 ILP
problem can be obtained than is defined by the minimization of
operations model due to the network simplifications. On these
problem instances, we compare SAT-based 0-1 ILP solvers,
i.e., Bsolo [13] and MiniSat+ [11], in terms of CPU time
required to find a solution. The results are given in Table VI
whereCPU denotes the CPU time in seconds of a PC with
dual Pentium Xeon at 2.4GHz and 4GB of main memory,
running Linux. The allowed CPU time for the algorithms was
3600 seconds. In this table, the italic results indicate that a
satisfiable rather than the minimum solution is obtained in the
given CPU time limit.

As can be seen from Table VI, Bsolo finds the minimum
solutions for all instances under all models where MiniSat+
cannot conclude with the minimum solution for Filter 6 and

9 under the minimization of operations model in an hour. We
note that even if the minimum solution is obtained for Filter6
by MiniSat+, it could not prove that the found solution is the
minimum solution. However, we note that the minimization of
partial terms model is more appropriate for MiniSat+, since
this model includes less number of optimization variables
with respect to the minimization of operations model. Also,
the minimization of operations model is more appropriate
for Bsolo than MiniSat+, since Bsolo incorporates problem
reduction techniques from both sides,i.e., SAT algorithms and
branch-and-bound algorithms.

As the third experiment set, we used filter instances in-
troduced in [30] to find out the limitations of the exact
algorithm. In Table VII, the filter instances where coefficients
are defined in 24 bit-width are given. We compare the results
of the exact algorithm with heuristics for the unconstrained
maximum sharing problem where filter coefficients are defined
under CSD representation in Table VIII. In this table, the 0-1
ILP problem size of each filter is given under the problem sizes
columns. MiniSat+ was used to obtain the minimum solutions
and the allowed CPU-time was determined as 1 day. Again,
the italic results indicate that an optimal rather the minimum
solution is obtained in the given CPU time limit. We note that
the results of heuristic algorithms are obtained with a verylow
computational effort.

TABLE VII

CHARACTERISTICS OF FILTER INSTANCES.

Filter Type pass stop #tap width

1 Butterworth 0.25 0.3 20 24
2 Elliptical 0.25 0.3 6 24
3 Least Square 0.25 0.3 41 24
4 Park Mc-Clennan 0.25 0.3 28 24
5 Butterworth 0.27 0.2875 71 24
6 Elliptical 0.27 0.2875 8 24
7 Least Square 0.27 0.2875 172 24
8 Park Mc-Clennan 0.27 0.2875 119 24
9 Elliptical 0.27 0.29 13 24
10 Least Square 0.27 0.29 326 24
11 Park Mc-Clennan 0.27 0.29 189 24

In this experiment we observe that the minimum solutions
of three out of 11 filters,i.e., filters 1, 2, and 6, are obtained in
the CPU-time limit. However, the minimum solutions of eight
filters could not be found in one day. We note that even if the
problem size of the filter 1 is greater than the problem size
of the filter 4, a minimum solution could not be obtained for
the filter 4. This shows that the size of the 0-1 ILP problem
and the hardness of the problem depend heavily on the filter
coefficients. We observe that for the filter instances where the
minimum solutions are not obtained, the found solution by the
exact algorithm can be far from the solutions that are obtained
using a heuristic, such as filters 7 and 8. On overall instances,
ASSUME-A finds the best optimum solutions among these
algorithms. This experiment also shows that the use of a
heuristic algorithm is indispensable, when an exact algorithm
could not conclude to obtain the minimum solution.

VII. C ONCLUSIONS

We have described an exact algorithm that computes the
minimum number of adder/subtracter modules in the imple-
mentation of MCM structures by maximizing the sharing of
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TABLE III

SUMMARY OF RESULTS FOR UNCONSTRAINED MAXIMUM SHARING PROBLEM .

Binary CSD MSD

Filter ASSUME-A Exact [19] [3] [4] ASSUME-A Exact [4] ASSUME-A Exact
adder stp adder stp adder stp adder stp adder stp adder stp adder stp adder stp adder stp adder stp

1 10 3 10 3 10 3 10 3 10 3 10 2 10 2 10 3 10 3 10 2
2 18 3 18 4 18 3 18 3 18 3 18 3 18 3 18 3 18 3 18 3
3 17 5 17 5 18 3 19 3 18 4 16 3 16 3 18 4 16 3 16 3
4 29 4 29 4 30 3 30 3 29 4 29 3 29 4 29 4 29 4 29 3
5 35 4 35 4 35 3 36 3 34 3 34 3 34 3 34 3 34 3 34 3
6 24 4 23 4 25 3 25 3 24 3 23 3 23 4 22 4 22 4 22 4
7 33 5 32 5 35 3 35 3 36 4 35 3 35 3 35 3 34 3 34 3
8 35 5 34 4 37 3 37 4 36 4 35 3 35 3 36 4 34 4 33 3
9 52 5 51 5 58 4 55 4 53 5 52 4 51 4 51 5 49 4 49 4

Total 253 38 249 38 266 28 265 29 258 33 252 27 251 29 253 33 246 31 245 28

TABLE IV

SUMMARY OF RESULTS FOR MAXIMUM SHARING PROBLEM UNDER A DELAY CONSTRAINT.

Binary CSD MSD

Filter ASSUME-D Exact [30] ASSUME-D Exact ASSUME-D Exact
adder stp adder stp adder stp adder stp adder stp adder stp adder stp

1 10 3 10 3 11 2 10 2 10 2 10 2 10 2
2 18 3 18 3 18 3 18 3 18 3 18 3 18 3
3 18 3 18 3 18 3 16 3 16 3 16 3 16 3
4 29 3 29 3 30 3 29 3 29 3 29 3 29 3
5 36 3 35 3 35 3 34 3 34 3 34 3 34 3
6 25 3 25 3 26 3 23 3 23 3 22 3 22 3
7 33 4 32 4 36 3 35 3 35 3 34 3 34 3
8 36 4 34 4 37 3 35 3 35 3 35 3 33 3
9 53 4 51 4 58 3 52 3 52 3 49 3 49 3

Total 258 30 252 30 269 26 252 26 252 26 247 26 245 26

TABLE V

0-1 ILP PROBLEM SIZES OF THE PROPOSED MODELS UNDERMSD REPRESENTATION.

Minimization of Minimization of Minimization of

Filter Partial Terms Operations Operations under a Delay Constraint
vars cons optvars vars cons optvars vars cons delay cons optvars

1 10 10 10 247 347 144 247 372 25 144
2 76 97 56 635 1027 345 635 1075 48 345
3 151 298 80 1327 2387 677 1327 2546 159 677
4 93 139 64 1926 3331 1023 1926 3616 285 1023
5 34 34 34 1142 1769 651 1142 1897 128 651
6 107 144 74 4324 8547 2153 4324 10127 1580 2153
7 205 455 93 2250 4828 1062 2250 5081 253 1062
8 546 1405 200 3915 8542 1856 3915 9230 688 1856
9 4010 14880 779 26778 55489 13329 26778 71670 16181 13329

TABLE VI

RUN TIME COMPARISON OF THESAT-BASED 0-1 ILP SOLVERS.

Minimization of Minimization of Minimization of

Filter Partial Terms Operations Operations under a Delay Constraint
Bsolo MiniSat+ Bsolo MiniSat+ Bsolo MiniSat+

adder CPU adder CPU adder CPU adder CPU adder CPU adder CPU

1 10 0.1 10 0 10 0.2 10 0.1 10 0.2 10 0
2 18 0 18 0 18 0.2 18 0.1 18 0.2 18 0.6
3 16 0.1 16 0 16 0.5 16 0.7 16 0.4 16 2.1
4 29 0 29 0 29 1.4 29 0.5 29 2.7 29 0.7
5 34 0.1 34 0 34 0.3 34 0.3 34 0.3 34 0.3
6 22 0.1 22 0 22 6.8 22 3600.1 22 25.4 22 3600.1
7 34 0.1 34 0.1 34 4 34 19.5 34 5.2 34 8.9
8 33 9.8 33 0.1 33 27.4 33 60,8 33 41.6 33 29.2
9 49 380.6 49 4.3 49 1974.8 59 3600.1 49 1332.2 53 3600.1

common subexpressions. The algorithm can handle binary,
CSD and MSD representations for the coefficients. Delay
constraints can be included in the model so that a user-
specified delay can be accommodated. A heuristic variation
of this algorithm is presented and shown to be extremely
competitive. We presented results for digital filter synthesis
where we demonstrate that the exact algorithm can be applied
to real-sized problems. We compare our heuristic algorithm
with previously proposed heuristics and showed that, although
these algorithms perform reasonably well, our heuristic based

on the exact model is significantly superior.

An interesting result demonstrated in this paper is that
the binary representation allows for a greater amount of
sharing, hence producing more area-efficient implementations
for MCM problems than the CSD and MSD representations.
However, when seeking minimum delay solutions, the MSD
representation should be used.

The algorithms proposed in this paper can be extended to
handle general number representation of constants by using
the techniques described in [36], [37] to be competitive with
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TABLE VIII

SUMMARY OF RESULTS OF EXACT AND HEURISTIC ALGORITHMS AND0-1 ILP PROBLEM SIZES.

[19] [3] [4] ASSUME-A Exact 0-1 ILP Problem Size

Filter adder stp adder stp adder stp adder stp adder stp CPU vars cons optvars

1 26 4 26 7 31 5 24 4 21 5 6244.2 50732 202698 2158
2 10 3 11 7 11 4 11 5 10 4 27.7 3410 12303 350
3 58 4 61 7 67 6 52 4 77 4 86400.1 58652 230136 3269
4 45 4 46 7 48 6 43 4 45 4 86400.1 20572 77736 1703
5 61 4 57 6 61 6 54 4 63 4 86400.1 81641 324765 3984
6 14 4 15 7 16 5 16 5 12 5 2387.7 27614 108062 1266
7 178 4 167 5 203 6 156 5 228 5 86400.1 46959 183081 4037
8 136 4 137 6 158 6 124 5 192 4 86400.1 74334 294575 4905
9 24 4 24 6 27 6 23 4 23 4 86400.1 34969 137129 1746
10 266 4 238 5 240 6 211 5 249 5 86400.1 38742 150786 3802
11 199 4 204 6 223 5 176 4 247 5 86400.1 55816 218351 4820

Total 1017 43 986 69 1085 61 890 49 1167 49 > 8 days 493441 1939622 32040

graph-based algorithms. As future work, we are currently
working on the implementation of an exact graph-based al-
gorithm.
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