
870 IEEE TRANFACTIONS ON SOFTWARF FNGINFFRING. VOL. 16 NO X. AUGLlSr IYYO

Automated Software Test Data Generation
BOGDAN KOREL, MEMBER, lEEE

Abstract-Test data generation in program testing is the process of
identifying a set of test data which satisfies given testing criterion. Most
of the existing test data generators 161, IS], 1101, 1161, [30] use symbolic
evaluation to derive test data. However, in practical programs this
technique frequently requires complex algebraic manipulations, espe-
cially in the presence of arrays. In this paper we present an alternative
approach of test data generation which is based on actual execution of
the program under test, function minimization methods, and dynamic
data flow analysis. Test data are developed for the program using ac-
tual values of input variables. When the program is executed, the pro-
gram execution flow is monitored. If during program execution an un-
desirable execution flow is observed (e.g., the “actual” path does not
correspond to the selected control path) then function minimization
search algorithms are used to automatically locate the values of input
variables for which the selected path is traversed. In addition, dynamic
data flow analysis is used to determine those input variables responsi-
ble for the undesirable program behavior, leading to significant speed-
up of the search process. The approach of generating test data is then
extended to programs with dynamic data structures, and a search
method based on dynamic data flow analysis and backtracking is pre-
sented. In the approach described in this paper, values of array in-
dexes and pointers are known at each step of program execution, and
this approach exploits this information to overcome difficulties of array
and pointer handling; as a result, the effectiveness of test data gener-
ation can be significantly improved.

Zndex Terms-Automated test generation, dynamic data flow analy-
sis, function minimization, software testing, symbolic evaluation.

I. INTRODUCTION
OFTWARE testing is very labor-intensive and expen- S sive; it accounts for approximately 50% of the cost of

a software system development [11, [28]. If the testing
process could be automated, the cost of developing soft-
ware should be reduced significantly. Of the problems in-
volved in testing software, one is of particular relevance
here: the problem of developing test data. Test data gen-
eration in software testing is the process of identifying
program input data which satisfy selected testing cri-
terion. A test data generator is a tool which assists a pro-
grammer in the generation of test data for a program.
There are three types of test data generators: pathwise test
data generators [6], [8], [lo], [161, [30], data specifica-
tion generators [3], [19], [24], [25] , and random test data
generators [7]. This paper focuses on pathwise test data
generators which are tools that accept as input a computer
program and a testing criterion (e.g., total path coverage,
statement coverage, branch coverage, etc.) and then au-

Manuscript received December 19, 1988; revised March 24, 1990. Rec-
ommended by W. Howden.

The author is with the Department of Computer Science, Wayne State
University, Detroit, MI 48202.

IEEE Log Number 9036267.

tomatically generate test data that meet the selected cri-
terion. The basic operation of the pathwise generator con-
sists of the following steps: program control flow graph
construction, path selection, and test data generation. The
path selector automatically identifies a set of paths (e.g.,
near-minimal set of paths) to satisfy selected testing cri-
terion. Once a set of test paths is determined, then for
every path in this set the test generator derives input data
that results in the execution of the selected path.

Most of the pathwise test data generators [6], [8], [101,
[16], [30] use symbolic evaluation to derive input data.
Symbolic evaluation involves executing a program using
symbolic values of variables instead of actual values.
Once a path is selected, symbolic evaluation is used to
generate a path constraint, which consists of a set of
equalities and inequalities on the program’s input vari-
ables; this path constraint must be satisfied for the path to
be traversed. A number of algorithms have been used for
the inequality solution. As pointed out in [18], [27], sym-
bolic evaluation is a promising approach; however, there
are still several problems which require additional re-
search, e.g., the problem of array element determination.
This problem occurs when the index of an array depends
on input values; in this case, the array element that is
being referenced or defined is unknown. This problem oc-
curs frequently during symbolic evaluation. Inefficient so-
lutions exist, for in the worst case all possible index val-
ues can be enumerated. Though there has been some work
on this problem [30] and a related problem for record
structures [27], the results are still unsatisfactory.

In this paper we present an alternative approach of test
data generation, referred to as a dynamic approach of test
data generation, which is based on actual execution of a
program under test, dynamic data flow analysis, and func-
tion minimization methods. Test data are developed using
actual values of input variables. When the program is ex-
ecuted on some input data, the program execution flow is
monitored. If, during program execution, an undesirable
execution flow at some branch is observed then a real-
valued function is associated with this branch. This func-
tion is positive when a branch predicate is false and neg-
ative when the branch predicate is true. Function min-
imization search algorithms are used to automatically
locate values of input variables for which the function be-
comes negative. In addition, dynamic data flow analysis
is used to determine input variables which are responsible
for the undesirable program behavior, leading to signifi-
cant speed-up of the search process. In this approach, ar-
rays and dynamic data structures can be handled precisely

0098-5589/90/08OO-0870$0 1 .OO O 1990 IEEE

KOREL: SOFTWARE TEST DATA GENERATION 87 1

because during program execution all variables values,
including array indexes and pointers, are known; as a re-
sult, the effectiveness of the process of test data genera-
tion can be significantly improved.

The organization of this paper is as follows. In the next
section basic concepts and notations are introduced. Sec-
tion 111 shows that the test data generation problem can be
reduced to the sequence of subgoals where each subgoal
can be solved using function minimization search tech-
niques. The basic search procedure for solving subgoals
is presented in Section IV. Dynamic data flow concepts
and their application in the test data generation process
are discussed in Section V. In Section VI, the test data
generation is then extended onto programs with dynamic
data structures. Finally, in the Conclusions further re-
search is outlined.

11. BASIC CONCEPTS
Ajow graph of program Q is a directed graph C = (N,

A, s, e) where 1) N is a set of nodes, 2) A is a binary
relation on N (a subset of N x N), referred to as a set of
edges, and 3) s and e are, respectively, unique entry and
unique exit nodes, s, e E N .

For the sake of simplicity, we restrict our analysis to a
subset of structured Pascal-like programming language
constructs, namely: sequencing, if-then-else, and while
statements. A node in N corresponds to the smallest sin-
gle-entry, single-exist executable part of a statement in Q
that cannot be further decomposed; such a part is referred
to as an instruction. A single instruction corresponds to
an assignment statement, an input or output statement, or
the <expression> part of an if-then-else or while state-
ment, in which case it is called a test instruction.

An edge (n,, nJ) E A corresponds to a possible transfer
of control from instruction n, to instruction nJ. For in-
stance, (2, 3), (6, 7), and (6, 8) are edges in the program
of Fig. 1. An edge (n,, n,) is called a branch if n, is a test
instruction. Each branch in the control flow graph can be
labeled by a predicate, referred to as a branch predicate,
describing the conditions under which the branch will be
traversed. For example, in the program of Fig. 1 branch
(5, 6) is labeled “i < high,” branch (6, 7) is labeled
“max < A [i] , ” and branch (6, 8) is labeled “max I
A [i] . ”

An input variable of a program Q is a variable which
appears in an input statement, e.g., read(x), or it is an
input parameter of a procedure. Input variables may be of
different types, e.g., integer, real, boolean, etc. Let I
= (x l r x 2 , , x ,) be a vector of input variables of
program Q. The domain D , of input variable x , is a set of
all values which x, can hold. By the domain D of the pro-
gram Q we mean a cross product, D = D,, X D,? X - - -
x Ox,,, where each D,, is the domain for input variable n, .
A single point x in the n-dimensional input space D, x E
D, is referred to as a program input.

A path P in a control flow graph is a sequence P =
< nh,, nkz, - * , nk, > of instructions, such that nk, = s,
and for all i, 1 I i < q, (nh,, nh,, ,) E A. A path is feasible

V U
A: array[l..lOO] of integer;
low,high,step: integer,
min,max: integer,
i: integer ;

begin
1 ‘“put OOW~gh,StePAA) ;
2 rmn:=A[low];
3 max:=A[low];
4 i := low + step ;
5 while i < high do

6.7
8 9
10

< A[i] then max := A[i];
if min > A[i] then min := A[i];
i := i + step ;

end;
1 1 output (min,max);

end ;
Fig. 1 . A sample program.

if there exists a program input x for which the path is
traversed during program execution, otherwise the path is
infeasible.

111. A TEST DATA GENERATION PROBLEM
, nk, > be a path in the pro-

gram. The goal of the test data generation problem is to
find a program input x E D on which P will be traversed.
We shall show that this problem can be reduced to a se-
quence of subgoals where each subgoal is solved using
function minimization search techniques.

Without loss of generality, we assume that the branch
predicates are simple relational expressions (inequalities
and equalities). That is, all branch predicates are of the
following form:

Let P = < nkl, nkz,

El O P E2
where E, and E2 are arithmetic expressions, and op is one
of { <, I, >, 1, =, # }. In addition, it is assumed
that predicates do not contain AND’s, OR’s or other bool-
ean operators.

Each branch predicate E, op E2 can be transformed to
the equivalent predicate of the form

F re1 0

where F and re1 are given in Table I.
F is a real-valued function, referred to as a branchfinc-

rim, which is 1) positive (or zero if re1 is <) when a
branch predicate is false or 2) negative (or zero if re1 is
= or 5) when the branch predicate is true. It is obvious
that F is actually a function of program input x. Symbolic
evaluation can be used to find explicit representation of
the F (x) in terms of the input variables. However, in
practical programs this technique frequently requires
complex algebraic manipulations, especially in the pres-
ence of arrays. For this reason, we shall consider the al-
ternative approach in which the branch function is eval-
uated for any input data by executing the program. For
instance, the true branch of a test “if y > z then . . .”
has a branch function F, whose value can be computed
for a given input by executing the program and evaluating
the z-y expression.

872 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. NO. X. AUGUST IYYO

TABLE I

Branch Branch
R c d i C a t e FunctionF rcl

Let xo be the initial program input (selected randomly)
on which the program is executed. If P is traversed, xo is
the solution to the test data generation problem; if not, we
have to solve the first subgoal. Let T = < fPl , f,,?, - - ,
r,,: > be a program path traversed on xo, and let P I =
< nkl, nk2, * ’ * , nk, > be the longest subpath of P, re-
ferred to as a successful subpath of P on xo, such that for
all j , 1 I j I i, nk, = t,,,. PI represents a successfully
traversed part of P on input xo; the branch violation oc-
curs on execution of branch (n k , , r ~ ~ , + ~) . Let F , (x) be a
branch function of branch (n k , , f l k , + I) . The first subgoal,
now, is to find a value of x which will preserve the tra-
versal of PI and cause F , (x) to be negative (or zero) at
f l k , ; as a result, (n k , , f l k , + ,) will be successfully executed.
More formally, we want to find a program input x E D
satisfying

F j (x) relj 0

subject to the constraint:

PI is traversed on x,

where rel, is one of { <, I, = }.
This problem is similar to the minimization problem

with constraints because the function F, (x) can be mini-
mized using numerical techniques for constrained min-
imization [12], [13] until F , (x) becomes negative (or
zero, depending on rel,). The search procedure for solv-
ing subgoals is presented in Section IV.

Let XI be the solution to the first subgoal. Now, either
the selected path P is traversed (as a consequence, XI is
the solution to the main goal), or the second subgoal must
be solved. In the latter case, let P2 = < nk, , nh2, * ,
nk,, nkgt 1 9 . , nk,,, > be the successful subpath of P tra-
versed on XI. Let F,fl (x) be the branch function of branch
(nk,,, , nk,,,+ The second subgoal is to find a program in-
put x which satisfies F,,,(x) rel,fl 0, subject to the con-
straint: P2 is traversed on x. This process of solving
subgoals is repeated until the solution to the main goal is
found, or one of the subgoals cannot be solved. In the
latter case, the search procedure fails to solve the test data
generation problem.

IV. BASIC SEARCH PROCEDURE
We now turn our attention to the question of how to

conduct a search to find the solution to a subgoal. Because
of a lack of assumptions about the branch function and
constraints, we have selected direct-search methods [121,

[13], which progress towards the minimum using a strat-
egy based on the comparison of branch function values
only. The main advantage of these search methods is that
they do not require regularity and continuity of the branch
function and the existence of derivatives. The most sim-
ple strategy of this form is that known as the alternating
variable method which consists of minimizing with re-
spect to each input variable in turn. We start searching for
a minimum with the first input variable xI (using a one-
dimensional search procedure) while keeping all the other
input variables constant until the solution is found (the
branch function becomes negative) or the positive mini-
mum of the branch function is located. In the latter case,
the search continues from this minimum with the next in-
put variable x2. The search proceeds in this manner until
all input variables x I , * , x,, are explored in turn. After
completing such a cycle, the procedure continuously
cycles around the input variables until the solution is found
or no progress (decrement of the branch function) can be
made for any input variable. In the latter case, the search
process fails to find the solution even if the positive min-
imum of the branch function is located.

Now we shall briefly describe the one-dimensional
search procedure for solving, for instance, the first
subgoal. The one-dimensional search procedure [131 con-
sists of two major phases, an “exploratory search” and a
“pattern search. ” In the exploratory search, the selected
input variable xl is increased and decreased by a small
amount, while the remaining input variables are held con-
stant. These are called the exploratory moves. For each
variable change, the program is executed and the con-
straint is checked for possible violation by comparing suc-
cessful subpath PI with the path which is actually being
traversed. If PI has been traversed, branch function F, (x)
is evaluated for the new input. On the other hand, if PI
has not been traversed, the constraint violation is re-
ported. In these exploratory moves, the value of the
branch function is compared to the value of the branch
function for the previous input. In this way, it is possible
to indicate a direction in which to proceed, that is, to make
a larger move. If the branch function is improved (de-
creased) when x, is decreased, the search should proceed
in the direction of decreasing x l . If, on the other hand, the
branch function is improved when x, is increased, the
search should proceed in the direction of increasing x,. If
both the decrement and the increment of xl do not cause
the improvement of the branch function, the exploratory
search fails to determine the direction for the search; in
this case, the next input variable is selected for consid-
eration.

Assuming that the exploratory moves are able to indi-
cate a direction in which to proceed, a larger move called
a pattern move (pattern search) is made. After a pattern
move, the program is executed and the constraint is
checked for possible violation. If the constraint violation
has not occurred and branch (n h , , n h , + l) has not been
taken, the branch function is evaluated and its value is
compared to the value of the branch function for the pre-

KOREL: SOFTWARE TEST DATA GENERATION 873

vious input. If branch function F , (x) is improved for the
given step, then the new value of the branch function re-
places the old one, and another larger move is made in
the same direction. A series of pattern moves is made
along this direction as long as the branch function is im-
proved by each pattern move. The magnitude of the step
for the pattern move is roughly proportional to the number
of successful steps previously encountered. However, if
the branch function is not improved, then the old value of
the branch function is retained. If, after a succession of
successful moves, a pattern move fails because the value
of the branch function is not improved, then exploratory
moves would be made to indicate a new direction. If a
pattern move fails because of a constraint violation, the
search would continue in this direction, with a reduction
of the step size as necessary, until a successful move is
made. At this point, we would again make exploratory
moves to indicate a new direction.

This process continues until the branch function be-
comes negative (or zero) or no progress (decrement of the
branch function) can be made for any input variable dur-
ing the exploratory search. In the latter case, the search
procedure fails to find the solution to the test data gener-
ation problem.

Example 1
We work through a simple example to illustrate the

basic approach of test data generation. Consider the pro-
gram of Fig. 1 which is supposed to determine minimum
and maximum values for selected elements of array A (de-
termined by input variables low, step, and high).

Given is the following path P = < s, 1 , 2, 3, 4, 5 , 6,
8, 10, 5 , 6, 8, 9, 10, 5, 1 1 >, the goal of the test data
generation is to find a program input x (i.e., values for
the input variables: low, high, step, A [11, A [2], - * ,
A [1 0 0 1) which will cause P to be traversed. In the first
step, all input variables receive initial values; suppose the
following values have been assigned: low = 39, high =
93, step = 12, A[1] = 1 , A[2] = 2, * * , A [1001 =
100. The program is executed on this input, and the fol-
lowing successful subpath PI = < s, 1 , 2, 3, 4, 5, 6 >
of P is traversed; the violation occurs at branch (6, 8).
Let F , (x) be a branch function of branch (6, 8), where
values of Fl(x) can be evaluated by computing the “A [i]-
max” expression at 6. Note that the branch predicate of
branch (6, 8) is max 1 A [i 1. Our first subgoal is to find
a program input x such that F l (x) I 0, subject to the
constraint: PI is traversed on x.

Suppose that input variables are ordered in the follow-
ing way: A [1] , A [2] , - * * , A[100], high, step, low.
The direct search starts with input variable A [1 1 . In the
exploratory move, A [1 1 is increased by one, while the
remaining variables are kept constant. It should be noted
that because A [1 3 is declared as integer, the minimal in-
crement of A [1] is one. The program is executed on this
input and the value of FI (x) is evaluated at 6; the value
of branch function F l (x) is unchanged. A [1] is decreased
by one, but the value of F , (x) is unchanged. The next

input variable A [21 is selected. The exploratory moves
for A[2], A [3] , - , A[38] do not cause any change
in the value of F , (x) . The increment of A[39] by one
causes the decrement in the value of F , (x) . This step de-
fines a promising direction for search. Suppose that the
value of A [391 is increased by 100 in the pattern move,
i.e., A [391 = 139. On this input, subpath P, is traversed
and branch (6, 8) is taken. As a result, this input is the
solution to the first subgoal.

When the program is executed on this input, the follow-
ing successful subpath P2 = < s, 1 , 2, 3 , 4, 5 , 6, 8 > of
P is traversed; the violation occurs at branch (8, 10). Let
F 2 (x) be a branch function of branch (8, lo), where val-
ues of F 2 (x) can be evaluated by computing the “min-
A [i 1’’ expression at 8. The second subgoal is to find a
program input x such that F 2 (x) I 0, subject to the con-
straint: P , is traversed on x.

Suppose that input variables are ordered in the same
manner as for the first subgoal. Exploratory moves for
A [1 3 , - * * , A [381 do not cause any improvement in the
value of branch function F 2 (x) . The decrement of A [391
by one causes the decrement in the value of F 2 (x) . This
step defines a direction for search. By performing the se-
ries of exploratory and pattern moves on A[39] and re-
ducing the size of the pattern move, the value of A[39]
= 51 can be found. This input is the solution to the sec-
ond subgoal, i.e., subpath P2 is traversed and branch (8,
10) is taken.

When the program is executed on this input, the follow-
ing successful subpath P3 = < s, 1 , 2, 3, 4, 5 , 6, 8, 10,
5, 6 > of P is traversed. The violation occurs on the sec-
ond execution of branch (6, 8). Let F 3 (x) be a branch
function of branch (6, 8), where values of F 3 (x) can be
evaluated by the “A [i 1-max” expression. The third
subgoal is to find a program input x such that F 3 (x) 5 0,
subject to the constraint: P3 is traversed on x.

- , A [62] do not cause
any improvement in the value of branch function F 3 (x) .
Observe that the exploratory moves for A [391 cause the
constraint violation, i.e., P3 is not traversed. Only the
decrement of A [631 causes the improvement of branch
function F 3 (x) . Suppose that the value of A [63] is de-
creased by 100 in the pattern move, i.e., A[63] = -37.
This move finds the solution to the third subgoal.

When the program is executed on this input, the follow-
ing successful subpath P4 = < s, 1 , 2, 3, 4, 5 , 6, 8, 10,
5 , 6, 8, 9, 10, 5 > of P is traversed. The violation occurs
on the branch (5, 1 1) . Let F4(x) be a branch function of
branch (5, l l) , where values of F 4 (x) can be evaluated
by the “high-i” expression. The fourth subgoal is to find
a program input x such that F4(x) I 0, subject to the
constraint: P4 is traversed on x.

In the first step all elements of array A are tried out.
However, none of the exploratory moves for array ele-
mentsA[1 1 , - * , A [1001 cause an improvement in the
value of branch function F4(x). Only the decrement of
input variable high causes the improvement of branch
function F4(x). This exploratory move defines a direction

Exploratory moves for A [1 1 ,

874 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL.. Ih. NO. X. AUGUST lY90

for the change of the variable high. The sequence of the
pattern moves can determine the final value of high = 67.
The solution, high = 67, A[39] = 51, A[63] = -37
(where the rest of the input variables have the initial val-
ues), to the fourth subgoal is also the solution to the test
generation problem.

V. DYNAMIC DATA FLOW BASED SEARCH
In this section, we present a heuristic approach, based

on dynamic data flow analysis, which can significantly
speedup the search process presented in the previous sec-
tion. It originated during experiments with a recently im-
plemented prototype of the automated test data generation
system TESTGEN [23].

For many programs the evaluation of the branch func-
tion is the most time-consuming portion of the search. It
is felt that it would be more efficient to keep the number
of evaluations to a minimum. One of the most essential
factors deciding about the reduction of branch function
evaluations is the arrangement of input variables for con-
sideration. For instance, the arrangement of input vari-
ables in Example 1 is rather rigid and in a sense “blind.”
It does not give any preference to a variable that has a
very good chance of moving toward the solution quickly.
For example, when subgoal 4 in Example 1 is considered,
selection of variable high, as the first variable, will
quickly lead to the solution. However, the “blind” rule
requires that all array elements be evaluated before vari-
able high is considered. It should be obvious that a dif-
ferent arrangement of input variables for consideration can
lead to the different performance of the search process.
This is essential when we deal with programs with a large
number of input variables, e.g., programs with large in-
put arrays (hundreds or even thousands of array ele-
ments).

Thus, the important question arises as to which are the
most promising input variables to explore. The approach
which we propose in this paper is based on dynamic data
flow analysis which allows determining those input vari-
ables which are responsible for the current value of the
branch function on the given program input.

We now introduce the basic concepts of dynamic data
flow analysis [21], [22], [2], that is, those concerned with
data flow along the path which has been traversed during
program execution. We shall later show how to use this
information to guide the search process.

* , nk, > be a path that is tra-
versed on a program input x. A use of variable v in T is
an instruction nk, in which this variable is referenced. A
definition of variable v in T is an instruction nk, which
assigns a value to that variable. Let u(nk ,) be a set of
variables whose values are used in nk, and D(nk,) be a set
of variables whose values are defined in nk,. To illustrate
these concepts consider the following assignment instruc-
tion

Y: a [i + j] := b [j + 31 + U - a[k - 31;

Let T = < nk , , nk2,

at some point of program execution. Since it is possible
to determine, by instrumentation, values of array indexes
during program execution, we can determine which array
elements are used or defined. For example, assume that
i = 2, j = 3, and k = 4 just before Y is executed. In this
case, the particular array elements b[6] and a [11 are
used; also, the scalar variables v, i , j, and k are all used
in Y. By the same token, the only variable defined in Y is
array element a [5 1.

In what folows we introduce the concept of data flow
influence (dependence) between instructions in T.

Dejinition I: Let nk,, and nk, be two instructions in T.
We say that nk,, directly influences nk, by variable v , p <
t, iff

1) U E V (n , ,) ,
2) E D(nk,,) , and
3) for all j , p < j < t , v @ D(nk,).

This influence describes a situation where one instruc-
tion assigns a value to an item of data and the other in-
struction uses that value. The influences between instruc-
tions in T can be represented graphically as an influence
network, where each link between instructions represents
direct influence between them. The example of an influ-
ence subnetwork is presented in Fig. 2. In this subnet-
work, for instance, instruction 3 directly influences in-
struction 6 by variable max.

Definition 2: We say that an input variable x, influences
instruction nkr in T iff there is a sequence < n,,, nrz,
. . . , n,,, > of instructions from T such that:

1) n,., is an input instruction which defines x , ,

3) n,, directly influences n,.? by x , , and
4) for all j , 1 < j < w , there exists a variable U such

From the influence subnetwork of Fig. 2 it is easy to
determine that input variable A [391 influences instruction
6 because input instruction 1 directly influences instruc-
tion 3 by A [391 and instruction 3 directly influences in-
struction 6 by variable max. By the same token, we can
determine that input variables A [5 1 1, low, and step influ-
ence test instruction 6. Consequently, these input vari-
ables influence branch function F , (x) in subgoal 1 of Ex-
ample 1. In the same manner, we can determine that input
variables A [391, A [5 1 1, low, and step influence F2(x) in
subgoal 2; input variables A [391, A [63 1, low, and step
influence F 3 (x) in subgoal 3; input variables high, low,
and step influence branch function F 4 (x) in subgoal 4.

This information can be used to speed up the search
during the solution of subgoals by considering only those
input variables which have influence on a given branch
function. As a result, the possibility of a fruitless search
can be significantly reduced. For instance, while solving
the fourth subgoal, we are effectively removing two
hundred (2*100) evaluations of branch function F 4 (x) ; if
the number of elements in A had been, for example, one

2, nr,, = nkr-

that n, directly influences n , , , by U .

875 KOREL: SOFTWARE TEST DATA GENERATION

INPUTVARIABLES:

. A11001

input(l0WJli~A)

min:=A[low] P min:=A[39] */

max:=A[low] P max:=A[39] Y

i:=low+step

i <high

max < A[i] P max:=A[Sl] */

V
i L; means i directly influences j by v.

Fig. 2. The influence subnetwork for subpath P , from Example 1

thousand then two thousand evaluations could have been
saved.

Further improvement of the search process can be
gained by reducing the number of constraint violations.
The difficulty with the search method, presented in the
previous section, is that when repeatedly encountering a
constraint violation it is necessary to reduce the size of a
pattern step until the constraint is satisfied. After many
such withdrawals the search will be quite slow. We can
reduce the number of constraint violations during the
search by finding those input variables which have mini-
mal effect, or no effect at all, on the constraint, i.e., those
input variables which have minimal or no influence on
branch predicates of a successful subpath. For instance,
while solving the third subgoal of Example 1 , input vari-
able A[39] influences, in subpath P3, predicates of
branches (6, 8) and (8, 10); input variables low and step
influence predicates of branches (5 , 6), (6, 8), (8, lo),
and (5, 6); input variable A[63] does not influence any
of the branch predicates in P 3 . It is obvious that A [631
should be selected as the first variable for consideration
because changing A [63 J will not cause any constraint
violation. Similarly, solving the fourth subgoal, variables
low and step influence six branch predicates in P4,
whereas variable high influences two branch predicates.
Input variable high should be selected as a first variable
to explore because by changing the value of high the risk
of constraint violation is minimized.

* , nk, > be a successful subpath
of P on a given program input x. With every input vari-
able xj which influences branch function F (x) of branch
(nk,, nk, + I) associated is the integer r (xi), referred to as a
risk factor, equal to the number of branch predicates in P’
which are influenced by xi. On this basis, input variables
influencing F (x) are sorted with respect to r (x j) in the
ascending order. The major presumption of this heuristic
is that the lower r (xi), the lower the risk of constraint
violation while changing xi.

Let P’ = < nkl, nkz, *

Thus the input variables in Example 1 are arranged in
the following way:

This arrangement of input variables leads to the solu-
tion in 21 trials (program executions). On the other hand,
the “blind” arrangement of variables from Example 1 re-
quires 497 trials to find the solution.

During the search, special attention should be paid to
input variables that influence array indexes, that is, those
input variables that influence the selection of the array
elements during program execution. For example, sup-
pose that while solving the first subgoal in Example 1 in-
put variables are ordered in the following way: low,
A [391, A [5 1] , step, and suppose that during the explo-
ration of variable low its value has been modified, e.g.,
low = 20. If the search continues from this point with
input variable A [391, then the search will fail because
A [391 and A [51] do not influence F , (x) any more. It is
easy to see that array elements A[20] and A[32] now
influence branch function F , (x) . Therefore each time an
input variable receives a new value and this variable in-
fluences the index variable, a new set of input variables
influencing a branch function should be derived.

VI. DYNAMIC DATA STRUCTURES
The next extension of the automated test data genera-

tion involves records and pointers. Records provide a
grouping facility for data items. A record is a collection
of data items, each of which is said to occupy a “field”
of the record. A distinct name is associated with each
field, and access to individual items within a record is via
these field identifiers. Consequently, every field in a rec-
ord can be treated as a separate variable.

Pointers, however, create unique problems since the
pointer variable actually represents two variables: the
pointer itself and the record pointed at. A nameless record
of a given type is created by calling the standard proce-

876 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL 16. NO X. AUGUST I Y Y O

dure new(p). Storage is reserved for the record but no
value is assigned to it. Once the dynamic record has been
created, it can be referenced by pointers.

In our approach, we treat every record, created dynam-
ically by the Pascal procedure new, as a separate variable
[9]. For this purpose, a list of dynamic records is created
and manipulated during program execution. In this way,
it is possible to determine not only which dynamic records
are pointed to by pointer variables at every point of pro-
gram execution, but also which fields in every dynamic
record are referenced or modified. To distinguish between
dynamic records, a unique name must be assigned to each
of them. For the purpose of the presentation, the follow-
ing notation will be used: rec;. The first execution of the
new procedure assigns the name recl to the first dynamic
record created. The next execution of new assigns the
name rec2 to the next record. Every subsequent execution
of new increases the value of i by one. In this manner, a
unique name for every dynamic record is guaranteed.
Consequently, every field in a dynamic record is uniquely
identified by rec;.field-name.

We now turn our attention to the question of how to
generate test data in the presence of pointers. The search
method based on dynamic data flow analysis and back-
tracking will be illustrated in the following example.

Example 2

Consider the Pascal procedure FIND of Fig. 3. This
procedure accepts as input an integer element y and a dy-
namic data structure pointed to by pointer variable L. The
goal of test data generation is to find a program input
which will cause the traversal of the following path P =
< s , 1 , 2 , 3 , 4 , 7 , 8 , 3 , 4 , 7 , 9 , 3 , 4 , 5 , 6 , 3 > .

One of the main problems of the test data generation,
in this case, is to find a shape of the input data structure
which will cause traversal of the selected path. In this
example we assume that the search procedure doesn’t have
any knowledge about the desired shape or a class of shapes
of the input data structure (e.g., a binary tree, a double
linked list, a directed graph etc). Since the only infor-
mation available is the declaration part of the dynamic
record, it is assumed that the input dynamic data structure
is a directed graph.

The brute force approach to find an input data structure
would be to search systematiclaly through the space of all
possible input data structure ‘‘shapes” until the solution
is found. The search method presented in this paper yields
the same answer with far fewer trials. Its basic idea is to
use dynamic data flow analysis and backtracking. In this
method, the goal of finding the input data structure to
traverse a selected path is achieved by solving a sequence
of subgoals, where subgoals are divided into two cate-
gories: arithmetic and pointer subgoals. If the given
subgoal is of arithmetic type then the branch function is
constructed and the direct search method described in the
previous section is applied. On the other hand, if the given
subgoal is of pointer type, then the search procedure based

%&Pointer = “Node;
Node = record

data : integer ;
left : NodePointer ;
right: NodePOitcr.

ud;

pmdm FIND (L: Nodcpointa; y: i n t e w , var q: NodePointer);

p: NodePointer :
var

p:=L;
2 q:=nil;

pfi
3 while p o nil do

4 be$?y = p“.data then
begin

end

5 q : = p ;
6 p := nil;

else
7.8 if y < pA..data then p := p“.left
9 else p : = f i g h t ;

ad;
end (FIND);

Fig. 3 . A sample Pascal procedure

on dynamic data flow analysis and backtracking is ap-
plied.

A subgoal of pointer type, for instance the first subgoal,
is solved by using, initially, dynamic data flow analysis
to determine those input pointer variables which influence
this subgoal (pointer branch predicate). Then the search
procedure determines subgoal solution by systematically
assigning possible values for those variables (note that a
branch function cannot be constructed from the branch
predicate of pointer type). When the first subgoal has been
solved, the search procedure attempts to solve the next
subgoal (if necessary). If the next subgoal cannot be
solved within the constaints of the current solution of the
first subgoal, then a new solution for the first subgoal is
sought. Clearly, when it is realized at some point
(subgoal) that a certain value of an input pointer variable
can in no way lead to a solution, then the search procedure
must backtrack to the previous subgoal to assign a new
value to this input variable. If a new solution is found,
again the search procedure attempts to solve the next
subgoal, constrained of course by the new solution. The
search procedure will continue attempting to solve the
subgoals, backtracking again and again when necessary,
until the solution to the main goal is found or no way to
consistently solve the subgoals can be found.

We now show, in more detail, how dynamic data flow
analysis and backtracking are used to guide the process of
finding the shape of the input data structure. Suppose that
the following initial input has been generated:

Y’5

n i l n i l

left right

Procedure FIND from Fig. 3 is executed on this input,
and the successful subpath P I = < s, 1 ,2 , 3 , 4 , 7, 8, 3 >
of P shown in Fig. 4 is traversed.

KOREL: SOFTWARE TEST DATA GENERATlON 877

INPUT:
recl

data

left right
L

1

2

3

4

ltC,.ldl ee P P 7 3

Y

p := L

q := NI

p <> nil

y := p.data P y:=nc,.data */

y<p.daa PYCreC,.data *I

p := pA.left /* p:=rec ,.left */

p <> nil

Fig. 4. The influence subnetwork for subpath P , from Example 2.

The violation occurs on the second execution of branch
(3, 4). The first subgoal is to find values for input vari-
ables y, L, rec,.data, recl.left, and rec,.right such that PI
is traversed and branch (3, 4) is taken.

Dynamic data flow analysis (see Fig. 4) determines that
recl .left influences the branch predicate of (3,4). It should
be clear that the only meaningful values which can be as-
signed to recl.left at this moment are nil and adr(rec,),
where adr(recl) is an address of rec,. In addition, a new
record rec2 can be created, and adr(rec2) can be assigned
to rec2.1eft. For the sake of simplicity, we assume that the
input data structure (directed graph) cannot contain a rec-
ord pointing to itself. As a result, a new record rec2 is
created and adr(rec2) is assigned to rec, .left. It should be
noted that each time a new record is created by the search
procedure, the nil-value is assigned to all pointer fields of
the record and all integer (or real) fields receive random
value. Thus rec2.data receives a random value 3; rec2.right
and rec2.1eft receive nil-values. Consequently, the fol-
lowing input data structure is created:

. y =5
recl

Procedure FIND is executed on this input, and the fol-
lowing successful subpath P, = < s, 1, 2, 3, 4, 7, 8, 3,
4, 7, 9, 3 > of P is traversed. The violation occurs on the

third execution of branch (3 ,4) . The second subgoal is to
find values for input variables y, L, rec, .data, rec, .left,
recl .right, rec2.data, rec2.1eft, and rec2.right such that P2
is traversed and branch (3, 4) is taken.

Dynamic data flow analysis determines that rec2. right
influences the branch predicate of (3, 4). The only values
which can be assigned to rec2.right at this point are
adr(recl) or adr(rec,), where rec3 is a new dynamic rec-
ord. In the first attempt the search procedure assigns
adr(recl) to rec2.right, and the following input data struc-
ture is created:

Procedure FIND is executed on this input, and the fol-
lowing successful subpath Pi = < s, 1, 2, 3, 4, 7, 8, 3 ,
4 , 7 , 9, 3, 4 > of P is traversed. The violation occurs on
the execution of branch (4, 5). Since the branch predicate
of branch (4, 5) contains an arithmetic expression, we can
apply the search procedure described in the previous sec-
tion to solve the third subgoal. However, this procedure
fails to find the solution to this subgoal. It should be ob-
vious that the selected path P cannot be traversed for this
shape of the input data structure. For this reason, we have
to backtrack to the second subgoal and assign the second
possible value to rec2.right. Thus a new record rec3 is cre-
ated and adr(rec3) is assigned to rec2.right; rec3.data re-
ceives a random value 67. The following input data struc-
ture is created:

y =5

"Fret' I

rec3

878 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. NO. 8. AUGUST 1990

Procedure FIND is executed, and the following suc-
cessful subpath P3 = < s, 1, 2, 3, 4, 7, 8, 3, 4, 7, 9, 3,
4 > of P is traversed. The violation occurs on the exe-
cution of branch (4, 5). Let F 3 (x) be a branch function of
branch (4, 5) , where values of F 3 (x) can be evaluated by
the abs(y-p”.data) expression. Thus the third subgoal is
to find a program input x such that F 3 (x) = 0 subject to
the constraint: P; is traversed on x.

Dynamic data flow analysis determines that input vari-
ables rec3.data and y influence branch function F 3 (x) .
Using the search procedure described in the previous sec-
tion, the value of rec3.data can be found equal to 5 . The
following solution to the third subgoal is also the solution
to the test data generation problem:

y =5 b ,

I

L

VII. CONCLUSIONS
The test data generation approach described in this pa-

per is based on program execution, dynamic data flow
analysis, and the function minimization methods. It has
been shown that the test data generation problem can be
reduced to a sequence of subgoals. Function minimization
methods are used to solve these subgoals. Moreover, dy-
namic data Row analysis is applied to speed up the search
process by identifying those input variables that influence
undesirable program behavior; as a result, the number of
fruitless tries can be significantly reduced. The potential
value of this approach is exhibited, for instance, by the
fact that the efficiency of the search does not depend upon
the size of input arrays. The approach of test data gener-
ation has then been extended to programs with dynamic
data structures, and the search method, which uses dy-
namic data flow analysis and backtracking to determine
the shape of the input dynamic data structure, has been
presented. In the approach described in this paper, values
of array indexes and pointers are known at each step of
program execution, and this approach exploits this infor-
mation to overcome difficulties of array and pointer han-
dling in the process of test data generation.

Several attempts to use “actual” program execution to
derive test data has been reported in the literature [4],
[26], [29]. One technique of test data generation for a
selected path was described by Miller and Spooner [26];

this technique requires, in the first step, to find by hand a
partial solution to the test data generation problem, in-
volving all nonfloating-point input variables. On the basis
of this partial solution, a straight-line program, which
corresponds to the selected path, is derived from the orig-
inal program. A real-valued function for the whole path
is chosen which is negative when at least one of the branch
predicates is false and positive when all the branch pred-
icates are true. Test data are derived by executing the
straight-line program and applying a numerical optimi-
zation algorithm to maximize this function. No test data
generator which uses this techniques has been reported.
Another technique described by Benson [4] uses execut-
able assertions in conjunction with optimum search al-
gorithms in order to test program automatically. In this
technique the error function, which relates the number of
assertions violated during program execution to the values
of the input variables, is introduced. The optimum search
techniques are used to find the values of the input vari-
ables for which the maximum number of assertions are
violated.

The approach presented in this paper makes no claim
of optimality. It opens, rather, the way for a wide spec-
trum of test data generation methods based on the pro-
gram execution and dynamic data flow analysis. The main
extensions should go into the generality and robustness of
this approach for use in the real world. Moreover, to fully
understand the power and limitations of the dynamic ap-
proach of test data generation additional research is re-
quired. We now highlight some directions for further re-
search.

A . Static Analysis

One direction of the further research is to incorporate
static analysis (e.g., dependence analysis [5], [15], [20])
in the process of test data generation. For example, for
the program of Fig. 1 static analysis can determine that
input variables low, high, and step always influence pred-
icate “i < high.” Consequently, there is no need to ap-
ply dynamic data flow analysis (to determine influencing
input variables) while solving subgoals related to this
predicate. This can speed up the search, especially when
there is a significant number of subgoals associated with
this predicate along the selected path. In addition, static
analysis can be used to reduce the amount of information
recorded during program execution, which is required to
perform dynamic data flow analysis, e.g., used/defined
variables. For example, for subgoals associated with the
predicate ” max < A [i 1’’ in the program of Fig. 1, static
analysis can determine that, in order to find the influenc-
ing input variables, no recording of used/defined vari-
ables in the “if min > A [i 3 then min : = A [i 1’’ state-
ment is required. We should stress, however, that static
analysis can be expensive, especially in the presence of
procedures; therefore, more research is required to deter-
mine a tradeoff between dynamic data flow analysis and
static analysis in the test data generation process.

KOREL: SOFTWARE TEST DATA GENERATION 879

B. Symbolic Evaluation
One of the problems of the dynamic approach of test

data generation is its very limited ability to detect path
infeasibility. If the selected path is infeasible and the in-
feasibility is not detected, a large number of attempts can
be performed before the search procedure terminates and
a lot of effort can be wasted. Symbolic evaluation, on the
other hand, is capable of detecting, to a certain extent,
path infeasibility. We, therefore, believe that combina-
tion of both techniques for test data generation can be ad-
vantageous. For example, symbolic evaluation can be
used to check path consistency before dynamic approach
of test data generation is used. In addition, application of
symbolic evaluation over mixtures of actual and symbolic
data [171 in the test data generation process should be in-
vestigated.

C. Procedures
To be of practical value, the dynamic approach of test

data generation has to be extended to programs with pro-
cedures. This does not seem to pose difficulties because
it is possible by instrumentation to identify variables that
are used or defined in a procedure call for the actual ex-
ecution; as a result, dynamic data flow analysis can pre-
cisely determine influencing input variables in the pres-
ence of procedure calls. On the other hand, static analysis,
in general case, fails to identify the used/defined variables
in the procedure call.
D. Global Optimization

The function minimization algorithm applied in our ap-
proach of test data generation is based on the direct search
method published in [121, [131. One of the problems of
this method is that it allows only to find a local minimum.
In many cases this can prevent solving subgoals, espe-
cially for branch functions with several local minimums.
There exists an extensive research in the area of global
optimization, e.g., [31], and several techniques have been
developed to find a global optimum. The research is
needed to investigate the application of those techniques
in the dynamic approach of test data generation.

ACKNOWLEDGMENT

Howden, for their helpful comments.
I would like to thank the referees and the editor, W.

REFERENCES
[I] D. Alberts, “The economics of software quality assurance,” in AF-

IPS Conf. Proc. 1976 Nar. Computer Conf., vol. 45. Montvale, NJ:
AFIPS Press, pp. 433-442.

[2] R . Baker, “EXDAMS-Extendable debuggmg and monitoring sys-
tem,” in 1969 Spring Joint Computer Conf., AFIPS Conf. Proc., vol.
34.

[3] J. Bauer and A. Finger, “Test plan generation using formal gram-
mars,” in Proc. 4th Int. Conf. Sofrware Engineering, 1979, pp. 425-
432.

[4] J. Benson, “Adaptive search techniques applied to software testing,”
ACMPerform. Eval. Rev., vol. 10, no. 1, pp. 109-116, Spring 1981.

[5] J Bergeretti and B. Carre, “Information-flow and data-flow analysis
of while-programs,” ACM Trans. Program. Lang. Syst . , vol. 7, no.
1, pp. 37-61, Jan. 1985.

[6] J. Bicevskis, J. Borzovs, U. Straujums, A. Zarins, and E. Miller,
“SMOTL-A system to construct samples for data processing pro-

Montvale, NJ: AFIPS Press, pp. 576-580.

gram debugging,” IEEE Trans. Sofrware Eng., vol. SE-5, no. 1, pp.
60-66, Jan. 1979.

[7] D. Bird and C. Munoz, “Automatic generation of random self-check-
ing test cases,” IBM Sysr. J., vol. 22, no. 3, pp. 229-245, 1983.

[8] R. Boyer, B. Elspas, and K. Levitt, “SELECT-A formal system for
testing and debugging programs by symbolic execution,” SIGPLAN
Notices, vol. 10, no. 6, pp. 234-245, June 1975.

[9] F. Chan and T. Chen, “AIDA-A dynamic data flow anomaly detec-
tion system for Pascal programs, ” Software-Practice and Experi-
ence, vol. 17, no. 3, pp. 227-239, Mar. 1987.

[lo] L. Clarke, “A system to generate test data and symbolically execute
programs,” IEEE Trans. Sofrware Eng., vol. SE-2, no. 3, pp. 215-.
222, Sept. 1976.

[I l l R. DeMillo, W. McCracken, R. Martin, and J. Passafiume, Software
Testing and Evaluation. BenjaminKummings, 1987.

[I21 P. Gill and W. Murray, Eds., Numerical Methods for Constrained
Optimization. New York: Academic, 1974.

[I31 H. Glass and L. Cooper, “Sequential search: A method for solving
constrained optimization problems,” J . ACM, vol. 12, no. 1, pp. 71-
82, Jan. 1965.

[14] R. Fairly, “An experimental program-testing facility,” IEEE Trans.
Sofrware Eng., vol. SE-I, no. 4, pp. 350-357, Dec. 1975.

[I51 J. Ferrante, K. Ottenstein, and J . Warren, “The program dependence
graph and its use in optimization,” ACM Trans. Program. Lang. Syst.,
vol. 9, no. 3, pp. 319-349, July 1987.

[16] W. Howden, “Symbolic testing and the DISSECT symbolic evalua-
tion system,” IEEE Trans. Sofrware Eng., vol. SE-4, no. 4, pp. 266-
278, 1977.

(171 -, Functional Program Testing and Analysis. New York: Mc-
Graw-Hill, 1987.

[I81 D. Ince, “The automatic generation of test data,” Comput. J . , vol.
30, no. I , pp. 63-69, 1987.

[I91 W. Jessop, J. Kanem, S. Roy, and J . Scanlon, “ATLAS-An auto-
mated software testing system,’’ in Proc. 2nd Int. Conf. Sofrware
Engineeering, 1976.

[20] B. Korel, “The program dependence graph in static program test-
ing,” Inform. Processing Lett., vol. 24, pp. 103-108, Jan. 1987.

[21] -, “PELAS-Program error locating assistant system,” IEEE
Trans. Soffware Eng., vol. 14, no. 9, pp. 1253-1260, Sept. 1988.

(221 B. Korel and J. Laski, Dynamic program slicing, ” Inform. Process-
i n g k t t . , vol. 29, no. 3, pp. 155-163, Oct. 1988.

[23] B. Korel, “TESTGEN-A structural test data generation system,”
Dep. Comput. ‘Sci., Wayne State Univ., Detroit, MI, Tech. Rep.

[24] N. Lyons, “An automatic data generation system for data base sim-
ulation and testing,” Data Base, vol. 8 , no. 4, pp. 10-13, 1977.

[25] E. Miller, Ji. and R. Melton, “Automated generation of testcase da-
tasets,” SIGPLAN Notices, vol. 10, no. 6, pp. 51-58, June 1975.

[26] W. Miller and D. Spooner, “Automatic generation of floating-point
test data,” IEEE Trans. Sofrware Eng., vol. SE-2, no. 3, pp. 223-
226, Sept. 1976.

[27] S. Muchnick and N. Jones, Eds., Program Flow Analysis: Theory and
Applications. Englewood Cliffs, NJ: Prentice-Hall International,
1981.

CSC-89-001, 1989.

[28] G. Myers, The Art of Sofrware Testing.
[29] M Paige, “Data space testing,” ACM Perform. Eval. Rev., vol. IO,

no. 1, pp. 117-127, Spring 1981.
[30] C. Ramamoorthy, S. Ho, and W. Chen, “On the automated genera-

tion of program test data,” IEEE Trans. Software Eng., vol. SE-2,
no. 4, pp. 293-300, Dec. 1976.

New
York: Halsted, 1988.

New York: Wiley, 1979.

[31] H. Ratschek, New Computer Methods for Global Optimization.

Bogdan Korel (M’87) was born in Poland. He re-
ceived the M.S. degree in electrical engineering
from the Technical University of Kiev, USSR, and
the Ph.D. degree in systems engineering from
Oakland University, Rochester, MI. in 1986.

He is an Assistant Professor in the Department
of Computer Science at Wayne State University,
Detroit, MI. His research interests include auto-
matic software testing and debugging, software
development environments. and distributed sys-
tems.

Dr. Korel is a member of the IEEE Computer Society and the Associ-
ation for Computing Machinery.

