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A HARDWARE-SOFTWARE SYSTEM is one that

requires the codesign and interaction of hardware and

software to properly implement system functionality.

Such a system can satisfy various design constraints that

neither hardware nor software can meet alone. The wide-

spread use of these systems in cost- and life-critical appli-

cations makes a systematic approach to functional

verification essential. Several obstacles to verification

make this a challenging problem requiring major

research. Hardware verification complexity alone has

increased to the point where it dominates design cost. To

manage the problem’s complexity, many researchers are

investigating covalidation techniques, which verify func-

tionality by simulating or emulating a system description

with a given test input sequence. Other approaches veri-

fy functionality by using formal techniques, such as

model checking, equivalence checking, and automatic

theorem proving, to precisely evaluate a design’s proper-

ties. However, covalidation’s tractability makes it the only

practical solution for many real designs.

Hardware-software codesign typically begins with a

high-level specification and produces a partially refined

design, which software compilation and behavioral

hardware synthesis can complete. Covalidation occurs

after each design refinement step to guarantee that syn-

thesis has produced a correct design. If the design is cor-

rect, the synthesis process continues; otherwise,

designers must repeat the previous syn-

thesis step to correct any problems.

Covalidation has three major steps:

test generation, cosimulation, and test

response evaluation. The test generation

process typically involves a loop that pro-

gressively evaluates and refines the test

sequence until the system meets cover-

age goals. Cosimulation occurs next, using the resulting

test sequence, followed by an evaluation of the cosim-

ulation test responses for correctness.

A key component of test generation is the covalida-

tion fault model, which abstractly describes the expect-

ed faulty behaviors. The fault model provides fault

detection goals for the automatic test generation (ATG)

process and enables evaluation of a test sequence’s

fault detection qualities. This article presents a survey

of test generation techniques for covalidation along

with the fault models that support them.

Fault models and coverage evaluation
A design error is a difference between the designer’s

intent and a design’s executable specification. A natur-

al-language specification is typically used to express the

designer’s intent. An executable specification is a pre-

cise, simulatable description of the design. High-level

hardware-software languages are often used to express

executable specifications. Design errors can range from

simple syntax errors confined to a single line of a design

description to a fundamental misunderstanding of the

design specification that can impact a large segment of

the description.

A design fault describes the behavior of a set of

design errors, allowing a large set of errors to be mod-

eled by a small set of faults. A covalidation fault model
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defines a set of faults 

for an arbitrary design,

enabling concise repre-

sentation of a set of design

errors.

Most hardware-software

codesign systems use a top-

down design methodology

that begins with a behav-

ioral system description.

Thus, most covalidation

fault models are at the

behavioral level. Existing

covalidation fault models

vary according to the be-

havioral description style

they use. The models origi-

nally specify system behav-

iors in textual languages such as VHDL and Esterel, and

then convert them into an internal behavioral format for

codesign and cosimulation. Various internal behavioral

formats are possible.1 The covalidation fault models cur-

rently applied to hardware-software designs originate in

either the hardware or software domain.2,3

The simple system example in Figure 1 can serve as

a tool to describe covalidation fault models. Figure 1a

shows a behavior, and Figure 1b shows the corre-

sponding control-dataflow graph (CDFG). This exam-

ple is limited because it comprises only a single process

and contains no signals used for real-time modeling 

in most hardware description languages (HDLs).

However, the example is sufficient to describe the rele-

vant features of many covalidation fault models.

Textual fault models
A textual fault model is one that is directly applica-

ble to the original textual behavioral description. The

simplest textual fault model is the statement coverage

metric introduced in software testing,3 which associates

a potential fault with each line of code and requires that

each statement in the description execute during test-

ing. This coverage metric has limited accuracy, partly

because it ignores fault effect observation. Despite its

limitations, however, designers commonly use statement

coverage as a minimum test goal. Several industrial tools

support the evaluation of statement coverage for hard-

ware and hardware-software designs. Examples include

Mentor Graphics’ Seamless (http://www.mentor.com/

seamless/), Esterel Technologies’ Scade and Esterel

Studio (http://www.esterel-technologies.com), Verisity’s

SureCov (http://www.verisity.com), and Veritable’s

Verity-Check (http://www.veritable.com).

Mutation analysis is a textual fault model, originally

developed in the field of software test,4 that researchers

have applied to hardware validation.5 A mutant is a ver-

sion of a behavioral description that differs from the orig-

inal by a single potential design error. A mutation

operation is a function applied to the original program to

generate a mutant. An example of a typical mutation

operation is arithmetic operator replacement, which

replaces each arithmetic operator with another operator.

However, the mutation operations’ local nature could

limit their ability to describe a large set of design errors.

Control-dataflow fault models
Many covalidation fault models are based on the tra-

versal of paths through the CDFG representing the sys-

tem behavior. Applying these fault models to a

hardware-software design requires converting both

hardware and software components into a CDFG

description. Although using these fault models with a

CDFG for a single process is well understood, their use

for multiple processes—such as those in a complex

hardware-software system—remains poorly defined. So

current codesign practice restricts the use of existing

CDFG fault models to single processes. The earliest con-

trol-dataflow fault models include the branch and path

coverage models used in software testing.3

The branch coverage metric associates potential

faults with each direction of each conditional in the

CDFG. Branch coverage requires that all CDFG paths

covered during covalidation include both directions of
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c = c + in1;

return(a+c);
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return(a+b);

(a) (b)

5 6

3

2

4

1

c<a

c<in2

0 1

0 1

int a, b, c;

a = in1 + in2;

b = 0; c = 0;

while (c < a)

   c = c + in1;

if (c < in2)

  return (a + b);

else

  return (a + c);

Figure 1. Behavioral descriptions: textual description (a), and control-dataflow graph (b).



all binary-valued conditionals. Several researchers have

used the behavioral-validation branch coverage metric

for coverage evaluation and test generation.6,7

The path coverage metric is more demanding than

the branch coverage metric because path coverage

reflects the number of control-flow paths taken. The

assumption is that an error is associated with some

path through the CDFG and that all control paths must

execute to guarantee fault detection. The number of

control paths is infinite when the CDFG contains a

loop, so the path coverage metric must be used with a

limit on path length.8 Because the total number of con-

trol-flow paths grows exponentially with the number

of conditional statements, several researchers have

attempted to select a subset of all such paths that are

sufficient for testing. Paoli, Nivet, and Santucci pre-

sented one path selection criterion,9 based on work in

software test,10 which identifies a basic set of paths that

are linearly independent and can combine to form any

other path.

Laski and Korel investigated dataflow testing criteria

for path selection.11 Such testing classifies each variable

occurrence as either a definition or a use. Selected

paths connect a definition occurrence to a use occur-

rence of the same variable. For example, in Figure 1b,

node 1 contains a definition of signal a, and nodes 2, 5,

and 6 contain uses of signal a. Paths 1, 2, 4, 5 and 1, 2,

4, 6 must execute to cover both of these definition-use

pairs. Researchers have also applied the dataflow test-

ing criteria to behavioral hardware descriptions.12

The domain analysis technique in software test con-

siders not only the control-flow path traversed but also

the variable and signal values during execution.13 A

domain is a subset of a program’s input space in which

every element causes the program to follow a com-

mon control path. A domain fault causes program exe-

cution to switch to an incorrect domain. Researchers

have applied this idea to develop a domain coverage

fault model applicable to hardware and software

descriptions.14

Many CDFG fault models consider the requirements

for fault activation without explicitly considering fault

effect observability. Observability-based behavioral fault

models can alleviate this weakness.15,16 The approach

presented by Fallah, Devadas, and Keutzer inserts faults

called tags at each variable assignment;15 these tags rep-

resent a positive or negative offset from the correct sig-

nal value. Observability analysis along a control-flow

path occurs probabilistically using the operations’ alge-

braic properties along the path and simulation data.

State-machine fault models
Finite-state machines (FSMs) constitute the classic

method of describing a sequential system’s behavior,

and researchers have applied fault models to state

machines. The commonly used fault models are state

coverage (which requires that all states be reached)

and transition coverage (which requires that all transi-

tions be traversed). Some researchers have applied

state-machine transition tours—paths covering all the

machine’s transitions—to microprocessor validation.17

Geist et al. proposed a user-refined transition coverage

model. It selects only transitions affecting state variables

identified by the user as important for test.18 In a thor-

ough survey article, Lee and Yannakakis use classical

switching theory to explain many problems associated

with state machine testing.19

The most significant problem with the use of state-

machine fault models is the complexity resulting from

the state space size of typical systems. To alleviate this

problem, researchers have identified a subset of the

state machines critical for validation. The Extended

Finite State Machine (EFSM) and the Extracted Control

Flow Machine (ECFM) create a reduced state machine

by partitioning the state bits between control and

data.20,21 Bergmann and Horowitz generated a reduced

state machine by projecting the original state machine

onto a set of states identified as interesting for valida-

tion purposes.22

Gate-level fault models
A gate-level fault model is one that was originally

developed for, and applied to, gate-level circuits.

Manufacturing test research defines several gate-level

fault models that now apply to the behavioral level.23

For example, the stuck-at fault model assumes that an

error holds each signal to a constant value of 0 or 1.

Researchers have also applied the stuck-at fault model

at the behavioral level for manufacturing test and for

hardware-software covalidation.24,25 Behavioral designs

often represent variables with many bits and typically

apply gate-level fault models to each bit individually.

Application-specific fault models
To justify the cost of developing and evaluating an

application-specific fault model, the market must be very

large, and the application’s fault modes, well under-

stood. For this reason, application-specific fault models

appear in microprocessor test and validation.26-31 Early

microprocessor fault models target relatively generic

microprocessor features. For example, researchers
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define a fault model for instruction-sequencing func-

tions by describing the fault effects (activation of erro-

neous micro-orders)28 and describing the fault detection

requirements. More recent fault models target modern

processor features such as pipelining.30,31

Another alternative is to let the designer define the

fault model. This option relies on the designer’s exper-

tise at expressing the fault model’s characteristics.

Several tools automatically evaluate user-specified prop-

erties during simulation to identify faults. The simplest

techniques in common hardware-software debuggers let

the user specify breakpoints based on a subset of state

variables. More sophisticated tools let the designer use

temporal logic primitives to express faulty conditions.32

Interface faults
To manage the high complexity of hardware-soft-

ware design and covalidation, researchers have tried to

separate each component’s behavior from that of the

communication architecture.33 Interface covalidation

becomes more significant with the onset of core-based

design methodologies that use predesigned, preverified

cores. Because each core component is preverified, the

system covalidation problem focuses on the interface

between the components. Panigrahi, Taylor, and Dey

presented a case study on interface-based covalidation

of an image compression system.34

Additional interface complexity arises from the use

of multiple clock domains in large systems. The inter-

faces between these different clock domains must be

essentially asynchronous. Without a high-overhead, tim-

ing-independent circuit implementation (such as dif-

ferential cascode voltage switch logic), asynchronous

interfaces are particularly vulnerable to timing-induced

faults, which cause definition of a signal value to occur

earlier or later than expected.35 The Verity-Check tool

from Veritable also targets synchronization problems

between multiple clock domains.

Automatic test generation techniques
There are several ATG approaches, varying accord-

ing to the class of search algorithm, the fault model, the

search space technique, and the design abstraction

level. Performing test generation for the entire system

requires uniformly describing both hardware and soft-

ware component behaviors. Although many behavioral

formats are possible,1 previous ATG approaches

focused on CDFG and FSM behavioral models.

Researchers have explored two classes of search algo-

rithms: fault directed and coverage directed. Fault-direct-

ed techniques successively target a specific fault and con-

struct a test sequence to detect it. The algorithm merges

each new test sequence with the current test sequence,

typically by using concatenation, and evaluates the result-

ing fault coverage to determine if test generation is com-

plete. Fault-directed algorithms are complete in that they

will find a test sequence for a fault if such a sequence

exists, assuming they have enough CPU time.

Coverage-directed algorithms improve coverage

without targeting any specific fault. The algorithm

heuristically modifies an existing test set to improve

total coverage and then evaluates the fault coverage

produced by the modified test set. If the modified test

set corresponds to an improvement in fault coverage,

the algorithm accepts it. Otherwise, the algorithm either

rejects the modification or uses another heuristic to

determine its acceptability.

Fault-directed techniques
Several researchers have addressed the test genera-

tion problem directly at the CDFG level by identifying a

set of mathematical constraints on the system inputs

that cause traversal of a chosen CDFG path. With these

constraints identified, the test generation problem is

equivalent to the problem of solving the constraints

simultaneously to produce a test sequence at the sys-

tem inputs. The test algorithm can associate each CDFG

path with a set of constraints that must be satisfied to

cause path traversal. For example, in Figure 1b, the path

containing nodes 1, 2, 4, and 6 pertains to the require-

ment that c ≥ a and c < in2. Because the operations in a

hardware-software description can be either Boolean

or arithmetic, the solution method chosen must handle

both types of operations. The Boolean version of the

problem, traditionally called the satisfiability (SAT)

problem, is a well-studied, fundamental, nondetermin-

istic-polynomial-time complete (NP-complete) prob-

lem. Handling both Boolean and arithmetic operations

is challenging because researchers have presented sep-

arate solutions to the two problems. For example, tech-

niques based on binary decision diagrams (BDDs)

perform well for Boolean operations, but the complex-

ity of modeling word-level operations with BDDs is high.

Researchers have defined the HSAT problem as a

hybrid version of the SAT problem; HSAT considers lin-

ear arithmetic constraints along with Boolean SAT con-

straints.36,37 Fallah, Devadas, and Keutzer presented an

algorithm36 to solve the HSAT problem that combines a

SAT-solving technique with a traditional linear program

solver.38 The algorithm progressively selects variables
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and explores value assignments while maintaining con-

sistency between Boolean and arithmetic domains.

Other researchers have solved the problem by express-

ing all constraints in a single domain and using a solver

for that domain. Zeng, Kalla, and Ciesielski formulated

Boolean SAT constraints as integer linear arithmetic

constraints.39

Constraint logic programming (CLP) techniques can

handle a broad range of constraints, including nonlin-

ear constraints on both Boolean and arithmetic vari-

ables.40 CLP techniques are novel in their use of rapid,

incremental consistency checking to avoid exploring

invalid parts of the solution space. Different CLP solvers

use various constraint description formats to capture

complex constraints. Researchers have used the GNU

Prolog engine to generate tests by converting Boolean

and arithmetic constraints into Prolog predicates.41,42

Others have used CLP to generate tests for path cover-

age in a CDFG,8 where arithmetic constraints expressed

at each branch point of a path are solved simultane-

ously to generate a test that traverses the path. Similar

approaches explore a subset of linearly independent

paths.9 Xin and I used the CLP approach to generate

tests related to the synchronization between concurrent

hardware-software processes.43

Although, by their nature, BDDs represent Boolean

functions, they can describe the CDFG of a behavioral-

level VHDL description.44 Such approaches describe

arithmetic functions in the Boolean domain by describ-

ing each output bit function as a BDD. These approach-

es identify test patterns by solving the SAT problem for

the machine that is the exclusive-OR of the good and

faulty machines.

Ho et al. accomplished state machine testing by

defining a transition tour, a path that traverses each state

machine transition at least once.17 They generated tran-

sition tours by iteratively improving an existing partial

tour, concatenating onto it the shortest path to an

uncovered transition. Geist et al. generated a test

sequence for each transition by asserting that a given

transition does not exist in a state machine model,18 and

then using Carnegie Mellon University’s Symbolic Model

Verifier (SMV) tool to disprove the assertion.45 A by-

product of disproving the assertion is a test sequence

that includes the transition.

If a fault effect is directly observable at the machine

outputs, then covering each state and transition during

test is sufficient for observing the fault. However, a fault

effect could cause the machine to be in an incorrect

state that is not immediately observable at the outputs.

In this case, it would be necessary to apply a distin-

guishing sequence to differentiate each state from all

other states, based on the output values. The testing

problems associated with state machines, including the

identification of distinguishing, synchronizing, and

homing sequences, are well defined.19

A significant limitation to test generation techniques

for state machines is the complexity of the state enu-

meration process performed during test generation. The

abstraction method for representing the state machine

greatly impacts this complexity. BDDs can represent the

state transition relation and efficiently perform implicit

state enumeration by defining an image computation,

which computes the states that are reachable from a

given set of states.46 The efficiency of this state enumer-

ation method has led to its use during the state-machine

test generation process.21,22,47

Coverage-directed techniques
Several techniques generate test sequences without

targeting any specific fault. Such techniques improve

coverage by modifying an existing test sequence and

then evaluating the coverage of the new sequence.

These techniques differ with regard to the methods they

use to modify the test sequence, the cost function for

evaluating the new sequence, and the criteria for

accepting it. The modification method is typically either

random or directed random.

Corno et al. presented such a technique, using a

genetic algorithm to successively improve the popula-

tion of test sequences.7 In the terminology of genetic

algorithms, a chromosome describes a test sequence.

Many test sequences are initially generated randomly.

Random matings can occur between the chromosomes

that describe the test sequences, but the mating process

defines and restricts the way the two test sequences

merge. The cost (or fitness) function to evaluate a test

sequence is the total number of elementary operations

(variable read/write) executed.

Lajolo et al. used a random-mutation hill-climbing

(RMHC) algorithm to randomly modify a test sequence

and improve a testability cost function.48 The criteria for

accepting a new sequence is whether it improves the

cost function. This approach targets the single stuck-at

fault model applied to the individual bits of each vari-

able in the behavioral description. The cost function

contains two parts: the number of statements that the

sequence executes, and the number of outputs con-

taining a fault effect.

Yuan et al. generated directed-random test pattern
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sequences.49 This approach assumes no particular fault

model, so the user must provide the directives for pat-

tern generation. The two types of directives are con-

straints (which define boundaries for the space of

feasible test patterns) and biases (which nonrandomly

direct value assignments to signals). Test engineers must

develop a set of constraints and biases that will reveal

a particular class of faults.

THE FIELD OF hardware-software covalidation is matur-

ing, and researchers are beginning to agree on the

essential problems they need to solve. Industrial tools

provide practical solutions to test generation, particu-

larly at the state machine level. Although automation

tools are available, designers do not fully trust them;

hence, considerable manual test generation is still

prevalent in the vast majority of design projects.

A significant obstacle to widespread industrial

acceptance of available covalidation techniques is mis-

trust in the correlation between covalidation fault mod-

els and real design errors. Some ATG techniques are

applicable to large-scale designs, but designers will not

use them without having confidence in the underlying

fault models. Evaluating fault models requires identify-

ing a correlation between fault coverage and the detec-

tion of real design errors. The compilation of design

errors by designers is essential to this evaluation.

Available research in this direction should be used to

evaluate existing covalidation fault models.50 With the

empirical evaluation of covalidation fault models,

automation of test generation will lead to large increas-

es in covalidation productivity.

Much of the research in hardware-software covali-

dation builds on previous research in the hardware and

software domains, but communication between hard-

ware and software components is a problem unique to

hardware-software covalidation. The interfaces between

hardware and software introduce many new design

issues that can cause errors. For example, complex sys-

tems often use an asynchronous communication pro-

tocol implemented in both hardware and software.

Such asynchronous communication is difficult for both

hardware and software designers, and so might lead to

many design errors.

Hardware-software communication complexity also

increases because hardware and software handle inter-

processor communication in different ways. HDLs typi-

cally provide only the most basic synchronization

mechanisms, such as VHDL’s wait expression. More-

complicated protocols require manual implementation

and are therefore vulnerable to design errors.

Interprocess communication in software tends to use

high-level communication primitives such as monitors

(Java’s synchronized statement, for example). Although

each primitive’s implementation is correct, the design-

er could use the primitive incorrectly, resulting in design

errors. More research investigating the testing of inter-

faces between hardware and software components is

essential. �
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