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Abstract 

Automatic test data  generation leads to identify input 
values on which a selected point in a procedure is ex- 
ecuted. This paper introduces a new method for this 
problem based on constraint solving techniques. First, 
we statically transform a procedure into a constraint 
system by using well-known "Static Single Assignment" 
form and cont:ol-dependencies. Second, we solve this 
system to che,,k whether at least one feasible control 
flow path goir.g through the selected point exists and 
to generate te~t data  that  correspond to one of these 
paths. 

The key point of our approach is to take advantage of 
current advances in constraint techniques when solving 
t h e  generated ,:onstraint system. Global constraints are 
used in a prelil ninary step to detect some of the non fea- 
sible paths. Pz rtial consistency techniques are employed 
to reduce the domains of possible values of the test d a t a .  

A prototype il.lplementation has been developped on a 
restricted subset of the C language. Advantages of our 
approach are i.lustrated on a non-trivial example. 

Keywords 

Automatic tes~: data  generation, structural testing, con- 
straint solving techniques, global constraints 

1 I N T R O D U C T I O N  

Structural tes ~ ing techniques are widely used in unit or 
module testin~ process of software. Among the struc- 
tural criteria, both statement and branch coverages are 
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commonly accepted as minimum requirements. One of 
the difficulties of the testing process is to generate test 
data  meeting these criteria. 
From the procedure structure alone, it is only possible 
to generate input data. The correctness of the output  
of the execution has to be checked out by an "oracle". 

Two different approaches have been proposed for auto- 
matic test da ta  generation in this context. The initial 
one, called path-oriented approach [4, 7, 16, 20, 3], in- 
cludes two steps which are : 

• to identify a set of control flow paths that  covers 
all statements (resp. branches) in the procedure ; 

• to generate input test da ta  which execute every se- 
lected path. 

Among all the selected paths, a non-negligeable amount  
is generally non-feasible [24], i.e. there is no input data  
for which such paths can be executed. The static identi- 
fication of non-feasible paths is an undecidable problem 
in the general case [1]. Thus, a second approach called 
goal-oriented [19] has been proposed. Its two main steps 
are : 

• to identify a set of statements (resp. branches) the 
covering of which implies covering the criterion ; 

• to generate input test da ta  that  execute every se- 
lected statement (resp..branch). 

Assuming that  every statement (resp. branch) is reach- 
able, there is at least one feasible control flow path going 
through the selected statement (resp. branch). The goal 
of the data  generation process is then to identify input 
data  on which one such path is executed. 

For these approaches, existing generation methods are 
based either on symbolic execution [18, 4, 16, 7, 10], or 
on the so called "dynamic method" [20, 19, 11, 21]. 



Symbolic execution consists in replacing input param- 
eters by symbolic values and in statically evaluating 
the statements along a control flow path. The goal of 
symbolic execution is to identify the constraints (either 
equalities or inequalities) called "path conditions" on 
symbolic input values under which a selected path is 
executed. This method leads to several problems : the 
growth of intermediate algebraic expressions, the diffi- 
culty to deal with arrays (although some solutions exist 
[13, 8]), and the aliasing problem for pointer analysis. 
Using symbolic execution corresponds to an exhaustive 
exploration of all paths going through a selected point. 
Of course, this may be unacceptable for programs con- 
taining a large number of paths. 

Korel proposes in [20] to base the test data  generation 
process on actual executions of programs. Its method 
is called the "dynamic method".  If an undesirable path 
is observed during the execution flow monitoring, then 
a function minimization technique is used to "correct" 
the input variables. [19] presents an extension of the 
dynamic method to the goal-oriented approach. This 
method is designed to handle arrays, dynamic struc- 
tures, and procedures calls [21]. However, although the 
dynamic method takes into account some of the prob- 
lems encountered with symbolic execution, it may re- 
quire a great number of executions of the program. 

This paper introduces a new method to identify- auto- 
matically test data  on which a selected point in the pro- 
cedure is executed. The proposed method operates in 
two steps : 

1. The procedure is statically transformed into a 
constraint system by the use of "Static Single 
Assignment" (SSA) form [23, 2, 9] and control- 
dependencies [12]. The result of this step is a set of 
constraints - -  called Kset - -  which is formed of : 

• the constraints generated for the whole proce- 
dure ; 

• the constraints that  are specific to the selected 
point. 

2. The constraint system Kset is solved to check 
whether at least one feasible path which goes 
through the selected point exists. Finally, test data  
corresponding to one of these paths are generated. 

The key point of this method is to take advantages of 
current constraint techniques to solve the generated con- 
straint system. In particular, global constraints are used 
in a preliminary step to detect some of the non-feasible 
parts of the control structures and partial consistency 
techniques are employed to reduce the domains of pos- 
sible values of the test data. Search methods based on 

the combination of both enumeration and inference pro- 
cesses are used in the final step to identify test data. 
Furthermore, these techniques offer a flexible way to 
define and to solve new constraints on values of possible 
test data. 

A prototype implementation of this method has been 
developped on a restricted subset of the C language. 

Outline of the paper : the second section presents the 
generation of Kset while the third section is devoted 
to the resolution techniques. The four thsec t ion  de- 
scribes the prototype implementation while the fifth sec- 
tion provides a detailed analysis of a non-trivial example 
that  has been successfully treated with our method. 

2 G E N E R A T I O N  O F  
S T R A I N T S Y S T E M  

T H E  C O N -  

Application of our method is limited to a structured 
subset of a procedural language. Unstructured state- 
ments such as "goto-statemenf' are not handled in our 
framework because they introduce non-controled exits 
of loops and backward control flow. 
Pointer aliasing, dynamic allocated structures, func- 
tion's pointer involve difficult problems to solve in the 
frame of a static analysis. In this paper, we assume that  
programs avoid such constructions. The treatement of 
basic types such as char and floating point numbers is 
not presented. A few words in the fourth section are 
devoted to the extension of our method to these types. 

The generation of the constraint system Kset is done in 
three steps : 

1. Generation of the "Static Single Assignment" 
form ; 

2. Generation of a set of constraints corresponding to 
the procedure p, called pKset(p) ; 

3. Generation of a set of constraints corresponding 
to the control-dependencies of a selected point n, 
called cKset(n). 

Kset is defined as : 

Kset(p, n) de=.1 pKset(p) U cKset(n) 

Now, let us introduce some basics used in the rest of the 
paper. 

2.1 Bas ics  

A procedure control flow graph (V, E, e, s) [1] is a con- 
nected oriented graph composed by a set of vertices V, 
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int f ( i n t  i) 
int  j ; 

i ,  j : = l ;  
2. w h i l e ( l e O )  

do 
3 a  j : = j * i  ; 
3b  i : = i - 1  ; 

o d  ; 
4. i f ( j = 2 )  
5. t h e n i : = 2 ;  

f i ;  
6. r e t u r n  j ; 

Figure 1: Example 1 

a set of edges t': and two particular nodes, e the unique 
entry node, ant: s the unique exit node. Nodes repre- 
sent the basic "t locks which are sets of statements exe- 
cuted without ~ ranching and edges represent the possi- 
ble branching t:etween basic blocks. For instance, con- 
sider the procec: ure 1 given in figure 1, which is designed 
to compute the factorial function, and its control flow 
graph (CFG) st:own in figure 2. 

A point is eithe~ a node or an edge in the CFG. A path 
is a sequence <: v i , . . .  , vj > of consecutive nodes (edge 
connected) in (7, E, e, s). A control flow path is a path 
< v i , . . . , v j  > in the CFG, where vi = e and vj = s. A 
path is feasible ,f there exists at least one test datum on 
which the path is executed, otherwise it is non-feasible. 
For instance, tile control flow path < 1, 2, 4, 5, 6 > in 
the CFG of example 1 is non-feasible. 

A node Vl is p(:st-dominated [12] by a node v2 if every 
path from vl t¢ s in (V, E, e, s) (not including vl) con- 
tains v2. 
A node v2 is c~ntrol-dependent [12] on vl iff 1) there 
exists a path t ) from vl to v2 in (V, E, e, s) with any 
v in P \ {vi, v.,} post-dominated by v2 ; 2) vl is not 
post-dominatec by v2. For example, block 5 is control- 
dependent on l=]ock 4 in the CFG of example 1. 

2.2 S S A  F o r m  

Most procedur~fl ianguages allow destructive updating 
of variables ; t fis leads to the impossibility to treat a 
program variab .e as a logical variable. Initially proposed 
for the optimization of compilers [2, 23], the "Static 
Single Assignn ent" form [9] is a semantically equiv- 
alent version c f a procedure on which every variable 
has a unique (~ efinition and every use of a variable is 
reached by this definition. The SSA form of a lin- 

1 For all the  exalaples  t h r o u g h o u t  the  paper ,  a clear  abs t rac t  syn tax  
is used to  indicate  t h a t  our  m e t h o d  is not  des igned to a par t i cu la r  
l anguage  

Figure 2: Control flow graph of example 1 

int  f(int i0) 
int  J0 ; 

l a .  J0 :=  1 ; 
/ *  H e a d i n g  * /  

l b .  J2 :--- ¢ ( J o , J x )  ; 
l c .  i2 :-- ¢ ( i 0 , i l )  ; 
2. whi le  (i2 ¢ 0 ) 

do 
3a .  J l  :---- J2 * i 2  ; 
3b .  i l  :---- i2 - 1 ; 

od 
4. i f  (J2 ---- 2) 
5. t h e n  13 :=  2 ; 

fl 
6. 14 := ¢(i3, i2) ; 

r e t u r n  (3"2) ; 

Figure 3: SSA Form of example 1 

ear sequence of code is obtained by a simple renam- 
ing (i > i0, i > i l , . . . )  of the variables. For the 
control structures, SSA form introduces special assign- 
ments, called C-functions, in the junction nodes of the 
CFG. A C-function returns one of its arguments depend- 
ing on the control flow. Consider the if-statement of 
the SSA form of example 1 in figure 3 ; the C-function 
of statement 6 returns i3 if the flow goes through the 
then-part of the statement, i2 otherwise. For some more 
complex structures, the C-functions are introduced in a 
special heading of the loop (as in the while-statement 
in figure 3). SSA Form is built by using the algorithm 
given in [5], which is designed to treat structured pro- 
grams in one parsing step. 
For convenience, a list of C-assignments will be written 
with a single statement : 

:=  Z2 := ¢(Zl ,  Z0) : =  
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2.3 G e n e r a t i o n  o f  pKset 

pKset(p) is a set of both atomic and global constraints 
associated with a procedure p. 

Informally speaking, an atomic constraint is a relation 
between logical variables. Global constraints are de- 
signed to handle more efficiently set of atomic con- 
straints. For instance, global constraint ELEMENT/3 2 : 
ELEMENT(k, L, v) constraints the k th argument of the 
list L to be equal to v. 

Let us now present how pKset is generated. The method 
is driven by the syntax. Each subsection, which is de- 
voted to a particular construction, presents the genera- 
tion technique. 

2.3.1 Declaration 

The variables of a procedure are either input variables 
or local variables. Parameters and global variables are 
considered as input variables while the other variables 
are considered as local. Each variable x which has a 
basic type declaration, is translated in atomic constraint 
of the f o r m :  x E [Min, Max] where Min (resp. Max) 
is the minimum (resp. maximum) value depending on 
the current implementation. An array declaration is 
translated into a list of variables of the same type while 
a record is translated into a list of variables of different 
types. 
A specific variable, named "OUT",  is devoted to the 
output  value of the procedure. 

2.3.2 Assignment and Decision 

Elementary statements, such as assignments and ex- 
pressions in the decisions are transformed into atomic 
constraints. For instance, the assignment of statement 
3a in example 1 generates the constraint j t  = J2 * i2. 
The decision of s tatement 2 generates i2 ¢ 0. A ba- 
sic block is translated into a conjunction of such con- 
straints. For example, statements 3a and 3b generate 
j l  = j2 * i2 Al l  = i2 - 1. 

2.3.3 Conditional Statement 

The conditional s tatement if_then_else is translated 
into global constraint I T E / 3  in the following way : 

pKset(if  d t h e n  sl e lse  s2 fi v~ := ¢(v~, v~)) = 
ITE(pKset(d), pKset(sl) A ~  = ~2, pKset(s2) A ~  = ~3) 

2where/3 denotes the arity of the constraint 

This constraint denotes a relation between the decision 
and the constraints generated for the then- and the else- 
parts of the conditional. Note that  C-assignments are 
translated in simple equality constraints. The opera- 
tional semantic of the constraint I T E / 3  will be made 
explicit in section 3.2. 

2.3.4 Loop Statement 

The loop statement while is also translated in a global 
constraint W / 5 .  Informally speaking, this constraint 
states that  as long as its first argument is true, the 
constraints generated for the body (fifth argument) of 
the while statement are true for the required data. 

pKset (6  := ¢ ( 4 ,  vq) wh i l e  d d o  s o d )  
= w(pKset(d), vo, vl, v2, pKset(s)) 

The generated constraint requires three vectors of vari- 
ables v~, vq, v~. v~ is a vector of variables defined before 
the while-statement. ~ is the vector of variables defined 
inside the body of the loop and v~ is the vector of vari- 
ables referenced inside and outside the while-statement. 
Note here that  the C-assignments are only used to iden- 
tify the vectors of variables. 

The operational semantics of the constraint w / 5  will 
also be given in section 3.2. 

2.3.5 Array and Record 

Both arrays and records are treated as list of variables, 
therefore we only present the generation of pKset on 
arrays. 

Reference of an array is provided in the SSA Form by 
a special expression [9] : access. The evaluation of ac- 
cess(a,k) statement is the k th element of a noted v. 

For the definition of an array, the special expression 
update is used [9]. update(a,j,w) evaluates to an array 
al which has the same size as a and which has the same 
elements as a, except for j where value is w. 

Both expressions access and update are treated with 
the constraint ELEMENT/3 : 

pKset( v:-- access(a, k)) -- {ELEMENT(k, a, v)} 

pKset(al  := update(a,j ,w)) 
"- Ui~tj{ELEMENT(i, a, v) A ELEMENT(i, al, v)} 

u {ELEMENT(j, al, w)} 
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2.4 G e n e r a t i o n  o f  c K s e t  

cKset(n) is a set of constraints associated with a point 
n in the CFG. It represents the necessary conditions 
under which a selected point is executed. These con- 
ditions are I:recisely the control-dependencies on the 
selected poinl, cKset(n) is then the set of constraints of 
the statemen' s and the branches on which n is control- 
dependent. For example, node 5 is control-dependant 
on node 4 th,~n : cKset(5) = {j2 = 2} 

2.s E x a m p l e  

For the proc,~dure given in figure 1 and the statement 
5, the following sets are obtained : 
p g s e t ( / )  = 
{ j 0 = l ,  

w(i2 # O, (io, jo), (il, j l ) ,  (i2, j2), 
j l  = j 2 " i 2  All = i 2 -  1), 

I T E ( j 2  = 2 ia = 2 A i 4  = i3, i 4  = i 2 ) ,  

OUT = j2 } 

cKset(5)  = {j2 = 2} 

Kset ( / ,  5) = p K s a ( y )  U eKset(5) 

S O L V I N G  T H E  C O N S T R A I N T  S Y S -  
T E M  A N D  G E N E R A T I O N  O F  T E S T  
D A T A  

Constraint p :ogramming has emerged in the last decade 
as a new toe I to address various classes of combinato- 
rial search p :oblems. Constraint systems are inference 
systems bas(d on such operations as constraint propa- 
gation, consistency and entailment. Inference is based 
on algorithms which propagate the information given 
by one cons;raint to others constraints. These algo- 
rithms are nmally called partial consistency algorithms 
because the:" remove part of inconsistent values from 
the domain of the variables. Altough these approxi- 
mation algorithms sometimes decide inconsistency, it is 
usually nece,sary to combine the resolution process with 
a search me 'hod.  Informally speaking, search methods 
are intelligei.t enumeration process. 
For a survey on Constraint Solving and Constraint Logic 
Programmi:t g, see [14] and [17]. 

Let us first introduce some basics notations on con- 
straint prog::amming required in the rest of the paper. 

These notations are extracted from [15]. 

A constraint system is consistent if it has at least one 
solution, i.e. if there exists at least one variable assign- 
ment which respects all the constraints. More formally, 
a set of constraints ~r is called a store and the store is 
consistent if : 

p 

where (3)¢ denotes the existential closure of the formula 
¢. 
Entailment test checks out the implication of a con- 
straint by a store. For example, 

x > 0 is entailed by {x = y2} 

The entailment test of the constraint c by the store cr is 
noted : 

b (V)(~ ~ c) 

where (V)¢ denotes the universal closure of ¢. 
Both consistency and entailment tests are NP-complete 
problems in the general case. For this reason, implemen- 
tations of these tests are based on two approximations : 
domain-consistency and interval-consistency. 

3.1 L o c a l  C o n s i s t e n c y  

Associated with each input variable xi is both a domain 
Di E z~ and an interval D* = [min(Di), max(Di)]. 
A constraint C(Xl , . . . ,  xn) is a n-ary relation between 
variables ( x l , . . . ,  xn) which denotes a subset of ~ ' .  

Domain-consistency also called arc-consistency removes 
values from the domains and Interval-consistency only 
reduces the lower and upper bounds on the domains. 
Both are applied in a subtle combination by the con- 
straint solver. Intuitivelly, when the domains contain 
a small number of values, domain-consistency is ap- 
plied. Interval-consistency is applied on large domains. 
Precise definitions of these local consistencies are now 
given : 

D e f i n i t i o n  1. (domain-consistency) [15] 
A constraint c is domain-consistent if  for 
each variable xi and value vi E Di there 
exists values vl, • • • , V i - 1 ,  V i + I ,  • • • , Vn in 

D 1 , . . .  , D i - l , D i + l , . . .  , D n  such that  C ( V l , . . .  , vn )  
holds. A store ~r is domain-consistent if  for every 
constraint c in ~, c is domain-consistent. 

D e f i n i t i o n  2. (interval-consistency) [15] 
A constraint c is interval-consistent if  for each 
variable xi and value vl E {min(Di ) ,max(Di ) }  
there exist values v l , . . .  , v i - l , v i + x , . . .  ,Vn in 
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int g(int x,int y ) 
int z ; 
int t ; 

l a .  z : = x * y ;  
l b .  t : - - 2 . x ;  
2. i f  (z ~ 8) 

t h e n  
3a.  
3b.  
4. 

t : = t - y  ; 
i f ( t = l A x > l )  

t h e n  ... 

Figure 4: Example 2 

D~,.. . ,D*_I,Di*+I,. . . ,D* such that c (v l , . . . , v , )  
holds. 

A local t reatment  is associated to each constraint. 
The corresponding algorithm is able to check out both 
domain- and interval- consistencies for this constraint. 
The inference engine propagates the reductions pro- 
vided by this algorithm on the other constraints. The 
propagation iterates until a fixpoint is reached. Infor- 
mally speaking, a fixpoint is a state of the domains 
where no more prunnings can be performed. 

Let us illustrate how interval-, domain- consistency and 
the inference engine may reduce the domains of possible 
values of test da ta  on the example 2 given in figure 4. 
Consider the problem of automatic test data  generation 
for s tatement 4. 

Parameters are of non-negative integer type. The 
following set is provided : 

Kset(g,4) -- {xo, yo E [O, Max],zo = xo* yo, to = 
2*xo, zo<8, t l=to-Yo,  t l = l ,  xo> l }  

and the following resolution process is performed : 

zo = xo * Yo leads to zo E [0, Max] 
to = 2 * xo leads to to E [0, Max] 
zo ~ 8 leads to zo E [0, 8] 
t l  - 1 leads to t l  E {1} 
xo > 1 leads to xo E [2, Max] 
zo -- xo * Yo leads to xo E [2, 8] and Yo E [0, 4] 
to = 2 * xo leads to to E [4, 16] 
t l  = to - Yo leads to Yo e {3, 4} and to e {4, 5} 
to = 2 ,  x0 leads to x0 E {2} and to E {4} 
tl  = t 0 -  Y0 leads to Y0 E {3} 

Finally, (xo = 2, Yo = 3) corresponds to the unique test 
datum on which statement 4 in the program of figure 4 
can be executed. 

3.2 Global  Cons tra in t s  D e f i n i t i o n s  

For atomic constraints and some global constraints, the 
local treatment is directly implemented in the constraint 
solver. However, for user-defined global constraint, it is 
necessary to provide the algorithm. The key point of our 
approach resides in the use of such global constraints to 
treat the control structures of the program. The global 
constraints are used to propagate information on incon- 
sistency in a preliminary step of the resolution process. 

3.2.1 Entailment Test Implementation 

The entailment test is used to construct these global 
constraints. The implementation of entailment test may 
be done as a proof by refutation. A constraint is proved 
to be entailed by a store if there is no variable assign- 
ment respecting both the store and the negation of the 
constraint. 

The operational semantic of the user-defined global con- 
straints is designed with properties which are "guarded" 
by entailment tests. Such properties are expressed by 
constraints added to the store. We have introduced in 
the section 2.3 two global constraints : ITE/3 and w / 5 .  
Let us give now their definitions. 

3.2.2 I T E / 3  

Definition 3. (ITE/3) 
~TE(c, {cl ^ . . .  ^ cp}, { 4  ^ . . .  ^ ~}) 

• i f  p (v)(,~ ~ c) then ,~ := ,, u {c~ ^ . . .  ^ cp} 

• i f  ~ (V)(o" ~ -,e) the,, ~ := ~ U { 4  ^ . . .  ^ e~} 

• if ~ (V)(@ =:=Y ~(Cl A... A cp)) then 
:= ~ u  {~e ^ el n . . . ^ c ~ }  

• if ~ (V)(~ = ,  - ' (4 n . . .  n c~)) the,, 
a" :---- a'U {c A Cl A . . . A  cp} 

The first two features of this definition express the op- 
erational semantic of the control structure if_then_else. 
The last ones are added to identify non-feasible parts 
formed by one of the two branches of the control 
structure. Consider for example : 

ITE(i0 ~ 0, il -- i0 -- 1 A i2 = il, i2 = 1) 

Suppose that  the store contains i2 - 0 ; when 
applying the fourth feature of the ITE constraint we 
have to consider the consistency of the following set : 
{i2 - 0} U {i2 = 1} It is inconsistant, meaning that  the 
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else-part of the statement is non feasible. Then, the 
constraints i0 ~ 0 A il = i0 - 1 A i2 = il are added to 
the store. 

3.2.3 1/17/5 

The while-state'nent combines looping and destructive 
assignments. H( nee w / 5  behaves as a constraint gener- 
ation program. 

When evaluating w / 5 ,  it is necessary to allow the gen- 
eration of new ¢ 3nstraints and new variables. A substi- 
tution s u b s ( ~  ~- ~ ,  e) is a mechanism which generates 
a new constrail.t having the same structure as c but 
where variables vector v~ has been replaced by vector 
v~. The followi:~g example illustrates this mechanism : 
if v~ = (zl ,  Yl)~md v~ = (x2, Y2) then 
s u b s ( ~  6 - v - ~ , x  + y l  = 3 )  i s ( x 2 + y 2 = 3 )  

w / 5  is now formally defined : 

D e f i n i t i o n  4. : w / 5 )  
w (e, v~, v~, v~, c ~ A . . .  A ep) 

@ 

i f  ~ (V)(a ==ez subs(~2 6- ~o, c)) then 
:= ~ u {~, ~b~(4 6- 4 ,  c~ ̂ . . .  ^ e,) ^ 

w(c,v~,~,  ~ ,  

i f ~  (V)(a ==~ subs(Q 6- ~o,-,c)) then 
~r:=~rU{4 = 4}  

i / ~  (v)(~- ~ ~ b ~ ( ~  6- 4,-~(e~ ^ . . .  ^ e~))) 
then 
~, := ~ u {,, ~b~(4 6- ~,-,~) ^ 4 = 4 }  

~ / h  (v)(~ ~ v~ # v~) then 
:= ~ u {~,:=b~(4 6- 4 ,  e) ^ 

subs(v2 (.- ~o, e l  A . . .  ^ ep) ^ 
w(c, vq, ~ ,  4 ,  subs(~ ~ ~ ,  c~ ^ . . .  ^ cp))} 

The first two f¢atures represent the operational seman- 
tic of the while- statement. As for the ITE/3 constraint, 
the other featm es identify non-feasible part of the struc- 
ture. The thirc, one is applied if it can be proved that 
the constraints of the body of the loop are inconsistent 
with the curren ~ store. This means the body cannot be 
executed even (,nee, the output  vector of variables v~ is 
then equated ~ ]th the input vector v~. In the opposite, 
if v~ = v~ is inconsistent in the current store, the fourth 
feature is applied meaning that  the body of the loop is 
executed at least once. 

Let us illustra':e the treatment of w / 5  on the while- 
statement of example 1 : 

Suppose that  the store contains {j0 = 1,j2 = 2} ; when 
testing the consistency of 

w(i2 ¢ 0, (io,jo),  ( ix, j1) ,  (i2,j2),  
j l  = j2 * is A il = is -- 1) 

the fourth feature is applied twice and then gives 
the following store : 

{jo = 1,js = 2,j2 = j l  * i t , i2  = it - 1, 
j l  = jo *io, il = i o -  1,i2 = 0} 

Finally, (io = 2) is obtained. 

3.3 Complete  Resolut ion of the  Example  

Consider again the example of figure 1 and the problem 
of generating a test data  on which a feasible path going 
through statement 5 is executed. The Kset  provided by 
the first step of our method is : 

K s e t ( f ,  5) = p K s e t ( f )  U cKse t (5 )  = 
{ J0 = 1 ,  

w(i2 ¢ 0, (io,jo),  ( i l , j l ) ,  ( is , j2) ,  
j l  - -  j2  * i2 A i l  ---- i2 - 1), 

ITE(j2 = 2, is = j2 A i4 = i3, i4 = i2), 
O U T =  js} U {js = 2} 

The loop is executed twice, generating the follow- 
ing store : 

{jo = 1,io ¢ 0, il  ¢ 0, i2 = 0, i2 = i 1 - 1 , i l  = i o - l , j 2  = 
j l  * il , j l  = jo * io, j2 = 2, i3 = j2, i4 = i3, O U T  = j2 } 

Interval" consistency is applied to solve the sys- 
tem, and yields to i0 = 2. This is the unique test da ta  
on which statement 5 may be executed. 

3.4 Search Process 

Of course, local consistencies are incomplete constraint 
solving techniques [22]. The store of constraints can 
be domain-consistent though there is no solution in the 
domains (i.e. the store is inconsistent). Let us give an 
example of a classical pitfall of these techniques : 
• ,u,~ ~ {0,1},  ~ = { ~ # u , u # z }  
Testing ~ (V)(~r ~ (x -- z)) fails because the store 
{z # y, y ~£ z, x ¢ z} is domain-consistent. 

In order to obtain a solution, it is necessary to enumer- 
ate the possible values in the restricted domains [22, 15]. 
This process is incremental. When a value v is chosen in 
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the domain D~ of the variable x, the constraint (x = v) 
is added to the store and propagated. This may reduce 
the domains of the other variables. This process is re- 
peated until either the domain of all variables is reduced 
to a single value or the domain of some variable becomes 
empty. In the former case, we obtain a solution of the 
test da ta  generation problem, whereas in the latter we 
must backtrack and try another value (x = w) until 
D~ =O. 

In general, there are many test data  on which a se- 
lected point is executed. As claimed in the Introduc- 
tion, constraint solving techniques provide a flexible way 
to choose test data. The search process can be user- 
directed by adding new constraints on the input vari- 
ables of the procedure. Our framework provides an ele- 
gant way to handle such constraints. These constraints 
are propagated by the inference engine as soon as they 
induce a reduction on the domains. Furthermore, these 
additional constraints may be used to insure that  the 
generated input data  are "realistic". They may have 
one of the two following forms : 

• constraints on domains (for example z0 E 
[ -3 ,  17]) ; 

• constraints between variables (for example Y0 > x0 
meaning that  a parameter  Y0 of a procedure is 
strictly greater than another one x0). 

It is also possible to guide the search process with some 
well-known heuristics. For example : 

• to select the variable with the smallest domain 
(first-fail principle) ; 

• to select the most constrained variable ; 

• to bissect the domains ( x E [a, b] is transformed 
into (D~ = [a, a + b/2] or Dx = [a + b/2 ,  b]) ). 

4 I M P L E M E N T A T I O N  

INKA, a prototype implementation has been developed 
on a structured subset of language C. The extension to 
control structures such as do-whi le  and swi tch  statement 
is straightforward. Characters are handled in the same 
way as integer variables. Floating point numbers do not 
introduce new difficulties in the constraints generation 
process, but  they require another solver. Although the 
domains remain finite, it is of course not possible to 
enumerate all the values of a floating point variable. 
Resolution of the constraint system is therefore more 
problematic. References on these solvers can be found 

int  s a m p l e ( i n t  a[3], i n t  b[3], i n t  target) 
int  i, f a , f b ,  ou t ;  

l a .  i : = 1 ;  
l b .  ]a := 0 ; 
l c .  fb  :=  0 ; 
2. w h i l e  (i _< 3) 

d o  
3. i f  (a[i] = target) 
4. t h e n  f a  :---- 1 ; 

f l ;  
5. i : = i + 1  ; 

od 
6. i f ( f a = l )  

t h e n  
7a. i := l ; 
7b fb  :=  1 ; 
a. w h i l e  (i _< 3) 

do 
9. i f  (b[i] ~ target)  
10. t h e n  ]b :=  0 ; 

f i ;  
11. i : = i + 1  ; 

d o  ; 
f l ;  

12. if (fb = 1) 
13. t h e n  out :=  1 ; 
14. e l s e  out :=  0 ; 

f i ;  
15. return out ; 

Figure 5: Program SAMPLE 

in [17]. The extension of our method to pointer variables 
falls into two classical problems of static analysis : the 
aliasing problem and the analysis of dynamic allocated 
structures. 

INKA includes 5 modules : 

• A C Parser 

• A generator of SSA form and control-dependencies 

• A generator of K s e t  

• A constraints solver 

• A search process module 

The constraint solver is provided by the CLP(FD) li- 
brary of Sicstus Prolog 3.5 [6]. 

5 E X A M P L E  

We present now the results of our method on a non- 
trivial example adapted from [11] : the SAMPLE pro- 
gram given in figure 5. For the sake of simplicity, it is 
written in the abstract syntax used in this paper. Size 
of array have been reduced to 3 for improving the pre- 
sentation. 
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Consider the problem of automatic test data  generation 
to reach node 13. 

INKA has ge:erated the Kset(SAMPLE, 13) constraint 
system. The f)llowing set of constraints on domains are 
added : 

a[1], a[2], a[3], bill, b[2], b[31, target E [1, 9] 

Table 1 reporl s only the results of the constraint solver 
and search pr)cess module. Experiments are made on 
a Sun Sparc 5 workstation under Solaris 2.5 

First experim rots concern the search of solutions with- 
out adding ar.y kind of constraints on input data. The 
line 1 of the t~ hie 1 indicates the time required to obtain 
the first solut: on and all solutions of the problem. The 
exact test da~ • "s provided in the former case while the 
number of so: ltions is only provided in the later one. 

Then, we hav, considered that  the user wants the input 
data  to satisf~ the additional constraint : 

a[3] 2 = all] 2 + a[2] 2 

Second line r, ports the results of generation when the 
additional cor.straint is checked out after the search pro- 
cess and the t l ird line reports the results when the con- 
straint is add, d to the current store and propagated. 

A first fail eaumeration heuristic has been used for 
these experin:ents. Test data are given in vector form 
(a[1], a[2], a[3:, b[1], b[2], b[3],target) and CPU time is 
the time elap:ed in the constraint solving phase. Note 
that  a comple ;e enumeration stage would involve to try 
97 = 4782969 vz~lues. 

These experir.~ents are intended to show what we have 
called the fle::ible use of constraints. First, the CPU 
time elapsed :ia the first and second experiments are ap- 
proximatively the same to obtain all the solutions. In 
both cases, tl.e search process has enumerated all the 
possible values in the reduced domains. The only dif- 
ference is that,  in the second case, the added constraint 
has been chec ~ed out after the enumeration step. This 
illustrate a g, nerate and test approach. On the con- 
trary, note that  the results presented in the third line 
of table 1 show an important  improvement factor due 
to the use of 1 he additional constraint in the resolution 
process. In tl e third case, the additional constraint is 
used to prune: the domains and thus the time elapsed in 
the search pro cess module is dramatically reduced. 

Of course, f t r ther  experiments are needed to show 
the effectiven,~ss of our approach and to compare the 
method with )ther approaches. 

Table 1: Results 

First solu- CPU time All solutions CPU time 
tion 

(1,1,1,1,1,1,1) 1.0s 1953 solu- 287s 
tions 

(3,4,5,3,3,3,3) 53s 292s 

(3,4,5,3,3,3,3) 1.3s 

(3,4,5,3,3,3,3), 
(3,4,5,4,4,4,4), 
(3,4,5,5,5,5,5), 
(4,3,5,3,3,3,3), 
(4,3,5,4,4,4,4), 
(4,3,5,5,5,5,5) 
(3,4,5,3,3,3,3), 
(3,4,5,4,4,4,4), 
(3,4,5,5,5,5,5), 
(4,3,5,3,3,3,3), 
(4,3,5,4,4,4,4), 
(4,3,5,5,5,5,5) 

2.4s 

6 C O N C L U S I O N  

In this paper, we have presented a new method for the 
automatic test data  generation problem. The key point 
of this approach is the early detection of some of the 
non-feasible paths by the global constraints and thus the 
reduction of the number of trials required for the gen- 
eration of test data. First experiments on a non-trivial 
example made with a prototype implementation tend 
to show the flexibility of our method. Future work will 
be devoted to the extension of this method to pointer 
variables and experimentations with floating point num- 
bers ; an experimental validation on real applications is 
also forseen. 
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