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Functional Vector Generation for Sequential HDL Models
Under an Observability-Based Code Coverage Metric

Farzan Fallah, Pranav Ashar, and Srinivas Devadas

Abstract—Design validation and verification is the process of ensuring
correctness of a design described at different levels of abstraction during
the design process. Design validation is the main bottleneck in improving
design turnaround time. Currently, simulation is the primary methodology
for validation of the first description of a design. In this paper we integrate
directed search methods and observability-based code coverage metric
(OCCOM) computation into an algorithm for generating test vectors
under OCCOM for sequential HDL models. A prototype system for
design validation under OCCOM has been built. The system uses repeated
coverage computation to minimize the number of vectors generated.
Experimental results using the test vector generation system are presented.

Index Terms—Coverage metric, HSAT, observability, observability-
based code coverage metric (OCCOM), satisfiability, test vector,
validation.

I. INTRODUCTION

Validation is by far the most time-consuming task in the design of
microchips, and validation time influences the time-to-market. In order
to validate an HDL description, simulation is usually used.

In order to do simulation, it is necessary to have some test vectors.
Because trying all possible test vectors is not practical, only a small
number of test vectors have to be chosen. This raises the question of
how good the test vectors that we are using are and how well the design
has been tested. In order to answer these questions, a coverage metric
can be used, and the design can be simulated under some test vectors to
achieve the targeted coverage under the chosen metric. Some coverage
metrics have been used so far are transition coverage and coverage of
all statements, branches, and paths borrowed from software testing [1].

Covering all statements in an HDL code [2] or covering all branches
are tractable, but they are not sufficient for validating a design. Cov-
erage of all paths in an HDL code or the coverage of all transitions in
an FSM model of an implementation of a design [3] result in many test
vectors and are not practical.

Most of these metrics are based on activation of statements and do
not guarantee detection of a possible error in the statement. To de-
tect an error, an erroneous value for one of the outputs of the design
must be observed. We use an observability-based code coverage metric
(OCCOM) [4] in our system to address the observability requirement.

After choosing a coverage metric, test vectors should be generated.
Manual test vector generation can result in very good test vectors but it
is time consuming. Random methods can generate test vectors quickly
but the quality of the test vectors may not be satisfactory. As a result,
an automatic deterministic test vector generator is desired.

In this paper, we integrate the hybrid satisfiability test vector gener-
ation algorithm (HSAT) introduced in [5] with OCCOM. We perform
coverage analysis after generating each test vector to find out the por-
tions of the design covered by the test vector. This enables us to gen-
erate test vectors for portions uncovered by the previous test vectors
only. Hence, minimizing the total number of generated test vectors.
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Our system is better suited to target portions of a design that cannot be
covered by random and heuristic-based test vector generation methods.
Due to using a complete method for generating test vectors, our method
cannot handle very large and deep sequential designs.

The reader is referred to [4] and [5] for details of the observability-
based code coverage metric and the hybrid satisfiability test generation
algorithm, respectively.

Details of our vector generation algorithm are presented in
Section II, while our test vector generation algorithm for sequential
circuits is described in Section III. Section IV presents the experi-
mental results of using our test vector generator.

II. V ECTORGENERATION ALGORITHM FOR OCCOM

Details of a vector generation algorithm for OCCOM are given in
this section. The goal of the algorithm is to generate a vector so that a
tag injected in a specific line of an HDL model is propagated to one of
the outputs of the model.

A. The Basic Algorithm

The basic algorithm operates according to the following steps.

1) An assignment in the HDL model is selected to inject a tag.
The variable in the left-hand side of the selected assignment
is represented byV .

2) HSAT constraints are written for the HDL model. The set of
constraints are called error-free constraints.

3) HSAT constraints are written for the tag-injected HDL model.
Every variableY is replaced bytagged Y . This set of con-
straints are called tagged constraints.

4) For every input of the HDL model the following constraint is
added to the set of constraints,

tagged input = input:

5) Tag Injection: In the constraints corresponding to the se-
lected assignment for tag injection,tagged V is replaced by
tagged V � �, or tagged V + �, depending on the sign
of the tag.

6) Constraints for detecting the tag on at least one of the output
variables, namely observability constraints, are added. For ex-
ample, if variablesO1 andO2 are the outputs of the HDL
model, the following constraints will be added,

(tagged O1 >O1) _ (tagged O1 < O1)_

(tagged O2 >O2) _ (tagged O2 < O2):

7) The lower and the upper bounds for the variables are written.
8) The set of HSAT constraints are solved using the technique

described in[5].
If there is a solution to the HSAT problem, the resulting values for

the inputs can be used as a test vector, and the generated test vector can
propagate the tag injected in the selected line to one of the outputs. If
there is no solution to the HSAT problem, there is no test vector with
the desired property.

B. Example Application of the Basic Algorithm

Consider the following Verilog code as an example to illustrate the
previous algorithm:

;
;
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Fig. 1. Structural RTL and marked variables for Section II-B example.

;
;
;

;
;

;
;

If in1 = 1 andin2 = 1, outwill be equal toa+ b. Havingin1 = 0
andin2 = 1 results in the valuea� b for out. Finally, if in2 = 0, out
will be equal toa + 1. The circuit generated from this code is shown
in Fig. 1.

The objective is to detect a tag injected in theelse clause of the first
if statement in the output. The following constraints are generated for
the various statements (indicated in comments below) in the error-free
version of the circuit.

To see how the above constraints model the circuit, consider the first
set of constraints corresponding toif(in1) c = a + b. The equality
d1�a�b = 0models the adder in thethen clause of theif statement.
The behavior of the multiplexor corresponding to thethen clause when
the control signal of the multiplexor is 1 (i.e.,in1 = 1) is modeled
using two inequality constraints. Assuming the value ofin1 is 1, the
constraints are simplified to,

This impliesc = d1. If the value ofin1 is 0, the constraints are
simplified to,

These two constraints are always satisfied because of the assumption
on the number of bits of variables. As a result, the value of variablec

is defined by the constraints corresponding toif/else c = a - b.
In the next step, constraints are written for the circuit with the error,

The values of the inputs for the error-free and tagged models have
to be equal. Consequently, the following constraints have to be added
to the set of constraints:

a =tagged a in1 = tagged in1

b =tagged b in2 = tagged in2:

In the next step, a tag is injected in the selected line, and the corre-
sponding constraint in the erroneous circuit is replaced by,

tagged d2��� tagged a+ tagged b = 0:

To guarantee the detection of the tag in the output, the following
constraints are added,

(tagged out > out) _ (tagged out < out):

The lower and the upper bounds for the variables are,

0 � a � 255 0 � tagged b � 255

0 � b � 255 0 � tagged c � 255

0 � c � 255 0 � tagged out � 255

0 � out � 255 0 � tagged in1 � 1

0 � in1 � 1 0 � tagged in2 � 1

0 � in2 � 1 0 � tagged d1 � 255

0 � d1 � 255 0 � tagged d2 � 255

0 � d2 � 255 0 � tagged d3 � 255

0 � d3 � 255 � 255 � � � 255

0 � tagged a � 255:

After solving the constraints, the resulting values can be used as a
test vector to activate and propagate the tag injected in theelse branch
of the firstif statement to the output.
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C. Decreasing the Size of the HSAT Problem

Duplicating every constraint and using a new variable for every vari-
able in the error-free model results in an HSAT problem twice as big
as the original one. In many cases it is possible to decrease the size of
the problem easily. Consider the circuit of Fig. 1. In the figure the tag
injection has been shown by marking the output of the subtractor.

Injecting a tag means that the values of the variables in the left-
hand-side of the selected HDL line in the erroneous model and the
error-free model are different. The effect of that difference can be prop-
agated only to the variables in the transitive fanout of the tagged vari-
able. The transitive fanout is defined recursively as follows, for a pri-
mary output it is the null set. For other variables it is defined as the
union of the fanout of the variable and the transitive fanout of every
variable in the fanout of the original variable. Variables in the transi-
tive fanout of the output of the subtractor have been marked in Fig. 1.

In order to write the equations for the erroneous model, it is neces-
sary to duplicate only the marked variables and the constraints which
have at least one marked variable.

Using these facts, the new HSAT problem will be:

255

Fig. 2. General synchronous sequential circuit.

Fig. 3. The iterative logic array of a sequential circuit.

As one can see, the number of variables has decreased from 19 to 13,
and the number of constraints has decreased from 28 to 21.

D. Making Test Vector Generation Consistent With the OCCOM
Analysis

Although the test vector generated using the described method can
propagate the injected tag to one of the outputs of the circuit, the
OCCOM analysis explained in [4] may report the tag undetectable.
The reason is that the OCCOM analysis is based on the likelihood of
the propagation of a tag; it does not use the tag magnitude information
and it considers tag cancellation. On the other hand, the test vector
generation algorithm generates a test vector which propagates a tag
with a specific magnitude to one of the outputs. To make the test vector
generation and coverage analysis consistent, it is possible to make
the OCCOM analysis more accurate by using the tag’s magnitude
information. As another solution, it is possible to select a path which
can propagate the tag according to the OCCOM tag calculus and use
the algorithm described in [5] to generate a test vector for propagating
the tag through the selected path.

III. T ESTVECTORGENERATION FORSEQUENTIAL HDL MODELS

A. Time-Frame Expansion Method

We use the time-frame expansion method to generate test vectors for
sequential HDL models. Fig. 2 shows a sequential circuit.

A synchronous sequential circuit can be modeled by a combinational
circuit, called the iterative logic array. The process of modeling the
sequential circuit using an iterative logic array is called time-frame
expansion.

Fig. 3 shows the iterative logic array of a sequential circuit.
Assuming the circuit is in the initial stateY0 and the input se-
quencefI0; I1; . . . ; Ikg is applied to the circuit, the next state
sequence will befY1; Y2; . . . ; Yk+1g and the output sequence will be
fO0; O1; . . . ; Okg.

After modeling a sequential circuit with a combinational one, a test
vector is generated for the combinational circuit. The basic algorithm
operates according to the following steps.

1) An assignment in the HDL model is selected to inject the tag.
The tag is injected in all time frames. The variable in the left-
hand-side of the selected assignment is represented byV .
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2) An upper bound on the number of time frames,tmax, that will
be used for vector generation is selected.1

3) t denotes the number of time frames that the design will be
expanded to in the current attempt.t is set to one.

4) The HDL model is unrolledt times.
5) HSAT constraints for both error-free and erroneous versions

of the HDL model are generated according to the techniques
described inSection II.

6) The HSAT problem is solved using the algorithm described in
[5].

7) If there is no solution to the HSAT problem andt < tmax, t is
incremented by 1 and the algorithm reverts to Step 4.

8) If there is no solution to the HSAT problem andt = tmax, the
algorithm returns reporting the tag cannot be covered within
tmax time frames.

9) If there is a solution to the HSAT problem, it is reported as the
desired test vector.

10) The test vector for the iterative logic array is converted to a test
sequence for the sequential HDL model.

B. Clause Ordering

It is possible to use some structural properties of a design to
order Boolean clauses in a way that the HSAT solver will solve the
HSAT problem more efficiently. A good clause ordering will help
the HSAT solver in finding a good candidate variable during the
branch-and-bound process.

Depth-first ordering tries to keep the clauses corresponding to a path
from a tag to the outputs/latches together. This way, the HSAT solver
will branch on variables corresponding to a path in the circuit.

In topological ordering, clauses corresponding to an operator appear
after the clauses corresponding to all the operators in its transitive fanin.
The transitive fanin of an operatorop is defined as the union of all
operators whose transitive fanout containop. This way the HSAT solver
is likely to set the values of the inputs of an operator early in the search.
In turn, this is likely to imply a value on the output of the operator.

C. Improving the Performance of the Algorithm

Unrolling HDL models increases the size of HSAT problems rapidly.
This can degrade the speed of test vector generation substantially. It can
easily be seen that in order to detect a tag in the output, the tag should
be propagated through a path consisting of marked variables. In order
to simplify the search for a solution, information about paths can be
added to an HSAT problem.

As an example, in Fig. 1, in order to have a tag onout, it is nec-
essary to havein1 = 1 and in2 = 1. Adding this constraint to
the original HSAT problem can help the HSAT solver to find a solu-
tion to the problem more quickly. In the previous example, there was
only one path between the injected tag andout, but in general there
are many paths. As a result propagation constraints will be in disjunc-
tive normal form. Transforming propagation constraints to conjunctive
normal form which is appropriate for the HSAT solver can result in
an exponential growth in the number of the clauses or will require the
addition of several intermediate variables. As a result, it is not always
practical to use them.

In order to make this approach practical, it is possible to generate
propagation constraints only for a limited number of paths between the
injection point and each variable. This controls the size of the HSAT
problem that must be solved at any given time, usually leading to a

1The only known theoretical bound on the required number of time frames
is exponential in terms of the number of latches of the circuit and is not tight
enough for practical purposes.

shorter run time. If the HSAT problem is found to be infeasible, another
set of paths is chosen. As a variation on this, short paths are selected
when the HSAT problem is very large. On the other hand, preference
is given to long paths when it is important to cover as many tags as
possible with each vector to minimize the number of generated vectors.

D. Maximizing the Tag Magnitude

To increase the likelihood of detecting real design errors by the gen-
erated vectors, it is desirable to maximize the tag magnitude for which
the vector propagates the tag. Ideally, we are interested in finding a
vector, if such a vector exists, which can propagate the tag independent
of its magnitude. This is important because we do not know anything
about the nature of the error and cannot make any assumption for its
magnitude.

During the search for finding a solution to the HSAT problem, the
HSAT solver fixes the value of variable�. This means that the re-
sulting vector will propagate a tag with a specific magnitude to the
output. There is no guarantee that a tag with a different magnitude can
be detected by the same vector. Consider the following Verilog code:

X = 4;

if (X > Y)

P = 1;

else P = 0;

if (Y == 8)

P = X;

whereY is an input andP is an output. A vector with value 6 forY
will propagate a tag injected in the first line to the output only if the tag
magnitude is greater than 2. On the other hand, if the value ofY is set
to 8, a tag in the first line can be propagated to the output independent
of its magnitude.

The following modifications are made to the HSAT problem in order
to maximize the covered magnitude of the tag.

1) Variable substitution is used to eliminate� from all equality
constraints.

2) All inequalities with� present in them, are rewritten in the fol-
lowing form,� � linear combination of other variables, or� �
linear combination of other variables.

3) � is replaced by�ub and�lb, in the first and the second form
inequalities, respectively.

4) We maximize�ub ��lb over HSAT constraints.
The result gives us a vector which can propagate the tag, for all

values between�lb and�ub, inclusive. Note that, this algorithm con-
verts the search problem from HSAT feasibility to optimization over
HSAT constraints.

An alternative heuristic for maximizing the magnitude of the cov-
ered tag is to select paths on the graph which propagates the tags only
through operators that can propagate tags independent of their magni-
tudes. An HSAT problem requiring propagation through such paths is
written. This way, only an HSAT feasibility problem needs to be solved.
If these constraints make the HSAT problem infeasible, an alternative
path must be tried. Consider the example earlier in the section. Since
the tag onX = 4; can be propagated through the statementP = X;

independent of its magnitude whileY has the value 8, we add the con-
straint(Y == 8) = 1 to the HSAT problem.

IV. EXPERIMENTAL RESULTS

In this section we present the experimental results of using our
method to generate test vectors for several examples. We also compare
different clause orderings.
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TABLE I
PERFORMANCE OF THEVECTORGENERATION APPROACH

TABLE II
COMPARING DIFFERENTHEURISTICS FORORDERING SAT CLAUSES

A. Performance Comparison

We have implemented the vector generation algorithm proposed in
this paper in a prototype system. The implementation uses the VL2MV
Verilog parser in VIS verification system [6]. VL2MV converts the
Verilog to structural RTL in the BLIF-MV format. Our implementation
involved converting the BLIF-MV format to our internal graph repre-
sentation from which we could generate constraints. In addition, we im-
plemented a coverage computation (tag simulation) routine which op-
erates on the same graph representation. The combination of the linear
and Boolean constraints was solved using the HSAT solver system [5].
Each time a vector was generated, it was tag simulated to determine
other tags covered by it. We set the upper bound on the number of time
frames to 10. The experiments were performed on a Sun Ultra 30/300
with 256 MB of RAM running at 300 MHz.

The examples used in Table I correspond to various circuits from
industrial and academic sources implemented in Verilog.FIFOctrl is
a FIFO controller,DMActrl is a DMA controller,port is an interface
circuit,counter is an 8-bit counter,arbiter is a bus arbiter, andcrd is a
traffic controller. Note thatcounterandport are part of a larger circuit.
We used the topological ordering for clauses for this experiment.

The basic numbers highlighting the performance of our vector gen-
eration algorithm are presented in Table I. Presented are the number
of generated vectors, the number of covered tags, the percentage of
the total tags covered by the generated vectors, the number of tags on
which the vector generation had to abort, and the coverage percentage
achieved by 1000 random vectors.

As one can see from the table, our program was able to achieve full
coverage for some examples. In some cases our program was unable to
find vectors covering a tag. The reason is that our algorithm targets tags
with small depth. Due to completeness of our algorithm (i.e., given a
number of time frames and sufficient CPU time it finds a test vector or
proves there is no test vector with the desired length), it may not be able
to handle large designs. We are currently working on some heuristic
vector generation methods for large designs and tags that require a large
number of time frames to be detected.

Finally, in some cases the coverage achieved by the random vectors
was equal or close to the coverage achieved by our program (e.g., ar-
biter and crd), while in other cases our program was able to achieve
better results using smaller number of test vectors.

B. Clause Ordering Comparison

The purpose of this section is to show the effect of the clause or-
dering on the vector generation time. In this controlled experiment, tag
simulation was disabled so that each heuristic operated on the same set
of tags in each example. The results are presented in Table II. Column
3 has the CPU time for the case that clauses are not ordered. Column 4
is the case where clauses are generated in the topological order of their
corresponding operators in the graph. Column 5 is the case when the
clauses for the operators in the fanout of an injected tag are generated
in depth-first search order. Column 6 is for the case when the clauses
for the operators in the fanout of an injected tag are generated in the
depth-first search order, and clauses for other operators are generated
in the topological order. As one can see, the topological order achieves
the best results.
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