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Abstract—Functional simulation is still the primary workhorse
for verifying the functional correctness of hardware designs.
Functional verification is necessarily incomplete because it is
not computationally feasible to exhaustively simulate designs. It
is important, therefore, to quantitatively measure the degree of
verification coverage of the design. Coverage metrics proposed for
measuring the extent of design verification provided by a set of
functional simulation vectors should compute statement execution
counts (controllability information) and check to see whether
effects of possible errors activated by program stimuli can be
observed at the circuit outputs (observability information). Un-
fortunately, the metrics proposed thus far either do not compute
both types of information or are inefficient, i.e., the overhead of
computing the metric is very large. In this paper, we provide the
details of an efficient method to compute an observability-based
code coverage metric that can be used while simulating complex
hardware description language (HDL) designs. This method offers
a more accurate assessment of design verification coverage than
line coverage and is significantly more computationally efficient
than prior efforts to assess observability information because it
breaks up the computation into two phases: functional simulation
of a modified HDL model followed by analysis of a flowgraph
extracted from the HDL model. Commercial HDL simulators can
be directly used for the time-consuming first phase and the second
phase can be performed efficiently using concurrent evaluation
techniques.

Index Terms—Code coverage, functional verification, observ-
ability, OCCOM.

I. INTRODUCTION

V ERIFICATION is increasingly perceived as the major bot-
tleneck in integrated circuit design. For most designs, one

of the hardest verification problems is verifying the correctness
of the initial register-transfer level (RTL) description coded into
a hardware description language (HDL). Formal techniques for
language containment and property checking are making some
progress on this problem. However, there is no indication that
these techniques will be able to offer comprehensive verification
across a wide variety of designs. Thus, it appears that simula-
tion will continue to be the workhorse for design verification for
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some time to come. As a result, there is a well-defined need for
tools that enable designers to assess the comprehensiveness of
verification coverage offered by a simulation vector set.

The analogy that is used in OCCOM is that of fault simula-
tion used in manufacturing test. A fault simulator enables one
to assess that the fault coverage is high enough. This is crit-
ical to ensuring that the design is adequately tested. By analogy,
we are interested in providing HDL coverage metrics that allow
designers to assess the comprehensiveness of their simulation
vector set. Next, we aim to help them diagnose what part of
their design may be inadequately verified by the current vector
set. This will help guide the writing of additional vectors.

Currently, the state-of-the-art in coverage metrics is found in
commercial tools that principally rely on either line-coverage or
path-coverage metrics inherited from software testing. In soft-
ware testing, given a set of program stimuli, coverage metrics
such as line coverage, branch coverage, and path coverage are
used for software quality assurance. Most coverage metrics in
software testing [3] are based on the activation of statements,
branches or sequences of statements, and do not address ob-
servability requirements; the fact that a statement with a bug has
been activated by input stimuli does not mean that the observed
outputs of the program will be incorrect. Exceptions are the sen-
sitivity analysis methods of Voas [20] and the impact analysis
methods of Goradia [11].

Similar approaches can be taken in hardware. However,
hardware offers much less observability ofmeaningful1 data
through primary outputs than software does through inspection
of memory contents. Therefore, coverage metrics proposed for
measuring the extent of hardware design verification provided
by a set of functional simulation vectors should compute HDL
statement execution counts (controllability information) and
check to see whether effects of possible errors activated by
program stimuli can be observed at the circuit outputs (observ-
ability information). Unfortunately, the coverage metrics for
hardware proposed thus far either do not compute both types of
information or are inefficient, i.e., the overhead of computing
the metric is very large.

A simple example of why observability information is impor-
tant to designers is shown in Fig. 1. Assume that model A and
model B are both exercised thoroughly using a functional vector
set. Controllability metrics will report 100% statement coverage
for both models. However, it may be that statements in model
A are only exercised with vectors for which , implying

1By meaningful, it is meant that the designer should be able to easily differ-
entiate incorrect values from correct values for a given input stimulus.
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Fig. 1. Observability versus controllability coverage.

that the variables assigned in these statementsneveraffect the
observed output for any simulated vector.

This paper describes the details of an efficient method to com-
pute an observability-based code coverage metric (OCCOM)
that can be used while simulating complex HDL designs. The
computed coverage information serves as a diagnostic aid to de-
signers; it helps to debug and design and/or create better func-
tional tests.

The concurrent tag propagation algorithm proposed in this
paper circumvents the drawbacks of previously proposed cov-
erage metrics with a new two-phase approach. The two phases
are the following.

1) The given HDL model is modified automatically, in par-
ticular some new variables are added and some statements
are moved out of conditionals, andthe given vectors are
simulated using commercial HDL simulators.Thus, cur-
rent (future) simulation technology is (can be) directly ex-
ploited. There is a loss of simulation efficiency due to the
addition of new variables, but this is not large [cf. Sec-
tion VI).

2) A flowgraph from the modified HDL model is created and
the results of simulation are used to determine coverage
under OCCOM. Using concurrent evaluation techniques,
this phase can be executed efficiently.

The remainder of this paper is organized as follows. Section II
explains related work in manufacturing test, software testing,
and HDL coverage analysis. Section III describes tag propaga-
tion, which is the basic strategy for computing OCCOM cov-
erage. HDL code modification is explained in Section IV. Sec-
tion V describes the graph-based forward tag propagation and
the concurrent tag propagation methods. Experimental results
are presented in Section VI and directions for future work in
Section VII.

II. RELATED WORK

This section describes representative coverage analysis
methods from the manufacture test and software test literature,
as well as HDL coverage analysis work.

A. Manufacturing Test

The basic premise of manufacturing test is the modeling of
manufacturing defects as logical faults. Since manufacturing is
a physical process that can be analyzed, credible fault models
can be derived. For example, defects are known to cause breaks
and shorts in metal wires. These breaks or shorts can be modeled
as logical faults since there is a direct correspondence between
wires in silicon and connections in the logic circuit.

1) Fault Models: One of the most popular fault models in
manufacturing test is the stuck-at fault model [1]. The stuck-at
fault model is a logical fault model where any wire in the logic
circuit can be stuck-at-1 or stuck-at-0. A test vector that pro-
duces the opposite value (zero for a stuck-at-1, and one for a
stuck-at-0) willexcitethe fault. The effect of the fault has to be
propagatedto an observable circuit output in order for the fault
to be detected by the vector.

2) Fault Coverage andSimulation: For any fault model,
given a test vector set, thefault coverage of the test vector set
can be computed usingfault simulation.For every possible fault
in the fault model, it is checked for each vector in the vector
set whether the fault is excited and propagated to a primary
output. Fault coverage for a vector set is defined as the number
of detected faults divided by the total number of faults. Fault
coverage measures the “goodness” of a vector set in detecting
all faults. A test set with higher fault coverage is more likely to
detect bad integrated circuits and so fault coverage is used to
drive the test generation process.

Fault simulation can conceivably be used to provide coverage
metrics for HDL models. However, fault simulation would re-
quire a synthesis of the HDL model into gates and is typically
too time consuming for a large model and a large set of vectors.
Further, the faults targeted would be stuck-at faults on gate in-
puts/outputs, most of which are unrelated to HDL model errors.

3) Functional Testing and Functional Fault Models:As
mentioned earlier, the direct correspondence between a metal
wire in the silicon integrated circuit and a connection in
the logic circuit motivates logical fault models. No such
correspondence may exist for a behavioral description in an
HDL or structural RTL description. Statements in the HDL
description may correspond to hundreds of gates and wires
in the final design. Some efforts have been made to model
faults as perturbations of transitions in a state transition graph
description of a circuit [6] and at the RTL for microprocessors
[4], [19]. Error models that reflect incorrect connections or
gates in a gate-level circuit have been proposed along with
error simulation methods in [16].

The quality of a functional fault model is determined by the
number of single stuck-at faults detected by a functional test set
that produces 100% coverage for the functional fault model. The
proposed functional fault models attempt to obtain high stuck-at
fault coverage rather than attempting to discover bugs in the
HDL description. Further, the effectiveness of test sequences
cannot be evaluated directly at the functional level [1].

B. Software Testing

The problem of verifying the correctness of an HDL descrip-
tion of circuit behavior is similar to the software testing problem
because the description of circuit behavior is similar to a pro-
gram written in a high-level programming language like C or
C . An important difference is that software programming
languages are more expressive than HDLs, leading to more com-
plicated descriptions and test procedures.

A control flowgraph is a graphical representation of a
program’s control structure [3, Ch. 3]. Given a set of program
stimuli, one can determine the statements activated by the
stimuli by applying the stimuli to the control flowgraph. The
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line coverage metric measures the number of times every
instruction is exercised by the program stimuli. In the case
of branch coverage,we measure the number of times each
branch is taken or not taken under the set of program stimuli.
Path coveragemeasures the number of times every path in the
control flowgraph is exercised by the set of program stimuli.
A potential goal of software testing is to have 100% path
coverage, which implies branch and line coverage. However,
100% path coverage is a very stringent requirement and the
number of paths in a program may be exponentially related to
program size.

These coverage metrics require activation, but say nothing
about the observability conditions required to see the effect of
possible errors in the activated statements. The path coverage
metric will satisfy observability requirements if paths from pro-
gram inputs to program outputs are exercised and the values of
variables are such that the erroneous value is not masked (this
is analogous to side inputs having noncontrolling value in fault
propagation). However, the path coverage metric does not ex-
plicitly evaluate whether the effect of an error is observable at
an output.

C. HDL CoverageAnalysis

Coverage analysis techniques proposed for general HDL
models include—guaranteed coverage of every statement in
an HDL model [7], evaluation of transition coverage of a test
set [14], and abstraction of models and semantic control over
transition coverage [10]. These metrics do not directly address
observability requirements.

Observability requirements are addressed in the metric pro-
posed in [8]. In order to compute observability information,
variables are tagged during simulation and a simulation calculus
is used to calculate the coverage provided by an arbitrary set
of functional vectors. There are several drawbacks with the tag
simulation algorithm and calculus presented in [8].

1) The calculus was developed for only a subset of Verilog.
In particular, nested if statements cannot be handled and
neither can looping constructs used in popular HDLs.

2) The efficiency of the simulation algorithm leaves much
to be desired because the calculus dictated the use of an
augmented simulator whose speed is much slower than
the compiled-code speed of commercial simulators. The
speed can be improved by incorporating all the optimiza-
tions currently present in commercial HDL simulators,
but this is a huge undertaking.

Ho et al.[13] use transition tours on the implementation-con-
trol finite state machine to automate test generation of corner
cases for validation of an embedded dual-issue pipelined pro-
cessor. The issue of error coverage is not addressed. A formal
metric for coverage computation is presented in [12]. This
method has several attractive features, including a guarantee of
design error coverage. However, it has not been automated and
has only been applied to a processor example.

Design-specific coverage analysis and test generation ap-
proaches have been proposed for processors (e.g., [2], [15],
[17]).

III. COMPUTING COVERAGE—BASIC STRATEGY

An HDL model is viewed as a structural interconnection
of modules. The modules can be comprised of combinational
logic and registers. The combinational logic can correspond to
Boolean operators (e.g.,AND, OR, NOT) or arithmetic operators
(e.g., , ).

A. Tag Coverage

Given an HDL model and a set of functional vectors, com-
puting controllability metrics during functional simulation is
relatively easy. Assuming an event-driven simulator, counters
can keep track of how many times, if any, each statement is exe-
cuted or action taken. It is, however, desired to compute observ-
ability metrics as well.

A tag at a location represents the possibility that an incorrect
value was computed at that location. These tags on variables are
not tied to particular design errors; they serve as a mechanism
for extending standard coverage metrics to include observability
requirements [8]. Each location corresponds to an assigned vari-
able in some statement in the HDL model. Our goal, given a set
of functional vectors and an HDL model, is to determine if a tag
injected in any particular location ispropagated to the circuit
output. That is, we want to see if incorrectly computed values
are propagated to circuit outputs, or not.2

This is dependent on the data values at other locations in the
circuit; other data values mayblock the tag from reaching any
circuit output. The quality of a vector set is determined by how
many injected tags are propagated to the output. The percentage
of propagated tags is what we callcode coverageunder the
metric.

Note that we will use thesingle tagmodel, where the effects
of exactly one injected tag are computed, for many different
injected tags. Each injected tag can be thought of creating a
distinct “faulty” HDL model and several such faulty models are
processed in parallel by the simulation algorithm. (This is akin
to concurrent fault simulation [5].)

B. Two-Phase Approach

Computing an observability metric for a collection of logic
gates is similar to fault simulation using the calculus [18].
An error at the input of anAND gate is propagated to the output
only if the other inputs are at a one or have errors of the same
polarity. (Similarly for anOR gate.) Generalizing this notion to
HDLs requires us to handle arithmetic operations, conditionals,
and looping constructs.

A calculus can be defined to handle HDL models, for ex-
ample, augmenting the calculus of [8], but the calculus should be
easily computable. Designers wish to simulate many thousands
of vectors on complex HDL models. Commercial HDL simula-
tors incorporate many optimizations to improve logic simulation
speed. A new calculus implies that the simulation engine has to
be modified and this can result in a dramatic loss in efficiency

2While there is full observability of internal locations in the HDL model
during simulation, the particular data values at internal locations may be incom-
prehensible to the designer. For example, the designer may be able to verify that
the output of a Wallace tree multiplier is an incorrect six, for inputs of four and
four, but will not be able to determine if an arbitrary internal wire is at a faulty
one or zero.
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unless a major effort to incorporate optimizations is made. In
order to avoid this problem, a two-phase approach can be used
to compute OCCOM coverage metric. The two-phase approach
is the following.

1) The given HDL model is modified. The modifications are
necessary because of conditionals in the HDL model. In
particular, some new variables and statements are added.
Then the modified HDL model is simulated using a stan-
dard HDL simulator. Note that tags do not play a part in
this phase.

Simulating the modified HDL model will provide more
information than simulating the original model. This extra
information is used in the second phase to perform tag
propagation.

2) In the second phase, tags are injected and propagated. A
flowgraph is extracted from the HDL model. There are
two different possibilities for doing tag propagation. In
forward tag propagation, tag injection simply corresponds
to introducing a tag on a vertex in the graph and tag prop-
agation corresponds to selectively traversing paths from
the vertex to the output nodes. In concurrent tag propaga-
tion, tag injection corresponds to introducing a tag on the
observable vertex in the graph corresponding to outputs
and tag propagation corresponds to selectively traversing
paths from the observable vertexbackward.

Phase 1 of algorithm is described in Section IV and Phase 2 is
described in Section V. The tag simulation calculus is described
in Section III-C. Note that this calculus is not used in Phase 1,
but only in Phase 2. Nevertheless, in order to understand why the
HDL description is modified, the tag simulation calculus needs
to be described first.

C. Tag Simulation Calculus

A tag is represented by the symbol, which signifies a pos-
sible change in the value of the variable due to an error. Both
positive and negative tags are considered,written simply as

, and . If the presence or sign of the tag is not known, an
unknown tag is used. An unknown tag is shown by “?.” Note
that and also . In the sequel, the tag sim-
ulation calculus is defined for multiple operators. Note that the
following calculus is based on the likelihood of the propagation
of the tag. If the propagation of the tag depends on its magnitude,
it is assumed that the tag is propagated or blocked depending on
which case is more likely. For example, in the Verilog statement

with and , if there is a positive tag
on variable , it is assumed that the tag is not propagated to the
variable . The reason is that the value of the variablein the
presence of the tag is TRUE unless the magnitude of the tag on

is exactly three. As a result, it is unlikely to have a tag on vari-
able .

The calculus can be changed easily, but the resulting analysis
might substantially underestimate or overestimate the coverage
of a set of test vectors.

1) Logic Gates: First, the calculus is defined for Boolean
logic gates. This is similar to the calculus [18]. The calculus
for anINVERTER, a two-inputAND gate, and a two-inputOR gate
are shown in Table I. The five possible values at each input are

TABLE I
� CALCULUS FOR INVERTER, AND GATE, AND OR GATES

TABLE II
� CALCULUS FOR AN ADDER

, . (Note that and .)
As an example, if the input of an inverter gate is zero and it has
positive tag on it, the value of the output of the inverter will be
one and it will have a negative tag on it. The case that the input
of the inverter is one and the input has a negative tag is similar.
As another example, if one of the inputs of anAND gate is zero
and the input has a positive tag and the value of the other input
is one and it has a negative tag on it, the value of the output of
theAND gate will be zero because the erroneous value of one of
the inputs is zero.

Using the above calculus, any collection of Boolean gates
comprising a combinational logic module can be tag simulated.

2) Arithmetic Operators:In the sequel, the tag simulation
calculus is described procedurally for some common arithmetic
operators. All modules are assumed to bebits wide. For each
operator , after the simulator computes ,

might be tagged with a positive or negativeor and it
is written as , , .

1) Adder: If all tags on the adder inputs are positive and if
the value MAX , the adder output is assigned
to . MAX is the maximum value possible
for . This is similar if all tags are negative. If both pos-
itive and negative tags exist at adder inputs, the output is
assumed to be unknown tag. Table II shows calculus for
tag propagation through an adder.

2) Multiplier: All tags have to be of the same sign for propa-
gation. A positive on input is propagated to the output

provided or if has a positive . The output
of multiplier is assigned to . This is similar for
negative .
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TABLE III
� CALCULUS FOR> WHEN RESULT OFa > b IS TRUE

TABLE IV
� CALCULUS FOR> WHEN RESULT OFa > b IS FALSE

3) Comparator:If tags exist on inputs and , they have
to be of opposite sign, else the output will have an un-
known tag. Assume a positive tag onalone or a positive
tag on and a negative tag on. If , then the
tag(s) is (are) propagated to the output, else the tag(s) is
(are) not. The output of comparator is assigned to .
This is similar for other tags and other kinds of compara-
tors. Tables III and IV show the calculus for tag propaga-
tion through a operator when the result of operation is
TRUE and FALSE, respectively.

4) Bit Extraction:If tags exist on , where is an -bit vari-
able, it is assumed that the tag cannot propagate to a single
bit of . For example, is assumed to be tag free even
if there is a tag on . The reason is that in order to have
a tag on , it is necessary to have , where

. This requires to have either the third bit of
equal to one or a carry from the sum of the lower bits

of and . In other words, the values of and have
to satisfy the formula .
This restricts the magnitude of tags which can be propa-
gated and makes the tag propagation analysis very com-
plex (Note that in order to be pessimistic or conservative,
it can be assumed that there is an unknown tag on.
In our system, we assume that there is no tag on).

5) Concatenation:If a tag exists on , it is assumed that it
is propagated to .

6) BitwiseAND: If one of the operands is zero and tag-free,
the tag is not propagated through operator. If all bits of
one of the operands is one and tag-free, the tag on the
other operand is propagated through operator. For other
cases, refer to [9].

7) BitwiseNOT: . For a positive
tag on , the output is assigned .

Reference [9] gives the calculus for all operators used in the
Verilog HDL.

3) Conditionals: When a conditional is encountered by the
tag simulator, there are two cases.

1) There is no tag in the control condition. In this case,
simulation proceeds normally. In the appropriate pro-
cesses, statements are executed and tags (if any) are
propagated/injected.

2) If there is a tag on the control condition , it means
that the tag will result in the incorrect branch being
taken. Under the tag condition, some assignments will
be missed and others incorrectly made. Unfortunately, it
is not known what happens when the incorrect branch is
taken; the only information is regarding the simulation
of the correct branch.3

As an example of the second case, consider

If and there is a negative tag on, the case where is
not assigned and is assigned has to be considered. While the
values of prior to and after the assignment are known, only the
old value of is known since the simulator does not compute

.
Nested conditionals and loops exacerbate the above situation.

In the next section, the way various cases are handled by modi-
fying the HDL model prior to simulation is described.

IV. PHASE 1—MODIFYING THE HDL MODEL

In this section, various commonly occurring cases of condi-
tionals and loops in Verilog are considered and it is shown how
to modify the HDL model such that the HDL simulation pro-
duces enough information to compute coverage in Phase 2. The
modification is illustrated for several commonly occurring cases
in the following sections. The modifications all require the ad-
dition of new variables.

A. Simple Conditional

Consider the code on the left-hand side below. The trans-
formed code is shown to the right

Consider the case of a tag on . During the simulation
of the modified code, the values of both and are
computed and stored in the new variablesand .

The new values of corresponding to the execution of both
the thenandelseclauses are known, regardless of the value of

during simulation. This will help to correctly propagate
positive or negative tags on in Phase 2 (cf. Section V).

Note that it has been assumed that computing expressions has
no side effect, otherwise it is necessary to save the values of the
variables and restore them to make the behavior of the modified
model and the original model equivalent.

B. Nested Conditionals

The case of nested conditionals is more complicated. Further,
the situation where variables such asare assigned values that

3The approach of [8], somewhat arbitrarily, tags all the variables in the as-
signments that would be missed under the tag condition.
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depend on the old values (e.g., increment operation) has to be
considered.

As an example, consider the following Verilog statements:

Transformation starts with transforming the state-
ment

In the next step, the and the statements
are transformed. is the only variable in the original Verilog
code whose value is changed inside theif statement and, as a
result, in order to transform the code, a new variableis intro-
duced

Note that if the value of is false, variable is read
before assigning any value to it. As a result, it is necessary to
initialize its value to the value of.

The original code and the transformed code are shown below.
The transformed code will compute the necessary information
to perform propagation of tags on , or

()

It can easily be verified that the two pieces of code result in
the same values for.

C. Loops

Consider thefor loop shown on the left-hand side below. The
interesting case is where there is a tag on the variable. The
transformed code is shown to the right

If there is a negative (positive) tag on, then that corresponds
to the situation that the loop is iterated fewer (more) than
times.

It is assumed that the values of the variables inside the body of
the loop are monotonic functions of. As a result, in order to do
the tag propagation, instead of using the values of the variables
when the loop iterates + times, their values after
iterations can be used. Similarly, instead of using the values of
the variables when the loop iterates times, their values
after times can be used. Using this assumption helps to
determine the propagation of tag independent of its magnitude
and simplifies the coverage analysis. Otherwise, the propagation
of the tag will depend on its magnitude, which is unknown.

Clearly, the monotonicity assumption is not always true. To
be pessimistic, it can be assumed that the tag on the variables
present in the left-hand-side of statements in the body of the
loop is “?.”

The above modified loop results in the same value foras
the unmodified code. However, will contain the value for the
case where the loop is iterated times.

Note that tags are not injected on the loop counter variable
. It is assumed that errors onare reflected by changes in the

number of loop iterations, i.e., . Propagating tags on variables
such as does not require additional information. Similar trans-
formations can be made forrepeatloops. Readers can find the
transformation algorithms in [9].
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Fig. 2. Verilog model and its corresponding graph.

After modifying the HDL model, the modified version is sim-
ulated using commercial HDL simulators. Information about the
values of the variables and simulation trace are stored in a file.
This information is used in the Phase 2 of the algorithm to per-
form tag propagation. We describe this propagation of tags in
the next section.

V. PHASE 2—GRAPH ANALYSIS

In this section, it is described how forward and concurrent
tag propagation are performed, given the information regarding
variable values for the simulated functional vectors. A flow-
graph data structure is used to enable efficient tag propagation.

A. Graph Structure

A graph from the given HDL model is cre-
ated. Fig. 2 shows a Verilog code fragment and its corresponding
graph.

Each vertex corresponds to a variable in the HDL
model, such as variable in Fig. 2. Also, there is a constant
vertexCONSTin the graph. Each edge is a di-
rected edge from source nodeto destination node . The edge
implies a data dependence between the nodes. Nodedepends
on . As an example, the edge between nodesand in Fig. 2
shows a data dependence between variablesand .

The label of an edge contains the information below.

1) Line Numbers:The edge exists because of a data depen-
dence. A particular line of themodifiedHDL file con-
taining the description of the model is associated with the
edge. For example, in Fig. 2, the edge fromto has
Line 3 as a label. Also, a particular line of theunmodified
HDL file might be associated with the edge.

2) Conditional Expression:There might be a conditional ex-
pression that has to be true in order for the data depen-
dency to exist. For example, given

the conditional expression for the edge fromto would
be .

3) Indices for Array Variables:Arrays are common in HDL
models. There will be a separate tag associated with each
array element, resulting in an array of tags. Given

there will be a single node for the arrayand the array
and an edge fromto . Information corresponding to the
array indices are associated with the edge fromto . In
general, two indices, one forand one for , are required.
For each index, one expression is used. These indices have
to be computed dynamically during tag propagation.

4) Type of Dependence:Dependence can be normal, condi-
tional, through task or function call, and through module
instantiation. For example, given

there is an edge from to and to . These edges are
conditional edges. The edges fromand to are normal
edges.

A task or function call dependency is a dependency be-
tween inputs and outputs of a task enable or function call.
If there is a tag on one of the inputs or the tag-injected
line is inside the task or function, there may be tags prop-
agated to the output of the task or function.

5) Propagation Multiplier:There is a multiplier associated
with each edge that will be used to multiply tags propa-
gating through the edge. These multipliers can be expres-
sions. For example, given , the edge between
and has a multiplier, but the edge from to has a

multiplier. (This is because a positive tag onshould
result in a negative tag on.) There is an additional com-
plication for edges whose dependence type is conditional.
Consider the code fragment below.

In this case, the conditional dependence edge fromto
will have the expression as the propagation

multiplier. Note that only the sign of is used, not
its magnitude.

A single observable vertex in the graph that does not cor-
respond to any variable is created. The variables in eachdisplay
or monitorstatement in the HDL model will be connected to
via edges. Each edge will have a Line number corresponding
to its displayor monitorstatement. The conditional expression
will be always true and the propagation multiplier will be
or . If array variables are displayed, the index of the variable
will be attached as a label for the edge.

A single vertexCONSTin the graph is created. There is an
edge from the vertexCONSTto every variable in the left-hand
side of each assignment whose right-hand side is constant.

Note that the data dependence graph can be constructed irre-
spective of the number of processes in the HDL description.

B. Forward Tag Propagation

Forward tag propagation is performed on the graph structure,
and uses information obtained from the simulation trace of the
modified HDL model. For each vector and each tag injected in
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Fig. 3. Forward tag propagation example.

the graph, it is determined if the tag is propagated to the observ-
able vertex . The steps are are the following.

1) Each edge in the graph is first determined to be active or
inactive for the given vector. An active edge is an edge
that can propagate a tag from a predecessor node to the
successor node. Whether an edge is active or not depends
on the tag simulation calculus (cf. Section III-C).

For example, given the statement , if
is zero, then the edge from to will be inactive. A
complication is that edges corresponding to the control
statements may be active or inactive depending on the
sign of the tag that is propagated as well as the value of
the control predicate under the given vector. For example,
in

there is an edge with conditional dependence fromto .
This edge is inactive if for the given
vector and is marked active otherwise. The propagation
multiplier of the edge is if and

if . If , then a positive tag

on cannot be propagated tofrom , but a negative tag
can.

2) All inactive edges are deleted from the graph.
3) A positive tag and a negative tag are injected in an edge

that corresponds to an assignment in the unmodified HDL
model.

4) The edges are traversed in the graph in the order of sim-
ulation trace. For each edge , if it is the first edge
corresponding to a line in HDL code, make the node
tag-free before propagating the tag through the edge. If
there is a tag on nodeand it can be propagated through
the edge, it is propagated to nodeand its sign is defined.
After that, it is combined with the previous tag of node.
If a tag has been injected on edge , it is propagated
to node , its sign is defined and it is combined with the
previous tag of node .

5) If during the tag propagation, the tag propagates to the
observable vertex , it is possible to detect the injected
tag under the current test vector.

Fig. 3 shows the progress of the forward tag propagation algo-
rithm for a simple Verilog model. is input of the model and its
value is zero for the selected test vector. First, inactive edges in
the graph are found and deleted from the graph. Because ,
the edge between and is inactive and can be deleted from
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the graph, as shown in Fig. 3(b). Tag propagation starts with in-
jecting a tag in the first assignment. After processing the first
line of the Verilog code, there will be a tag on variable. Note
that this tag appears on all instances of variable[cf. Fig. 3(c)].
In the next step, the second line of the Verilog code is processed.
There is a tag in the right-hand side of the assignment, but be-
cause the value of the variableis zero, it prevents the tag from
being propagated to the left-hand side. As a result, there will be
no tag on variable after processing the second assignment [cf.
Fig. 3(d)]. In the next step, thedisplaystatement is processed.
Because there is no tag on variable, there will be no tag in
the output [cf. Fig. 3(e)]. This means that using the current test
vector, the injected tag in the first line cannot be detected in the
output. Note that in order to find out if the tag injected on the
second line is propagated to the output using the current test
vector, it is necessary to do the analysis again. In this case, it is
possible to detect the tag injected on the second line.

C. Concurrent Tag Propagation

For each vector, all the tags that can be propagated to the ob-
servable vertex can be defined, using concurrent tag propa-
gation. The steps are the following.

1) Each edge in the graph is first determined to be active or
inactive; see Section V-B.

2) All inactive edges are deleted from the graph.
3) A positive (negative) tag is injected on the observable

vertex .
4) Starting from the observable vertex and assuming a

positive (negative) tag on the vertex, the edges are tra-
versed in the graph backward, in the reverse order of sim-
ulation trace, determining all nodes that can reach
the observable vertex. The vertex is reachable from
node if before traversing any of ’s fan-in edges, all
traversed paths from to have propagation multipliers
of the same sign. (The propagation multiplier of a path is
simply the product of the propagation multipliers of the
constituent edges.) There will be a positive or negative
tag on reachable vertices. Note that paths with multipliers
of different signs might result in tag cancellation and it
is conservatively assumed that the tag is not propagated.
Also, note that after taking the last edge in a set of edges
in the fan-in of a vertex corresponding to a single line
in HDL code, the tag is removed from that vertex. The
reason is that taking that edge corresponds to simulating
a line of HDL description with the variable of that vertex
in the left-hand side.

5) Line numbers (in the unmodified HDL model) of edges
taken whose head vertices are reachable from observable
vertex before taking those edges determine the tags which
are observable in .

Note that if a variable appears in two differentdisplaystate-
ments, one with positive sign and the other with negative sign,
the concurrent tag propagation algorithm as described will find
that variable unreachable. Hence, it is pessimistic. In order to fix
this, we would need different observability vertices for different
displaystatements.

In practice, the concurrent tag propagation algorithm uses a
graph that is slightly different than the graph used in the forward
tag propagation algorithm. Note that if we process the HDL
statements backward, there might be cases that there are several
possibilities for propagating a tag through an operator. As an ex-
ample, consider the following Verilog statement
when values of variables and are equal to two and there is
a positive tag on variable. A positive tag on variable and a
negative tag on variablewill result in a positive tag on vari-
able . Similarly, a negative tag on variableand a positive tag
on variable will result in a positive tag on variable. When
building the graph, onlyoneof the possibilities is considered
and the corresponding edges are added to the graph. Because
of this simplification, the result of the concurrent tag propaga-
tion algorithm can be different than the result of the forward tag
propagation algorithm. In particular, the concurrent tag propa-
gation algorithm might report that some detectable tags are un-
detectable. In order to make the result consistent with the result
of the forward tag propagation algorithm, it is necessary to try
both possibilities in the above example. This makes the worst
case running time of the algorithm exponential in the number of
operators. A better solution is to use the forward tag propaga-
tion algorithm for the tags that have been reported undetectable
by the concurrent tag propagation and to check to see if they can
be detected. This needs to be done only in the case where cer-
tain possibilities have been discarded during graph generation.
Fig. 4 shows the steps involved in running the concurrent algo-
rithm on an example. Fig. 4(a) shows the Verilog description
and the corresponding graph. Concurrent tag propagation starts
with injecting a tag on the observable vertex[cf. Fig. 4(b)].
After that algorithm proceeds with processing the last statement
in the description,displaystatement. This results in backward
propagation of the tag through bold edge in the graph to node

[cf. Fig. 4(c)]. In the next step, the third statement is pro-
cessed and tag on variableis propagated to variables and

. Note that tag on variable has negative sign [cf. Fig. 4(d)].
After processing the third statement, variablebecomes tag
free [cf. Fig. 4(e)]. The algorithm proceeds with processing the
second statement. A positive tag on variableis propagated
to variable . There is already a negative tag on variable, so
after propagating the tag, they cancel each other. This situation
is shown by putting a “?” on variable which is an unknown
tag [cf. Fig. 4(e)]. After processing the second statement, vari-
able becomes tag free [cf. Fig. 4(f)]. Finally, the first state-
ment is processed [cf. Fig. 4(f)]. In the next step, lines of Verilog
code corresponding to edges taken when their head nodes where
reachable at the time those edges were taken are found. For this
example, there are the second and the third lines. Tags injected
in the second and the third lines can be detected in the output
and other tags cannot be detected.

VI. RESULTS

A. Metric Comparison

The examples used in Table V correspond to various algo-
rithms and processors implemented in Verilog. Exampleeight
queensis an algorithm to solve the eight queens problem in
chess,dcnew is a train system relay,crd is a traffic controller,

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:48 from IEEE Xplore.  Restrictions apply.



1012 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 8, AUGUST 2001

Fig. 4. Concurrent tag propagation example.

TABLE V
COMPARING OCCOMAND A LINE COVERAGE METRIC

amp is a general-purpose processor, andcoherenceis a cache
coherence protocol.

The results in Table V serve to illustrate the usefulness
of OCCOM in relation to vanilla controllability measures.
A simple example of how controllability information can be
misleading in Fig. 1 was given. In Table V, statistics comparing
line coverage and OCCOM coverage for designer-generated
functional tests (labeled “Directed”) and randomly generated
tests (labeled “Random”) have been given.

It is clear that the extra observability information in OCCOM
is required to distinguish between the “good” design-generated

test and the random tests. In general, the designer generates tests
by exercising chosen paths through the HDL model. If a path
from inputs to outputs is exercised by an input vector sequence,
the tags injected on the assignment statements on the path will
almost always4 be propagated to the output. (Using a path cov-
erage metric has the disadvantage that an exponential number
of paths exist in the design and one cannot possibly exercise all
paths. Further, many of these paths may be false, i.e., may not
be exercisable.)

4One exception is when tag propagation is blocked because of arithmetic
overflow or underflow.
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TABLE VI
COMPARING TIMES REQUIRED TOCOMPUTE METRICS

B. Performance Comparison

Comparison of the performance of concurrent tag propaga-
tion algorithm against functional simulation and the method of
[8] has been given in the Table VI. Examplearbiter is a bus ar-
biter,counter is a 3-bit counter,crd is a traffic controller,ctlp3
is the logic for a Dining philosophers problem, and8251A is a
USART. The time required to simulate the original HDL model
(prior to modification) for 10 000 vectors using a commercial
Verilog simulator is given as a baseline for comparison pur-
poses. The same simulator and the same vectors were used for
OCCOM computation. OCCOM computation is broken up into
two parts; time required to simulate the modified HDL model
and the time required for tag propagation. All times correspond
to seconds on a Sun Ultra-SPARC 30/300 with 256 MB of RAM
running at 300 MHz.

The simulator of [8] could not be run for some of the exam-
ples since the simulator does not handle certain Verilog con-
structs such as nested if statements. The described method is
faster than the specialized tag simulation because it allows for
the use of highly optimized commercial HDL simulator and it
uses concurrent tag propagation.

The concurrent tag propagation algorithm is significantly
faster than fault simulation. Note that in order to use the fault
simulation strategy, the HDL model has to be converted to
gate-level form and this by itself is a time-consuming operation.

The CPU time for modifying HDL description and simulating
it grows linearly in terms of size of the description. Also, the tag
propagation analysis can be done in the worst case in quadratic
time. Hence, it is possible to use this method for large designs.
In practice, the results show a linear increase in CPU time in
comparison to simple HDL simulation.

C. Diagnosis—Feedback to Designer

OCCOM coverage obtained for a given HDL model can be
used to debug the model or create better functional tests. As-
sume that a certain coverage has been obtained for an HDL
model. The tags that are not propagated to the outputs are exam-
ined, one by one. For each such tag, the information regarding
whether the line on which the tag was initially injected was ex-
ecuted (controllability information) is known. All the vectors
(if any) for which the line was executed are determined. For
each vector, the tag propagation path is examined to determine
the blocking statement(s). The values of the variables in the
blocking statements need to be changed in order to propagate

the tag further. The designer determines a legal change in vari-
able values and creates a new functional test, which is tag-simu-
lated, and the process repeated. If the designer is unable to come
up with such a test, then it may be that there is a redundancy in
the HDL model or that there is a design error.

VII. FUTURE WORK

It is possible to improve tag analysis method described in the
previous sections to achieve more accurate results at the expense
of the speed of the algorithm. In this section, some possible
improvements are described.

A. Relative Magnitude of a Tag

In the tag analysis described in the previous sections, it was
assumed that a variable is tag-free, has a positive tag, a negative
tag, or an unknown tag. During tag propagation, the algorithm
only kept track of the sign of the tag, not its magnitude relative to
the original injected tag. As an example, during the tag analysis
for , when has positive tag (i.e., ), the tag on
was assumed to be, not .

Using the sign of the tag helped to detect the possibility of
tag cancellation or asymmetric tag propagation (e.g., the propa-
gation of tag through a control expression). This achieves more
accurate results than a method that ignores the sign. On the other
hand it requires performing tag analysis twice, once for each
sign of the tag.

It is possible to keep track of the relative magnitude of the
tag during tag analysis. This will help to obtain more accurate
results for tag cancellation, but it means considering more cases
for a tag, which in turn will expend more CPU time.

Note that, even in this case, it is necessary to make some
assumptions on the magnitude of the tag in order to perform
tag analysis. Also, in some cases, it is necessary to approximate
the relative magnitude of the tag when it is propagated through
different operators. For example, if and both and

are zero and have positive tags on them (i.e.,), the tag on
will be . In this case, it is possible to keep track of all powers
of , or to simply approximate it with , where is an
integer number.

B. Absolute Magnitude of a Tag

A possible improvement on simple tag analysis, which ig-
nores the magnitude of the tag, is assuming a specific magnitude
for the injected tag and performing more detailed analysis to see
if the values of any of the outputs are changed. This requires per-
forming the tag analysis assuming the absolute magnitude of the
injected tag is 1, 2, 3, etc., all the way up to the maximum value
of the variable. This achieves the most accurate results; on the
other hand, it is too time consuming to do this for all possible
magnitudes of a tag.

C. Injecting Tag on Expressions

In the described OCCOM analysis, the design errors were
modeled with injection of tags on the assignments. Injecting tags
on the assignments can capture some design errors, but not all
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of them. A better result can be achieved using injection of tag on
every expression. For example, consider the following Verilog
description:

Assume that there is an error in the control expression of the
if statement and that the expression should be instead
of . Every time theif statement is simulated, the values
of both variables and will be erroneous and there will be
a tag on them. Those tags can interact and possibly cancel each
other.

If a tag is injected only on the assignments, it is injected on
only one of the assignments inthenor elseat a time. As a result,
there will be no interaction or cancellation effect and the error
in the control expression cannot be modeled.

By injecting tags on the control expression this case can be
handled easily.

D. Multiple Tag Model

During OCCOM analysis, a single tag assumption has been
used. In other words it was assumed that there was only one
error in the design and effect of that error was modeled by in-
jecting a tag in one of the assignments. It is possible to use a
multiple tag model and inject a tag on several assignments at
the same time and then perform tag propagation. Different tags
can interact during tag propagation and cancel each other. How-
ever, the described algorithm will work for this case as well. To
achieve better results, some information regarding relative mag-
nitudes of the tags can be used.

The main issue with the multiple tag model is that there are
an exponential number of possible multiple tag injections and
methods to choose a small number of them are an absolute ne-
cessity. These methods may have to rely on designer intuition
and may be difficult to automate.
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