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Abstract— The main contribution of this paper is an exact
common subexpression elimination algorithm for the optimum | X | | X | | x | | X | | x

sharing of partial terms in Multiple Constant Multiplications
(MCM). We model this problem as a Boolean network that ﬂ E E ﬂ E Yy
covers all possible partial terms which may be used to generate : : : : :

the set of coefficients in the MCM instance. We cast this
problem |nt0 a 0_1 |nteger L|near Programm|ng (”_P) problem Flg 1. Transposed form of a hardwired FIR filter |mp|emenmt|0
by requiring that the single output of this network is asserted
while minimizing the number of gates representing operations

in the MCM implementation that evaluate to one. A SAT-based ; ol At
0-1 ILP solver is used to obtain the exact solution. We argue of the input among the set of multiplications. We propose

that for many real problems the size of the problem is within an algorithm that optimally solves the maximal sharing of

the capabilities of current SAT solvers. Because performance Partial terms. Although this problem has been proven to be
is often a primary design parameter, we describe how this NP-hard [2], we show that for many practical instances the

algorithm can be modified to target the minimum area solution sjze of the problem still allows for the computation of the
under a user-specified delay constraint. Additionally, we propose optimum solution

an approximate algorithm based on the exact approach with . . . .
extremely competitive results. We have applied these algorithms ~ 1his maximal sharing problem has been the subject of
on the design of digital filters and present a comprehensive set of extensive research in recent years. Several strategiesblean
results, that evaluate ours and existing approximation schemes proposed for the optimization of MCM. One is to consider not
against exact solutions, under different number representatios, only adders, but also subtracters to combine partial teAns.
and using different SAT solvers. second approach is the usage of the Canonical Signed Digit
Index Terms—Multiple Constant Multiplications (MCM),  (CSD) representation for the coefficients. This represiemta
g%ﬁ‘”28”5DS)“b&’i‘rﬂ’nles'%'?gEég“'g?g:?r'(hﬂ(ggf)' dgggogécnitrgilgtnsed minimizes the number of non-zero digits, hence the maximal
Pseudo-Boolean Optimization (PBO) ' ' subexprgssmn sharing search starts from a minimal level of
complexity [3]. In a recent paper, Park et al. [4] propose
the usage of a Minimal Signed Digit (MSD) representation
|. INTRODUCTION for the coefficients. Under the MSD representation a given
In several computationally intensive operations, such d¥/merical value can have multiple representations. Howeve
Finite Impulse Response (FIR) filters, as illustrated irufggl, in all of them, the number of non-zero digits is minimal and
and Fast Fourier Transforms (FFT), the same input is to Heerefore the same as the CSD representation. In this pager,
multiplied by a set of coefficients, an operation known a@emonstrate that the signed digit used in these represergat
Multiple Constant Multiplications (MCM). These operation actually hinders the amount of sharing with respect to a two-
are typical in Digital Signal Processing (DSP) applicasiordigit binary representation.
and hardwired dedicated architectures are the best option f To the best of our knowledge, all previous solutions to the
maximum performance and minimum power consumption. maximal sharing problem have been heuristic, providing no
Constant coefficients allow for a great simplification of théndication as to how far from the optimum their solutions
multipliers, which can be reduced to a set of shift-adds [1qre. We propose an exact common subexpression elimination
When the same input is to be multiplied by a set of constaalgorithm that is feasible for many real situations [5]. The
coefficients, significant reductions in hardware, and congeroposed algorithm can be applied to coefficients represent
quently power, can be obtained by sharing the partial prsdué binary, CSD, or MSD. We model this problem as a Boolean
network that covers all possible partial terms which may be
* Work developed while the authors were reseachers at INESC-l  ysed to generate the set of coefficients in the MCM instance.
Copyright () 2008 IEEE. Personal use of this material is peteti The inputs to this network are shifted versions of the value
However, permission to use this material for any other purpasest be
obtained from the IEEE by sending an email to pubs-permis@ieese.org. that serves as an input to the MCM operation. Each adder

X




and subtracter used to generate a partial term is represent&in contributions and giving directions for future work.

as anAND gate. All partial terms that result in the same

numerical value ar@Rred together. There is a single output, Il. DEFINITIONS

which is anAaND over all the partial terms that represent the In this section, we start by defining the problem for which

coefficients in the MCM instance. We cast this problem into\ae propose exact and approximate algorithms, followed by
0-1 Integer Linear Programming (ILP) problem by requiringlefinitions of background concepts and end with an overview
that the output is asserted, meaning that all coefficier#s aif related work.

covered by the set of partial terms found, while minimizihg t

total number ofAND gates that evaluate to onigs., the number A. Problem Definition

Of adderS/SUbtraCterS that are effeCtively Used. A geMT:— We address the prob'em of m|n|m|z|ng the hardware re-

based 0-1 ILP solver is used to compute the exact solutiongyired for a parallel multiplication of an input value over a
~ In many designs, particularly in DSP systems, performangg of constant coefficients (multiple constant multigtioas
is ac_rltlcal paramet_er. Henc_e, circuit area is generalpeex!- MCM). A paradigmatic example of an application where
able in order to achieve a given performance target. ThetexgfCM are realized is the implementation of a digital FIR filter
algorithm we propose is able to be parameterized with a delgy jllustrated in Figure 1.
constraint so that Only solutions that meet the deSiredydela Since each coefficient is constant, we can rep|ace a full-
are considered [6]. Thus, the obtained solution is the minim fledged multiplier by a set of additions of shifted versiofis o
area solution under the specified maximum delay. ~ the input [1]. A bit set to 1 in positiomn of the coefficient
Although the exact algorithm can handle many real-sizgghplies that the input ) shifted left by m positions is to
designs, it naturally breaks down on some large instances. W& added to the partial sum. Shifts are free in terms of
have developed approximate algorithms, ASSUME, for bofardware, hence the hardware required for a multiplication
unconstrained and delay-constrained area minimizatidn [{ith a constant withn bits set to 1 is simplyn — 1 adders.

These algorithms are based on the same Boolean netwprgure 2 presents an example of hoiw: can be implemented
model constructed for the exact algorithm. This networksing a shift-add approach.

provides a top-down approach in the implementation of co-
efficients, whereas previous approaches use a bottom-up ap- Tes T T
proach, combining simpler partial terms until the coeffitée 1n oz
are implemented, thus more easily falling into local minima |
We show that our approximate algorithms are extremely com-
petitive, being able to find the exact solution in many cases.

We present results on experiments with randomly generated \

instances and with concrete filter instances. We compare so- SEY
lutions obtained with approximate algorithms, ours andvipre
ously proposed, to the exact solutions, for both uncomstthi (a) (b)

and delayfconStramed .area mmlmlzatlon_' In this CompaFIS Fig. 2. Computation ofl 1z using: (a) multiplier; (b) shift-adds.
we use different coefficient representations, namely ljnar

CSD, and MSD. Several conclusions can be drawn from thegach addition generates a partial term. If the same inpot is t

results. One is that our exact algorithm is able to handi multiplied by a set of constant coefficients, significaa-s
very _Iarge problem instances. The oth_er is that thg heurls;hgs can be accomplished by sharing partial terms among the
algorithm, ASSUME, produces many times the optimum S@qefficients multiplications. To illustrate this point, reider
lutions, or a solution very close to the optimum, in a fragtiothat we need to implement bofix: and 11z. Instead of using

of the CPU time. At a different level, we show that thgy adders per coefficient as in Figure 3(a), we can share the
CSD, while starting from a simpler coefficient represepmli aqder that generates the vatiieto obtain an implementation

performs significantly worse than the binary represematioyth a total of three adders, Figure 3(b).
The redundancy of the MSD representation does provide the

best solutions in most cases, however at the cost of a more w1« 1«1 ¢ 2c0 71 = Tes Tl T Ten

complex model. On the other hand, the binary representation | | | |

yields solutions with greater delay than the solutions ioleth | + | | +

under CSD and MSD representations. 8 32 4z 3z
This paper is organized as follows. In Section I, we give

the basic background concepts and an overview of relevant | + | | + |

related work. The model developed for the exact algorithm is |

described in Section Ill. Section IV presents how this model Ha 7z

can be extended to limit the search to solutions that meet a (@) ()

maximum delay constraint. The approximate algorithmsetdasFig. 3. Simultaneous computation 8t and11z: (a) no sharing; (b) sharing

on the same model, are described in Section V. Section {f parial termsz.

presents and discusses a set of results on selected bekshmarWe make two immediate notes about the sharing of partial

Finally, Section VII concludes the paper, summarizing therms. The firstis that all values obtained through a shiérof




partial term can be considered. The second is that the ghaniapresenting the digit-1 by 1). The CSD representation is
depends on how the coefficient is decomposed, because uh&ue and has two main properties: (i) the number of noo-zer
partial terms depend on the sequence of additions. Retutain digits is minimal, (ii) two non-zero digits are not adjacehhis
our example, the sharing exploited in Figure 3(b) was ptessibrepresentation is widely used in multiplierless implenaent
because we used the decompositidn = 23z + (2'x + x). tions, because it reduces the hardware requirements dbe to t
If instead we had usedlxr = (23z + 2'x) + x, the same number of non-zero digits being reduced by 33% on average
level of sharing could be obtained, albeit using the partialhen compared with the binary representation [8]. Mia-
term (23z + 2'z), equivalent to(22x + z) shifted left by one. imum Signed Digit(MSD) representation [4] is obtained by
However, if the decomposition islz = 2'z + (22z + 2), no  dropping the second property of the CSD representations,Thu
sharing is possible with partial terms @f. a constant can have several representations under MSD, but
This problem can be regarded as a particular case aif with a minimum number of non-zero digits. For example,
a more general problem known as Common Subexpressguppose the constant 23 defined in six bits. The represemtati
Elimination (CSE) [3]. of 23 in binary, 010111, includes 4 non-zero digits. The
Definition 1: We define theunconstrained maximum shar-constant is represented 481001 in CSD and both101001
ing problemas: Given a set of coefficients, find the minimunand 011001 denote 23 in MSD with 3 non-zero digits.
number of operations (additions or subtractions) requited The representation of constants in CSD yields a simpler
implement the MCM. optimization problem when compared with the binary and
We extend this problem so that we can limit the maximumiSD representations, because the representation of aagnst
number of operations in series, generally called as the num-binary includes more non-zero digits than CSD, and MSD
ber of adder-stepsClearly, the maximum number of adderincludes several representations for a given constant.
steps over all coefficients defines the maximum delay of one2) Binate Covering ProblemThe unconstrained maximum
computation. For example, as shown in Figure3y can be sharing problem we are addressing can be seen as a binate
implemented a®3z = 2%z + (22z + (2'z + x)) with three covering problem (BCP), a special case of a 0-1 ILP problem,
adder-steps, or @3x = (2*x + 22z) + (2'z + z) with two.  and can be represented as a Boolean network.
An instanceP of a covering problem is defined as follows:

Ty T2 Tl T Tg2 X T<1 X

Minimize c” -x (1)
Subjectto A-x>b, x€{0,1}"* (2)

wherec; in c is a non-negative integer cost associated with

each of then variablesz;, 1 < j < n, in the cost function

(1), A -x > b denotes the set oh linear constraintg2).

If every entry in them x n matrix A is in the set{0,1} and

b; = 1,1 <i < m, thenP is an instance of thanate covering

problem Moreover, if the entries;; of A belong to{-1,0,1}

andb; = 1— ‘ {aij DAy = 1,1 <5< TL} ‘, thenP is

an instance of thdinate covering problemObserve that, if
@ (®) P is an instance of the binate covering problem, then each

Fig. 4. Two implementations af3z: (a) 23z = 2%z + (22z + (2'z +2)), CcoOnstraint can be interpreted as a propositional clause.

with three adder-steps; (32 = (2%z + 2%z) + (2'z + =), with two A propositional formula denotes a Boolean function

adder-steps. f:{0,1}" — {0,1}. A Conjunctive Normal Form(CNF) is

. ] ) . . a representation of a propositional formytaconsisting of a
Definition 2: We define themaximum sharing problem un- conjunction of propositional clauses where each clause a

der a delay COQStl’aIanZileven a .?,.etdofhcoefﬂqents and badisjunction of literals, and a literd} is either a variable;; or
rr:caxmurtp num d?jr'tp a er—s;teps:[. Ind the rT””(;T“T“ nurp s complement;. If a literal assumes value 1, then the clause
?heopl\jrc?l\;lozso(?hatl Itohnes 3;::{5 rzghlioe?)rgz?:ijrlrrlim Onmrér is satisfied. If all literals of a clause assume value 0, tinen t
: P Yause is unsatisfied. The derivation of CNF formulas of the
adder-steps is not exceeded. basic gates can be found in [9], where the CNF formula of each
gate denotes the valid input-output assignments to the gate
B. Background clausew to be satisfied in the formulé, +...+1;, k < n, can
1) Number Representationtn the previous section, all be interpreted as a linear inequality,+ ... + Il > 1, where
examples use the binary representation for the numerithé complement of variable; is represented by — z;.
values, where a number is decomposed as a sum of powers &) SAT-based 0-1 ILP Solverdkecent advances in algo-
two. Although this is the numerical representation of cedar rithms for Boolean Satisfiability (SAT) have led to a sigrafit
computer arithmetic, alternative representations caar sffme increase in the capacity and applicability of SAT solvers.
advantages when implementing multiplications with know@®ne of these applications is the Pseudo-Boolean Optiroizati
constants based on shift-adds. (PBO) that is a generalization of the BCP. In [10], a linear
The Canonical Signed Digi{CSD) representation [3] is a search is performed on the possible values of the cost fimcti
signed digit system with the digit s¢t,0,—1} (we will be starting from the highest, at each step requiring the next




computed solution to have a cost lower than the most recenitlys extended up to 19 bit-width in [26]. Four algorithmsdth
computed upper bound. Whenever a new solution is found tleatly’, 'add/subtract’, 'add/shift’, and 'add/subtradiit’, are
satisfies all the constraints, the value of the cost funcigon proposed for multiple constants in [27]. The latter aldorit
recorded as the current lowest computed upper bound. If the, 'add/subtract/shift’, is modified in [28] by extending the
resulting instance of the SAT problem is unsatisfiable, then possible implementations of a constant, considering odly o
solution to the instance of BCP is given by the last recordedimbers, and processing constants in order of increasigéesi
solution. This approach is considered in the algorithm d@f [1 constant multiplication cost, that is evaluated by the algm
by converting PBO constraints to Boolean clauses effigientbf [25]. It is shown that the modified algorithm gives much
and then, calling an SAT solver [12] iteratively to find aetter results with these improvements. Also, in this paper
minimal cost assignment. The algorithm of [13] incorposatea heuristic algorithm that uses the results of [25] in the
the most significant features from both approaches, namslgiection of operations to be synthesized is introducef29h
lower bound estimation methods such as linear programmiagother prominent algorithm that uses a better heuristic fo
and Lagrangian relaxations and the reduction techniques frsynthesizing partial terms and explores a very large search
branch-and-bound algorithms and the search pruning tespace than existing graph-based algorithms is proposed.
nigues from SAT algorithms. It is shown in [29] that graph-based algorithms give better
Although there have been additional SAT-based 0-1 ILfResults than CSE algorithms, since they consider more lplessi
solvers [14], in this work, we use and evaluate the algothnimplementations of a constant than CSE algorithms that are
of [11] and [13], because they propose different approachestricted to a number representation.
and obtain better solutions than other successful solvers.  Despite the large number of techniques proposed for the
optimization of the number of operations, there are not many
C. Related Work methods that also consider the delay of the design, which is
A large amount of work that considers the unconstrainegsential for high-speed systems. In [30], [31], while mini
maximum sharing problem has addressed the use of efficienizing area, delay is also considered in the selectionriite
implementations of multiplierless MCM. The techniques inef the partial terms. In [32], [33], initially, the number of
clude the use of different architectures, implementatigtes, addition/subtraction operations is reduced and then, afset
and coefficient optimization techniquesg, [15], [16], [17]. transformations in an iterative loop is used to reduce thayde
The methods restricted to a number representation of theAlthough the described CSE algorithms obtain good so-
constants basically find common non-zero digit combinatiofutions for an MCM problem, they are based on heuristics.
on the representations of the constants and are generfiélg cain this paper, we introduce exact CSE algorithms for the
CSE algorithms. In [18], the CSE method based on CSlihconstrained maximum sharing problem and the maximum
representation is introduced and in [3], two algorithmsg orsharing problem under a delay constraint where multiple
considers all subexpressions and the other considers ogdnstants are considered under a given number representati
the two most common subexpressions, are presented. The
algorithm of [19] applies two-term CSE technique iterdfve
while generating two-term divisors. Also, the use of diffier
selection criteria for the common subexpressions in CSEIn this section, we describe the proposed exact algorithm
algorithms are described in [20], [21]. In [4], it is showrfor the maximal sharing of partial terms. It consists of two
that by properly exploiting the redundancy of the MSD repsteps: first, we construct a Boolean network that represents
resentation, the hardware implementation can be signtficarthe computation of all the partial terms that may be used to
optimized with respect to the solutions obtained under CSenerate the set of coefficients in the MCM instance; second,
representation. The effect of number representation on tie translate this network into a set of 0-1 ILP constraint$ an
achievable minimum number of operations is evaluated i [2@enerate the cost function that serve as an input to a generic
and it is shown that the use of binary representation achiev@AT-based 0-1 ILP solver.
superior solutions than CSD and better results than MSDeas th
number of constants and bit-width increase. Furthermare, '&
extend the number of possible implementations of a constant
the algorithm of [23] applies the CSE technique to all signed We model the maximal sharing of partial terms by a Boolean
digit representations of a constant taking into accountaup network consisting of onlyAND and OR gates. EachanD
k additional signed digits to the CSD representatiom, for gate represents an operation (addition or subtraction) tha
a constant including: signed digits in CSD, the constant isproduces a partial term value. EadRr gate representing
represented with up te + k signed digits. This approach isa partial term combines all operations that yield the same
applied to multiple constants using exhaustive searchgstin value. This model readily lends itself to different number
The algorithms that are not restricted to a particular repepresentations, as partial terms are simply the decomnpusi
resentation of a constant synthesize a constant itenatiwel of the coefficients in the given representation. In the prese
constructing a graph and are generally called graph-bdsedad a redundant number representation, such as MSD, all
gorithms. For single constant multiplication problem, aaa operations that produce the same value @red together.
algorithm that finds the minimum number of required opera- The Boolean network that models the computation of all
tions for a constant up to 12 bit-width is introduced in [2BHa possible partial terms presents the following charadtesis

I1l. EXACT ALGORITHM

Modeling the Problem as a Boolean Network



D the model generates a similar network. HoweverAamp in

R <2 the network may represent either an adder or a subtracter.
;D i Consider, for example, a single 3-bit coefficient with thiuea

3. The CSD representation of the coefficientlisl (1 stands

for -1). Therefore, this value can be obtained with a single
subtracter ad — 1. In MSD, the value3 can be represented
both by 011 and 101 that can be obtained with an adder as
2+ 1 and with a subtracter as— 1 respectively.

B. Boolean Network Generation

The implemented algorithm that generates the above opti-
mization model can be used for any type of coefficient rep-
resentation: binary, CSD, or MSD. However, using the MSD
representation results in a more elaborated algorithnauser
several representations may exist for the same value. We
describe the MSD implementation of the algorithm, and then
summarize the changes for binary and CSD representations.

) . ) In a preprocessing phase, all coefficients are converted to
« the primary inputs (PIs) of the network are the input Va'“ﬁositive, and then made odd by successive divisions 2,

(the value we are applying the MCM operation o) or itye shift all coefficients to the right so that zero bits on the
shifted versions; _ right are eliminated. Each new resulting coefficient is addde
« there is a 2-inpuiAND gate to represent a SimpEP- 1 the set of coefficients to be synthesized, ket This set

eration (addition or subtraction) that generates a givefupresents the minimum set of values necessary to synéhesiz
partial term. Since shifts are free, the output of /D  he MCM implementation.

gate can be used for any power of two times the partial ro; each element in the Iset all MSD representations
term value. AnAND gate evaluating td indicates that are determined usinglog,(i)] + 1 bits and inserted in the
this operation is available; . Cset Therefore,Cset begins with all the MSD coefficients
« there is anoR gate to assemble all the different operagepresentations as in [4]. However, during the executiopuof

tions that yield a giverpartial term value. AnOR gate  4jqorithm Csetwill be augmented with MSD representations
evaluating tol indicates that this value is available; ¢ partial terms.

« the primary outputs (POs) of the network are the outputSthen we enter in the main algorithm loop where an

of the OR gates associated with the coefficients in thgjementc, removed fromCsetand representing a number
MCM problem. By forcing that all POs evaluate towe g processed to determine its covers:

.ensure. that all the coefficients are covered. 1) compute all partial term pairs that cover the element
Given this model, the SAT-based 0-1 ILP solver has to 2) for each of these cover pairs, make each element of the

Fig. 5. Boolean network representing the coverage of caefficl5.

search for a combination of variables that sets all POS, to pair positive and odd:;

while minimizing the cost function, defined as the number of 3) ignore cover pairs that are equivalent to a previously

AND gates that are selected. generated pair, by simply checking for equality of an
As an illustrative example, consider a single 4-bit coeffi- already existing pair (after the conversion in step 2);

cient, 15 (in binary, 1111). The value can be obtained 837  4) add each cover pair to the corresponding set of covers

(1’ 1144 1), 1342 (1n), orl4+1 (1), of the value being processefiset;
5

. ) . add the MSD representations of each element of the
by adding the input to a partl/al\sum, or 8t 6 (11’ cover pair toCset if the representation has not been

1243 (11[11), or 10 +5 (11), by adding two partial processed yet and it is not in the set. Elements with
sums. In turng8 + 7, for instance, requires 7 to be obtained only one non-zero digit are discarded.

either as6 + 1 (0[11[1), 5+2 (0[1[i[1]), or4 + 3 (01[11]).  This loop is repeated until there are no more elements in
The same analysis applies to all the remaining partial sum&set The pair of elements in eadkset represents all possible

In general, a coefficient with value can be obtained with implementations of partial terms for a valiebased on its
at most[ 4] partial sums. However, we can create equivaleMSD representations. The generation of the Boolean network
classes from cases that can be computed from each other tgadel is then straightforward:
shifting operation, thus reducing significantly the totatmber 1) for each element pair iAset generate the corresponding

of cases. From the example above, + 1 and 7 + 8 are AND gate;

equivalent becausét and7 are partial sums that differ only 2) generate amRr gate for the value with the outputs of
on a shift and the same is valid forand8. Similarly for 6+ 1 all the ANDs resulting fromAset;

and3 + 4. The complete Boolean network for this example is 3) identify all the or outputs that represent a coefficient
presented in Figure 5 where equivalent cases are omitted. (values belonging tdsef) and make them primary out-

When the coefficients are represented in CSD or MSD, puts.
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Fig. 6. Inclusion of amND gate that creates an optimization variable usef'9: 7 Addition of an extra input pesND gate to create an optimization
to minimize the overall number of partial terms. variable associated with each possible operation.

This algorithm can be easily adapted to obtain the netwofl® 9ate with an optimization variable set to Hence, the
using different coefficient representations. In the praged NUMber of operations will be the same as the optimum value
above, instead of starting and generating MSD representgti ©f the cost function.

we perform this decomposition on the binary or CSD repre- 2) Minimizing Operations:The alternative approach is to
sentations instead. associate the optimization variables with the operatibest

selves. For this, we add a third input to eackD gate, as
- o ) _exemplified in Figure 7. The solution to the minimization of
C. Addition of Optimization Variables for the Cost Functionihe sum of the optimization variables will indicate dirgctl

In the generated Boolean network model, we need to includdiich operations are required for the optimum solution.
free variables to be used in the cost function. There areWe make two simple observations.
basically two variations on how to create these variables: w Lemma 2: There is only one optimization variable set to
either associate them with the use of a partial term or wiimong theaND gates that feed the sanwr gate.
the implementation of a particular operation. As we will see We first note that any optimization variable in anD gate
both these metrics lead to the same optimum solution. with one other input set t6 will necessarily be&. Otherwise,

1) Minimizing Partial Terms:The minimization of the total we have a contradiction as setting itGavould be a solution
number of partial terms is equivalent to minimizing the nemb with a lower cost function.
of or gates in the Boolean network that evaluate to one. UnderFor the remainingAND gates, one suffices to set the output
our model, we can achieve this objective by adding a 2-inpat the or gate tol. Hence, only one optimization variable over
AND gate for eaclor gate in the network, where one inputhose gates will bé in order to minimize the cost functioria
is the output of theor gate and the other is the optimization Lemma 3: Minimizing the number of operations is equiva-
variable. This is illustrated in Figure 6. lent to minimizing the number of partial terms.

Lemma 1: If the optimization variable evaluatesitin the In the minimization of the number of partial terms, if the
optimum solution, then the output of the corresponda®y optimization variable at the output of abr gate evaluates
gate evaluates ta. to 1, then we will select, arbitrarily, one of theND gates at

Since the cost function that we are minimizing is thés inputs that evaluate td. Thus, we obtain one operation
summation of the optimization variables, if the optimipati per required partial term (which, by Lemma 1, is the same as
variable evaluates ta, then the output of the correspondingoptimization variables set tb).

OR gate is required in the optimum solution. Otherwise, the In the minimization of the number of operations, Lemma 2
optimization variable could be set tband we would have a shows that we also obtain one operation per partial term.
better solution, which is a contradiction. O In both approaches, since we have a one to one correspon-

Note that the converse is not true. If a pair of partial terndence between operation and partial term, and since théise bo
that can be combined to generate a partial term with a singlelutions are optimum, they have to yield the same cost.
operation is available, then the output of tb& gate will One advantage of this approach is that the result indicates
evaluate tol. For the example in Figure 6, evenli is not directly which operations to use. For the unconstrained-min
required as a partial term, if the partial teBns available, then mization this is not so relevant, because it is indifferehtols
the output of theor gate will automatically bé. The meaning of the available operations is used to compute a partial.term
of this is that the partial term could be computed using alsingHowever, as we will discuss in Section IV, it is essential for
operation with available partial terms. However, this dnes the delay-constrained optimization, where each operatitin
mean that this particular partial term is going to be comghutecorrespond to a given level in terms of adder-steps.

i.e., that operation will actually be implemented. One potential downside of this approach is that the number

We select the operations that we need to compute by optimization variables is increased with respect to the
choosing one, from possibly several, of theD gates of each approach based on partial terms. As we will show, while this
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may signify an increased difficulty for some SAT-based 0-1 Dj
ILP solvers, others do perform better with a larger number ofpwaris.o
optimization variables.

3) Network Simplification:Once we have added the opti
mization variables to the Boolean network (using eitherhef t
previous approaches), we use the following rules to simplif
the model. While these rules can be safely applied to thgap the Boolean network into a 0-1 ILP optimization model
unconstrained maximum sharing problem, only rules 1 amg representing each gate in CNF format [35]. For example,
2 can be applied to the maximum sharing problem underaa2-input AND gate,c = a A b, is translated to CNF as
delay constraint. (a+¢)(b+¢)(@+b+c). Each clause is converted into a 0-1 ILP

1) shifted versions of the input value are available freelgonstraint using the straightforward mapping presentgtidh

hence we set these inputs to 1 in the Boolean netwdfke 2-inputAND gate would be described by the following set
and propagate this value to remove unnecessary gates.restrictions:

2) if the requirements of an operation are more stringent

Fig. 9. Simplification of the network of Figure 5 after optimiza variables
“for minimizing operations were added.

than another operation that generates the same partial a—c =20
term, we may remove it. For examplgh = 9 + 3« b—c > 0
requires partial term9 and 3, whereaslb = 3«2 + 3 —a—b+c > -1
only requires partial tern3, thus we may eliminate the abe € {01}

former, because if partial ter is available, we can

always use the latter. To guarantee that all coefficients are covered we add a
3) if a coefficient can be implemented with a single opewonstraint that all primary outputs must evaluaté.tdhus, the

ation whose inputs are the primary inputs and/or othebtained model can serve as an input to a generic SAT-based

coefficients, then we do not need to represent this filtBrl ILP solver.

coefficient in the Boolean network.

The impact of these simplifications depends heavily an, Analysis of 0-1 ILP Problem Complexity
the particular instance. They may yield few simplifications Consider the coefficient represented in binary withits all

in the network or an immediate solution, hence avoiding tfgee : ; -
o t to 1. In this case, the Boolean network includes all glarti
0-1 ILP solver altogether. To exemplify the impact of thes e

simplifications, we present in Figure 8 the network of Figﬂre.ﬁarmS with bits, b < n, S?t tol. Thus, all coeff|0|ent§ that

o ) o include the number of 1 bits less tharare considered in the
whe.re opt|m|;at|on variables for minimizing the number 0ﬁetwork. Hence, fom-bit coefficients in any representation,
partial terms e, an extraAND gate _at the.out.p.ut O.f eaChthe complexity of the problem is bounded above by the case
OR gate) were added and the described simplifications wi

! : T . Hfa single coefficient with all the: bits set tol. Table |
applied. Figure 9 shows the simplified network of Figure ives the size of the Boolean network in terms of the number
when using optimization variables that minimize the numb

of operations (e, adding an extra input to eastnD gate). ¥ AND and OR gates, and the size of the 0-1 ILP problem in

.. . . terms of the number of variables, constraints, and optiticizaa
Additionally, during the construction of the network ane th P

. . variables for a single coefficient with different values of
translation of the network into CNF for both problems, thBit , all set tol. We note that these results are obtained, when

I(;S.SluFfpdsejsgkr)i:elr;é?l;g;tjesfeeded-up a generic SAT'ba?ﬁ most complex case.e., the minimization of operations
' model, is considered without taking into account the nekwor
o L simplifications described in Section IlI-C.3. Hence, an epp
D. Mapping into a 0-1 ILP Optimization Model bound on the size of the 0-1 ILP problem is found.
We construct the cost function to be minimized as the Although we can observe the exponential growth in com-
linear function of the optimization variables, where thestcoplexity, the size of the 0-1 ILP problem for up to = 12
value of each optimization variable is set to Then, we is within the reach of current SAT-based 0-1 ILP solvers. In



TABLE |

B. Incorporating the Delay Information in the 0-1 ILP Model
UPPER BOUNDS ON THE SIZE OF NETWORK AN®-1 ILP PROBLEM.

n #OR #AND #variables | #constraints| #opt. variables Using the information on minimum and maximum levels,

8 120 2,059 2,187 10,415 2,059 we compute the paths in the network that exceed the maximum
10 502 19,171 19,683 96,357 19,171 .

12 || 2,036 175,099 177,147 877,531 175,009 delay constraint (over-delay paths). For each path we add a
14 81781 1586131) 1594323 7,938,833 15861311 delay constraint to the 0-1 ILP problem to prevent the set of
16 32,752 | 14,316,139 14,348,907 | 71,613,447 14,316,119

operations in the path from being selected in the final smtuti
Our algorithm starts by determining the primary outputs of

practice, coefficients with 12 bits set tb may sulffice for tglg network withmaxlevel values higher than theserdelay

many real problems. Observe that the exact algorithm can and storing these outputs in a set calRskt The elements of

ﬁ]ﬁglsegtg/rahz)g:ljec:,\t/g E;%err]g; etﬁhlgﬁrr]ltj’nv;tr:/igrlih;{n?):iefziglon%he Psetare the filter coefficients that can be implemented in a
described in Séction 111-C.3 reduce significantly the pewbl greater delay than theserdelay Then, for each elementin the

size, especially for the model of minimizing partial termsl,Dset Pset, if an operation that implemenkset hasmin level

. ) . value higher tharuserdelay, this operation is deleted from
hence allowing the exact algorithm to be applied to Iarg(ﬁqe network, since it can never be used in order to meet the
designs. !

userdelay. Otherwise, if an operation hamaxlevel value
higher thanuserdelay, then this operation is added to a set
IV. MINIMIZING AREA UNDER A DELAY CONSTRAINT called path; as an initial node. Also, this operation is added

In this section, we describe the exact algorithm designediI a set (?alledOset W'th a Farget level, usetdelay—l, and
e associated path identifi¢r,When all elements in thBset

the problem of maximum sharing under a delay constraint. X 7 .
use the Boolean network model described in Section III—C.?Ve been considered, the initial nodes of the paths thitteio

and consider the delay as the number of adder-steps, w ﬁusendelayconstraint are found. In the following iterative
denotes the maximal number of adders/subtracters in gerie°P" all these paths ar(.e constructed in ".’1 bfeadth—flrst grann
produce any multiplication. Since, the definition of addesps 1) remove an operation from th@setwith its target level,

is identical to the definition of level in combinational diits, target and the associated path identifigr,For each
in the following, we use both definitions interchangeably. input of the operation/;, i.e., a partial term,

The exact algorithm can find a solution with either the a) if an operation that implement8; has min_level
minimum delay that the network can havajn.delay, or a value higher thartarget then add this operation to
user-specified maximum delay constraimserdelay. path; as a terminal node.e., identify the complete

over-delay path.
b) otherwise, if an operation hasaxlevel value

A. Computing the Levels of the Operations higher thartarget, then create an extended path by

In general, a partial term can be implemented with opera- adding this operation, as a non-terminal node, to
tions that have different adder-steps. Therefore, we céinede the path;. Also, insert this operation into th@set
a range of levels for each partial term, and consequently, a with its target leveltarget-1, and a path identifier.

range of levels for the operations that use this partial term  2) repeat Step 1 until there is no element left in Gset

For a partial term withn non-zero digits, the minimum  \ye pote that theDsetincludes the last added operations

latency implementation haSog, 7] adder-steps and the max-i, their target level values of the associated paths that have
imum latency implementation of a partial term has1 adder- not been constructed yet.

steps. In the network, aor gate associated with the partial As an example, suppose that a situation as illustrated in

term gathers aI_I of these operations. So, a part@l term “Aljure 10 is encountered when finding the paths that exceed
be generated with the number of adder-steps ranging fromt'lln userdelay=5 In this figure, optimization variables are
minimum to maximum latency implementations. As can b

. - . Gmitted and the relevant paths are highlighted for the sake
seen from Figure 5, the coefficient can be implemented
with minimum 2 and maximum 3 adders-steps, determined,
for instance, byl5 = 3.5 + 3 which has a minimum and a ff,{f,zﬁt’(})::[%]]
maximum of 2 adder-steps and b§ = 1.3 + 7 which has a a5
minimum and a maximum of 3 adder-steps.

After the Boolean network has been constructed, we com-
pute the minimum level nhinleve) and maximum level
(maxleve) values of each operation and partial term by o 5.7
traversing the network from primary inputs to primary ougu _ | )
Then, we find thenin_delayvalue by computing the maximum 56
of the minlevel values of the primary outputs. By setting — « path,, = [G]
userdelay=min_delay as the maximum delay constraint, the target(G) =
algorithm that we propose is an exact algorithm for the path, = [GK]
minimum area design that achieves minimum delay. Natyrallyig. 10. An illustrative example of determining the paths teateed the
if the user setsiserdelay<min.delay, no solution is possible. maximum delay.

4-4
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of clarity. The operations and partial terms are labeled witvhile choosing an operation to implement a coefficient. The
letters inside the gates and thrén_level andmaxlevelvalues given properties make these heuristics quite differeninfro
are given with amin-max pair above the gatepath includes the heuristics that find pairs of the most common non-zero
the operations that exceed thiserdelay, determined when digits [3] or the two-term common subexpressions [19]. 8inc
traversing the network from the outputs to the inputs. the heuristics of [3] and [19] build coefficients startingtla¢
Suppose that the operatiGhwith target leveltarget(G)=4 most simple (in the number of non-zero digits) to the most
and associated path identifier, is removed from theDset complex by combining existing partial terms, this bottom-u
Also, suppose that the partial terfid is considered as the approach yields a much more limited view of the search space.
input of G. The operationK is added to thepath, as a In this section, initially, we describe the heuristic cdlle
terminal node and the path is constructed, since the oparatASSUME-A designed for optimization of area and then, the
K can be implemented in minimum 5 adder-steps that exceddsuristic called ASSUME-D designed for optimization ofare
the target(G) Also, a new path,path,,;, is formed by under a delay constraint. We note that the definitions giwen i
inserting the operatiord to the path,, since themaxlevel Section IV are also used in the description of these algosth
value of the operatiorl is higher thantarget(G) indicating
that there is(are) operation(s) that cause greater detayttte
userdelaywith the operations in this path. So, the operation A. Unconstrained Area Optimization: ASSUME-A

with its target levetarget(l)=target(G)-1 and associated path |, 5 preprocessing phase, by traversing the Boolean network
identifier,n+1, is added to th©set We note that the operation o, primary inputs to primary outputs, thein.adder and

J is not considered to be added to tpath,, because it can 55 jevel values of each operation and partial term are com-
be implemented in maximum of 4 adder-steps that does Rolieq. Theminadderis the minimum number of operations
exceed thdarget(G)value. that are required to implement an operation or a partial
After all paths that violateuserdelay have been found, a tgrm. The min.adder value of a partial term R gate) is
single additional constraint for each complete over-d@ath getermined by finding the minimum of thein_adder values
is added to the 0-1 ILP problem:optvar) —optvar, —...—  of operations AND gates) that implement the partial term.
optvary, > 1—m, whereoptvar;, 1 < j < m, denotes the The min_addervalue of an operationafip gate) is the sum
optimization variable of an operation in the path amdis  f the min_addervalues of its inputs plus 1, if the inputs are
the number of operations in the path. The delay constrainfgferent; otherwise it is thenin.addervalue of an input plus
express that the operations in the path must not be includgdrpemin addervalue of a primary input is assigned to 0. As
together in the solution. This guarantees that the soluion 5, example, consider again the network given in Figure 5 with
be found by the 0-1 ILP solver respects the delay constraiffs, coefficientl5. Themin.addervalue of the coefficient5 is
and allows for the possible sharing of partial terms in the gatermined, for instance, Hp = 3<o+3and3 = 1o —1
paths with other partial terms not in the critical paths.afin operations.
using the same cost function, the constraints obtained from, 5 similar manner to the algorithm of [28], ASSUME-A

the Boolean network together with these delay constrai®s @55 o main parts: optimal and heuristic. The algorithmsis a
given to the 0-1 ILP solver to find a solution with minimume;;q.\s:

area.
1) store the pre-processed coefficients of the filter (prymar

outputs of the network, all made positive and odd) in a
V. APPROXIMATE ALGORITHMS set calledAsetand label them as unimplemented.

Although the exact algorithms presented in the two previous2) the optimal part: for each element labeled as unim-
sections can be applied effectively to relatively large MCM ~ Plemented inAset if the element is implemented in
problems, the execution time does tend to grow exponeptiall ~ the network with an operation whose inputs are either
limiting its application to more complex instances. primary inputs or are irset then synthesize the element

The heuristic algorithms we propose use as the underlying  With this operation and label it as implemented.
model the Boolean network generated by the exact algorithm,3) if there are not more elements labeled as unimplemented

as described in Section Ill. In these heuristics, each @iefii in the Aset retur.n the solution and stop.
is synthesized one at a time by selecting an operation amond) theheuristicpart: take an unimplemented element from
the set of possible operations, rather than finding the mimm Aset Ase(i), that has the loweshaxlevel value.

solution of the binate covering problem that considers all ®) for éach operatior)(j), that implement#set:), set its
coefficients as done in the proposed exact algorithms. In the ~ COSt valueC'(j), to its min.addervalue, as determined

selection of an operation, initially, the implementationsts in the preprocessing phase and for each unimplemented
of all operations are found by considering not-yet synttesi element inAset Asetk), with i # k:

coefficients and then, the operation that has the minimum a) determineCpeford k) by finding the min.adder
implementation cost is chosen to implement the coefficient. value of Asetfk), when themin_addervalues of the
The advantages of the proposed heuristics are the use of elements inAsetare assigned t0. (Cheford k) is

the network that has the view of all the possible manners the cost of implementation d&setk) at this phase

a coefficient can be synthesized and the use of a selection of the algorithm, since all elements Asetwill be

criteria that also considers not-yet synthesized coeffisie implemented at the end of the algorithm.)
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Constants in 12 bits
T T

b) determineCafier(k) as done in a), but alsassume :

T
—5— Binary

that the inputs ofO(j) are in Aset (Cafier(k) is 100 ~+ CSD 2
the cost of implementind\setk), if Asefi) is syn- ol ¥ |
thesized withO(j) at this phase of the algorithm). e
c) update the cost valu&)(j), asC(j) = C(j) — 2% e 1
(Coetordk) — Catter(F))- g; 0F xf’//" ' 1
6) after the cost value of each operatid@ri(j), has been 5607 |
5

computed, select the operation to synthegize(:) that
has the minimum cost. If there are operations that have gsof /3? ' ]
the same minimum cost, select the operation that has ¢ |
the minimummin_addervalue among these operations.
Label Asefi) as implemented.

7) add each input of the selected operatioAset provided 20
that they do not already exist iset and label them as ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
unimplemented. Go to Step 2. o 20 3 4 o050 V. O & 90 10

We note that in the first iteration, the elements Adet

are the filter coefficients and in later iterationsset may Fig. '11. Comparison of the number representations on the streamed
include the partial terms needed for the synthesized dpasat maximum sharing problem.
Observe that all elements éfsetare implemented at the end

30

of the algorithm. Also, we note that if all elements/Adetare is in Dset then assign the delay limit of the input

implemented in the optimal part, then the global minimum delaylimit(j) = min(delaylimit(;), delaylimit(i) — 1).

solution is obtained. If an element &fsetis implemented in If not, add this element tdDset label it as unim-

the heuristic part, the local minimum solution is obtained. plemented, and assign its delay limit value te-
lay_limit(z)—1.

B. Area Optimization under a Delay Constraint: ASSUME-D 5) if there is an element left labeled as unimplemented in

Just as the exact version, ASSUME-D can find a solution  Dset go to step 2, otherwise return the solution.
with either the minimum delay of the networkin_delay, or
a maximum user-specified delay constrairggr delay. V1. EXPERIMENTAL RESULTS
Again, we start by traversing the Boolean network to obtain |n this section, we present the results obtained with the
the min.adder, min_level andmaxlevelvalues of each opera- exact and heuristic algorithms proposed for the uncomsschi
tion and partial term. As defined in Section IV, tinén.delay maximum sharing problem, as well as the same problem under
is determined as the maximum of than level values of the a delay constraint. The benchmarks used in our experiments
primary outputs. A minimum delay solution can be obtaineiclude randomly generated and filter instances. In the-algo
when theuserdelayis assigned to thenin.delay. rithms designed for maximum sharing problem under a delay
ASSUME-D synthesizes the coefficients of the filter ongonstraint, we set theiserdelay to the mindelay, i.e., we
at a time in a top-down approach that yields more possitigd the minimum area under minimum delay solutions. We
implementations of a partial term while controlling thealel compare our results with several previously proposed CSE
The algorithm is as follows: heuristics, namely with the heuristics of [3] and [4], which
1) store the pre-processed coefficients of the filter (prymawe have implemented, and the heuristics of [19] and [30],
outputs of the network, all made positive and odd) iwhose results were provided by Anup Hosangadi.
a set calledDset and label them as unimplemented. As the first experiment set, we used randomly generated
Assign thedelaylimit value of each element iDset instances where constants are defined in 12 bit-width. The
to userdelay number of constants ranges between 10 and 100, and for each
2) take an element labeled as unimplemented fidset of them we generated 30 instances. We compare the effect of
Dseli), that has the higheshaxlevel value. Store the different number representations., binary, CSD, and MSD,
operations that implememse{s) and whoseminlevel on the minimum number of operations and delay solutions.
value does not exceed tldelaylimit(i) in an empty set The results of the exact algorithms on unconstrained maximu
called Oset sharing problem and maximum sharing problem under a delay
3) if Dse(i) can be implemented with an operatiorconstraint are given in Figures 11 and 12, respectively.
in Oset whose inputs are primary inputs or are We can observe that these three representations yield about
in Dset then synthesizeDset(:) with the operation the same solutions for instances with few constants. For
and label it as implemented. Assign the delay liminstances with larger number of constants, the CSD repre-
of each input of the operationdelaylimit(j), to sentation achieves worse solutions than the binary and MSD
min(delaylimit(j), delaylimit(:) — 1). representations, requiring more than 2 additional opamaton
4) otherwise, choose an operation fr@setto synthesize average. Binary and MSD representations yield very similar
Dseti) as done in steps 5 and 6 of ASSUME-A, andesults, with the binary performing better as the number of
label it as implemented. If the input(s) of the operationonstants increases. This demonstrates that having a third
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Fig. 13. Comparison of the average number of minimum delay uridaryy sharing problem under a delay constraint

CSD, and MSD representations.

are given in Figure 14 and 15.

digit, the signed digit, while desirable in representingg @ |n this experiment, we observe that for the unconstrained
a few constants, creates a more varied set of patterns thaiximum sharing problem, while the average number of
limits the amount of sharing for a larger number of constantgperations between the ASSUME-A and the exact algorithm
This is partially overcome by the redundancy in the MSE almost 1 on all instances, the average number of opegation
representation. between the heuristic of [4] and the exact algorithm reaches

We compare the minimum delay solutions achievable withp to 7.4 operations. Also, since the heuristic of [3] is a
the different number representations for the maximum sgarigreedy algorithm that finds the most common subexpression
problem under a delay constraint in Figure 13. We observe thia each iteration of the algorithm, it is easily trapped te th
the CSD and MSD representations provide solutions with laical minima on instances that include more than 40 corstant
most three operations in series, while the binary repratient On the instances with 100 constants, the average number
on average requires more operations in series, and thiserumiif operations between this heuristic and the exact alguarith
increases with the number of constants. Hence, the minimignalmost 10 operations. For the maximum sharing problem
delay solutions presented in Figure 12, while similar inaareunder a delay constraint, ASSUME-D finds solutions with
have a much smaller delay in the cases of the CSD and MS&imost 2 additional operations on average compared to the

We also compare the exact solutions with the heurigxact solutions. This clearly shows that exact algorithmd fi
tics, [3], [4], and ASSUME-A, for unconstrained maximunbetter solutions than the heuristic algorithms and amoweg th
sharing problem and with ASSUME-D for the maximum shaieuristics, the ASSUME-A finds much better solutions than
ing problem under a delay constraint on randomly generattee heuristics of [3] and [4].
instances where constants are represented in CSD. ThésresulAs the second experiment set, we used FIR filters where
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filter coefficients were computed with thlemezalgorithm in 9 under the minimization of operations model in an hour. We
MATLAB . The specifications of filters are presented in Table Hote that even if the minimum solution is obtained for Fier

where: passand stop are normalized frequencies that definby MiniSat+, it could not prove that the found solution is the
the passband and stopband respectivalyp # the number of minimum solution. However, we note that the minimization of
coefficients; andvidth is the bit-width of the coefficients. partial terms model is more appropriate for MiniSat+, since
this model includes less number of optimization variables
with respect to the minimization of operations model. Also,
the minimization of operations model is more appropriate
for Bsolo than MiniSat+, since Bsolo incorporates problem

TABLE Il
CHARACTERISTICS OF THEFIR FILTERS.
#tap [ width |

[ Filter ][ pass [ stop

1 0.20 | 0.25 [ 120 8 ) ) o2 )

2 0.0 | 025 | 100 | 10 reduction techniques from both sidés,, SAT algorithms and

3 015 | 025 | 40 | 12 -

2 020 | 025 | 80 | 12 branch-and-_bound algonthms. _ _ _

5 0.24 | 025 | 120 | 12 As the third experiment set, we used filter instances in-
S R Sl e troduced in [30] to find out the limitations of the exact
8 0.10 | 0.15 | 60 14 algorithm. In Table VII, the filter instances where coeffit®

9 0.0 | 0.15 | 100 | 16

are defined in 24 bit-width are given. We compare the results
We compare our exact and heuristic algorithms with oth@f the exact algorithm with heuristics for the unconstrdine
heuristic algorithms under binary, CSD, and MSD represefaximum sharing problem where filter coefficients are defined
tations. The results are given in Tables Ill and IV for ununder CSD representation in Table VIII. In this table, th& O-
constrained maximum sharing problem and maximum shariig® problem size of each filter is given under the problemssize
problem under a delay constraint respectively. In theskegab columns. MiniSat+ was used to obtain the minimum solutions
adderstands for the number of operations atgddenotes the and the allowed CPU-time was determined as 1 day. Again,
maximum number of operations in series. the italic results indicate that an optimal rather the mimm
We note that the proposed exact algorithms can find migelution is obtained in the given CPU time limit. We note that
imum solutions for real-sized filter instances. As can bde results of heuristic algorithms are obtained with a Vew
observed from Tables Il and IV, while ASSUME-A andcomputational effort.
ASSUME-D find similar solutions to the exact algorithms,
they find better solutions than other heuristics on overadrfi
instances. While the average difference of the number of

TABLE VI
CHARACTERISTICS OF FILTER INSTANCES

. . . Filt T t #t idth
operations between [4] and the exact algorithm is almost 1, el ybe [ pass] stop | #ap | width |

. . 1 Butterworth 0.25 0.3 20 24

the average difference of the number of operations between 2 Elliptical 025 | 03 6 24

ieti i 3 Least Square 0.25 0.3 41 24

_the heuristics of [3], [19], and [30] and the exact algorithm . o ol o | o3 o3 | o4

is greater than 1. 5 Butterworth 027 | 02875 | 71 | 24

- i 6 Elliptical 0.27 | 0.2875 | 8 24

.T.he. 0 1 ILP prol?lem size of th.e .ptopqsed models' (the 7 Least Square 0.27 | 0.2875 | 172 24

minimization of partial terms and minimization of operatso 8 Park Mc-Clennan| 0.27 | 0.2875| 119 | 24

models for the unconstrained maximum sharing problem and 9 || Elliptical 0271 029 | 13 | 24

.. . . . . 10 Least Square 0.27 0.29 326 24

the minimization of operations with a delay constraint mode 11 || Park Mc-Clennan| 0.27 | 029 | 189 | 24

for the maximum sharing problem under a delay constraint) _ ) . _
for the filter coefficients defined under MSD representatian a N tis éxperiment we observe that the minimum solutions
given in Table V wherevars cons delay cons and optvars of three out of 11 filtersi.e,, filters 1, 2, and 6, are obtained in
denote total number of variables, constraints, delay caimss, the CPU-time limit. However, the minimum solutions of eight
and optimization variables respectively. filters could not be found in one day. We note that even if the

As can be seen from the Table V, when the unconstrainBgPblem size of the filter 1 is greater than the problem size
maximum sharing problem is defined using the model thgf the filter 4, a minimum solution could not be obtained for
considers the minimization of partial terms, a smaller a2 | the filter 4. This shows that the size of the 0-1 ILP problem
problem can be obtained than is defined by the minimization 8d the hardness of the problem depend heavily on the filter
operations model due to the network simplifications. OneheSC€fficients. We observe that for the filter instances whisee t
problem instances, we compare SAT-based 0-1 ILP solvefdnimum solutions are not obtained, the found solution ley th
ie. Bsolo [13] and MiniSat+ [11], in terms of CPU time€Xact algorithm can be far from the solutions that are obthin
required to find a solution. The results are given in Table \ASING & heuristic, such as filters 7 and 8. On overall ins@nce
where CPU denotes the CPU time in seconds of a PC withSSUME-A finds the best optimum solutions among these
dual Pentium Xeon at 2.4GHz and 4GB of main memorg/gorithms. This experiment also shows that the use of a
running Linux. The allowed CPU time for the algorithms WazeuriStiC algorithm is indispensable, when an exact algori
3600 seconds. In this table, the italic results indicate tha c0Uld not conclude to obtain the minimum solution.
satisfiable rather than the minimum solution is obtained t
given CPU time limit. VII. CONCLUSIONS

As can be seen from Table VI, Bsolo finds the minimum We have described an exact algorithm that computes the
solutions for all instances under all models where MiniSathinimum number of adder/subtracter modules in the imple-
cannot conclude with the minimum solution for Filter 6 andnentation of MCM structures by maximizing the sharing of
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TABLE Il
SUMMARY OF RESULTS FOR UNCONSTRAINED MAXIMUM SHARING PROBLH.
Binary CSD MSD
Filter ASSUME-A [ Exact [19] [3] [4] [[ ASSUME-A [ Exact [4] [[ ASSUME-A [ Exact
adder] stp [| adder] stp adder] stp [| adder] stp |[ adder[ stp |[ adder[ stp |[ adder] stp adder] stp |[ adder[ stp |[ adder| stp
1 10 3 10 3 10 3 10 3 10 3 10 2 10 2 10 3 10 3 10 2
2 18 3 18 4 18 3 18 3 18 3 18 3 18 3 18 3 18 3 18 3
3 17 5 17 5 18 3 19 3 18 4 16 3 16 3 18 4 16 3 16 3
4 29 4 29 4 30 3 30 3 29 4 29 3 29 4 29 4 29 4 29 3
5 35 4 35 4 35 3 36 3 34 3 34 3 34 3 34 3 34 3 34 3
6 24 4 23 4 25 3 25 3 24 3 23 3 23 4 22 4 22 4 22 4
7 33 5 32 5 35 3 35 3 36 4 35 3 35 3 35 3 34 3 34 3
8 35 5 34 4 37 3 37 4 36 4 35 3 35 3 36 4 34 4 33 3
9 52 5 51 5 58 4 55 4 53 5 52 4 51 4 51 5 49 4 49 4
[Total [[ 253 | 38 || 249 | 38 [ 266 | 28 || 265 | 29 || 258 | 33 || 252 | 27 || 251 | 29 || 253 | 33 || 246 | 31 | 245 | 28 |
TABLE IV
SUMMARY OF RESULTS FOR MAXIMUM SHARING PROBLEM UNDER A DELAY CONSTRAINT.
Binary CSD MSD
Filter ASSUME-D [ Exact [30] [ ASSUME-D ] Exact ASSUME-D ] Exact
adder [ stp [| adder [ stp adder [ stp [| adder [ stp [| adder [ stp [| adder | stp [| adder [ stp
1 10 3 10 3 11 2 10 2 10 2 10 2 10 2
2 18 3 18 3 18 3 18 3 18 3 18 3 18 3
3 18 3 18 3 18 3 16 3 16 3 16 3 16 3
4 29 3 29 3 30 3 29 3 29 3 29 3 29 3
5 36 3 35 3 35 3 34 3 34 3 34 3 34 3
6 25 3 25 3 26 3 23 3 23 3 22 3 22 3
7 33 4 32 4 36 3 35 3 35 3 34 3 34 3
8 36 4 34 4 37 3 35 3 35 3 35 3 33 3
9 53 4 51 4 58 3 52 3 52 3 49 3 49 3
[[Total [ 258 | 30 | 252 | 30 || 269 | 26 || 252 | 26 || 252 | 26 || 247 | 26 || 245 | 26 |
TABLE V
0-1 ILP PROBLEM SIZES OF THE PROPOSED MODELS UNDEWSD REPRESENTATION
Minimization of Minimization of Minimization of
Filter Partial Terms Operations Operations under a Delay Constraint
vars | cons | optvars vars [ cons [ optvars vars [ cons | delay cons| optvars
1 10 10 10 247 347 144 247 372 25 144
2 76 97 56 635 1027 345 635 1075 48 345
3 151 298 80 1327 2387 677 1327 2546 159 677
4 93 139 64 1926 3331 1023 1926 3616 285 1023
5 34 34 34 1142 1769 651 1142 1897 128 651
6 107 144 74 4324 8547 2153 4324 10127 1580 2153
7 205 455 93 2250 4828 1062 2250 5081 253 1062
8 546 1405 200 3915 8542 1856 3915 9230 688 1856
9 4010 | 14880 779 26778 | 55489 13329 26778 | 71670 16181 13329
TABLE VI
RUN TIME COMPARISON OF THESAT-BASED 0-1 ILP SOLVERS
Minimization of Minimization of Minimization of
Filter Partial Terms Operations Operations under a Delay Constraint
Bsolo I MiniSat+ Bsolo i MiniSat+ Bsolo i MiniSat+
adder [ CPU [[ adder [ CPU adder[ CPU || adder [ CPU adder [ CPU || adder | CPU
1 10 0.1 10 0 10 0.2 10 0.1 10 0.2 10 0
2 18 0 18 0 18 0.2 18 0.1 18 0.2 18 0.6
3 16 0.1 16 0 16 0.5 16 0.7 16 0.4 16 2.1
4 29 0 29 0 29 1.4 29 0.5 29 2.7 29 0.7
5 34 0.1 34 0 34 0.3 34 0.3 34 0.3 34 0.3
6 22 0.1 22 0 22 6.8 22 3600.1 22 25.4 22 3600.1
7 34 0.1 34 0.1 34 4 34 195 34 5.2 34 8.9
8 33 9.8 33 0.1 33 27.4 33 60,8 33 41.6 33 29.2
9 49 380.6 49 4.3 49 1974.8 59 3600.1 49 1332.2 53 3600.1

common subexpressions

. The algorithm can handle binaoy the exact model is significantly superior.

CSD and MSD representations for the coefficients. Delay An interesting result demonstrated in this paper is that
constraints can be included in the model so that a us@fie binary representation allows for a greater amount of
specified delay can be accommodated. A heuristic variatigRaring, hence producing more area-efficient implementsti

of this algorithm is presented and shown to be extremefgr MCM problems than the CSD and MSD representations.
competitive. We presented results for digital filter systie However, when seeking minimum delay solutions, the MSD
where we demonstrate that the exact algorithm can be applig@resentation should be used.
to. real-si_zed problems. We compare our heuristic algorithmpq algorithms proposed in this paper can be extended to
with previously proposed heuristics and showed that, aiho ahqje general number representation of constants by using
these algorithms perform reasonably well, our heuristgeba o techniques described in [36], [37] to be competitivehwit



graph-based algorithms. As future work, we are currentjyo]
working on the implementation of an exact graph-based al-
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TABLE VIII
SUMMARY OF RESULTS OF EXACT AND HEURISTIC ALGORITHMS ANDO-1 ILP PROBLEM SIZES
[19] 6] 4] ASSUME-A Exact 0-1 ILP Problem Size
Filter adder [ stp [| adder [ stp [| adder ] stp [| adder | stp [[ adder] stp [ CPU vars [ cons | optvars
1 26 4 26 7 31 5 24 4 21 5 6244.2 50732 202698 2158
10 3 11 7 11 4 11 5 10 4 27.7 3410 12303 350
3 58 4 61 7 67 6 52 4 77 4 86400.1 58652 230136 3269
4 45 4 46 7 48 6 43 4 45 4 86400.1 20572 77736 1703
5 61 4 57 6 61 6 54 4 63 4 86400.1 81641 324765 3984
6 14 4 15 7 16 5 16 5 12 5 2387.7 27614 108062 1266
7 178 4 167 5 203 6 156 5 228 5 86400.1 46959 183081 4037
8 136 4 137 6 158 6 124 5 192 4 86400.1 74334 294575 4905
9 24 4 24 6 27 6 23 4 23 4 86400.1 34969 137129 1746
10 266 4 238 5 240 6 211 5 249 5 86400.1 38742 150786 3802
11 199 4 204 6 223 5 176 4 247 5 86400.1 55816 218351 4820
[ Total || 1017 | 43 ][ 986 | 69 ]| 1085 | 61 || 890 | 49 || 1167 | 49 | > 8 days || 493441 ] 1939622 | 32040 |
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