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Multi-Dimensional Automatic Sampling Schemes
for Multi-Point Modeling Methodologies
Jorge Fernández Villena, Member, IEEE, and Luı́s Miguel Silveira, Senior Member, IEEE

Abstract— This paper presents a methodology for optimizing
sample point selection in the context of model order reduction
(MOR). The procedure iteratively selects samples from a large
candidate set in order to identify a projection subspace that
accurately captures system behavior. Samples are selected in
an efficient and automatic manner based on their relevance
measured through an error estimator. Projection vectors are
computed only for the best samples according to the given
criteria, thus minimizing the number of expensive solves. The
scheme makes no prior assumptions on the system behavior,
is general, and valid for single and multiple dimensions, with
applicability on linear and parameterized MOR methodologies.
The proposed approach is integrated into a multi-point MOR
algorithm, with automatic sample and order selection based on
a transfer function error estimation. Different implementations
and improvements are proposed, and a wide range of results on
a variety of industrial examples demonstrate the accuracy and
robustness of the methodology.

Index Terms—Automatic multi-dimensional sample selection,
multi-point model order reduction, parameterized systems.

I. Introduction

U SING currently available tools in the EDA industry, the
detailed models representing physical devices obtained

after the modeling and extraction steps are often too large for
practical or efficient simulation and verification. Reducing the
complexity of these models, while guaranteeing input–output
accuracy, is crucial to enabling the simulation and verification
of those large systems [3], [4]. This is the realm of model
order reduction (MOR) [5]–[7].

Multi-point based MOR approaches [8]–[11] have recently
gathered renewed attention due to their robustness and relia-
bility. In particular, some [12] have been extended to tackle
the problem of parameterized model order reduction (pMOR),
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where system behavior depends on frequency and a set of
parameters, modeling for instance process variations or envi-
ronmental conditions. In this context, the multi-dimensional
sample-based techniques seem less sensitive to the number
of parameters, and become a good alternative to the multi-
dimensional moment matching approaches [13]–[15], which
seem unable to deal with what is commonly denoted as the
curse of dimensionality (leading to oversized models when
the number of parameters and the accuracy require matching
a large set of moments). However, multi-dimensional sampling
can be expensive, specially if there is no good indication of
where to place the sample points. Random based sampling
can defeat the reliability of these algorithms, whereas trying
to cover the complete subspace with a linear scheme is
overwhelming beyond a couple of dimensions.

In this paper we will try to fill this gap, by proposing a
novel methodology for sample selection in single and multi-
dimensional spaces. The procedure, which is directly related
to (but not dependent upon) [9], is based on maximizing
the subspace spawned with the sampling set, in order to
obtain a good approximation of the dominant subspace in
the orthonormalization step. To avoid falling into inefficiency,
the algorithm will iteratively select a good new sample point
without solving the system, and assuming no prior knowledge
of the system. System solution is only performed for the
selected samples. The method will also avoid oversampling
by estimating the error on the fly. It will decide at run time
whether to generate a new sample, and where to place it.
Therefore, the proposed methodology will present a fully
automated procedure, which will try to overcome the lack
of automation in existing (sample-based) MOR procedures,
and in particular in the pMOR scenario. Although beyond
the scope of this paper, the procedure is general enough
to be applied to different fields, such as non-linear MOR
where a non-linear dependence with parameters or time is
exhibited [3], [10], [16].

This paper is structured as follows. In Section II, an
overview of the MOR paradigm is presented, along with
a discussion of existing sampling schemes. In Section III,
the theoretical basis for the sampling scheme is introduced.
Section IV discusses how to cope with some of the practical
issues arising from the theoretical concepts. In Section V,
different efficient implementations of complete automated
multi-dimensional MOR methods, which address the multiple
practical issues of Section IV, are proposed. In Section VI, the
efficiency and robustness of the proposed methods are shown
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on a wide range of industrial examples. We will close with
Section VII, where some conclusions are drawn.

II. Background

A. Parameterized Systems and Model Order Reduction

The main techniques in MOR are geared toward the re-
duction of a state space linear time-invariant representation
of a physical system. In such representation, the output y is
related to the input u via some inner states x. When parametric
variations are taken into account, the system is represented as
a parameterized state-space descriptor

(G(λ) + sC(λ)) x(s, λ) = Bu(s)
y(s, λ) = Ex(s, λ)

(1)

where C, G ∈ Rn×n are, respectively, the dynamic and static
matrices, B ∈ Rn×m is the matrix that relates the input vector
u ∈ Cm to the inner states x ∈ Cn, and E ∈ Rp×n is the
matrix that links those inner states to the outputs y ∈ Cp.
We assume here, as is common, that the elements of C and
G, as well as the states x, depend on a set of P parameters
λ = [λ1, λ2, . . . , λP ]T ∈ RP which model the effects of the
uncertainty. Usually, the system is formulated so that the
input (B) and output (E) matrices do not depend on the
parameters. Furthermore, for electrical-based systems, most of
the modeling methodologies treat the inputs and outputs as
bidirectional ports (i.e., every port has dual input and output
quantities associated), and thus B = ET . For the remainder of
this paper, and without lack of generality, we will assume that
this is the case. When this condition is not verified, a simple
trick is to expand the input and output matrices, so that the
new matrices are B̄ = [B ET ] = ĒT , with inputs and outputs
ū = [I 0]T u and y = [0 I]ȳ (with I the identity and 0 a block
zero matrix of commensurate dimensions).

Parametric dependence is often obtained via the sensitivity
computation of the discretized elements with respect to the
parameters [17]–[19]. Therefore, matrices C and G in (1)
can be represented in a polynomial form via a Taylor series
expansion with respect to the parameters

G(λ) =
∑k1...kP

φ1...φP =0...0 �φ1...φP
Gφ1...φP

C(λ) =
∑k1...kP

φ1...φP =0...0 �φ1...φP
Cφ1...φP

(2)

where the matrices Gφ1...φP
and Cφ1...φP

(with φi positive
integers) are the joint sensitivities of order (φ1 . . . φP ) w.r.t.
to the P parameters, and the scalar �φ1...φP

= λ
φ1
1 λ

φ2
2 . . . λ

φP

P is
the generalized multi-parameter. The nominal matrices in this
formulation would be G0...0 and C0...0. The Taylor series can be
extended up to the desired (or required) order k = k1 + . . .+kP ,
including cross terms, for the sake of accuracy. This system
in (1) has an associated frequency response modeled via the
transfer function

H(s, λ) = BT (sC(λ) + G(λ))−1 B. (3)

The objective of pMOR techniques is to generate a reduced
order approximation of (3), able to accurately capture the

input–output behavior of the system for any point in the joint
frequency-parameter space

Ĥ(s, λ) = B̂T
(
sĈ(λ) + Ĝ(λ)

)−1
B̂ (4)

where Ĉ, Ĝ ∈ Rq×q and B̂ ∈ Rq×m are the reduced set of
matrices, with q � n the reduced order.

In general, one attempts to generate a reduced order model
(ROM) whose structure is as similar to the original as possible,
i.e., exhibiting a similar parametric dependence allowing more
control within analysis and optimization frameworks, in order
to facilitate further simulations.

B. Projection Based Approaches

The most common procedure to obtain an accurate and
structurally similar ROM is to combine the sensitivity-based
Taylor series representation from (2) with an orthogonal pro-
jection scheme, as presented in [13].

Standard pMOR methodologies rely on the generation of a
suitable low order subspace (spanned by a basis V ∈ Rn×q),
where the original system matrices C(λ), G(λ) and B are
projected, and the resulting reduced model (4) captures the
behavior of the system under parameter variations

Ĉ(λ) = VT
(∑k1...kP

φ1...φP =0...0 �φ1...φP
Cφ1...φP

)
V

Ĝ(λ) = VT
(∑k1...kP

φ1...φP =0...0 �φ1...φP
Gφ1...φP

)
V

B̂ = VT B x(s, λ) = V x̂(s, λ)

(5)

where V ∈ Rn×q spans the projection subspace of reduced
dimension q, and Ĉ, Ĝ ∈ Rq×q, B̂ = ÊT ∈ Rq×m, and x̂ ∈ Cq

define the ROM.
To ensure the accuracy of the ROM, the basis V ∈ Rn×q

must be able to span the solution of x(s, λ) for the relevant
region � of the {s, λ} space, or in other words

x(s, λ) ≈ ∑q

i=1 αi(s, λ)Vi ∀ {s, λ} ∈ � (6)

where Vi is the ith column of the projector V , and αi ∈ C.
Multiple approaches have been presented in order to gen-

erate the matrix V . Most of the techniques in the literature
extend the moment matching paradigm [6] to the multi-
dimensional case [13]–[15]. They usually rely on the implicit
or explicit matching of the moments of the parametric transfer
function (3). Following the same idea used in the nominal
moment matching techniques, a basis for the subspace can be
built from the column span of such moments, and the resulting
matrix V can be used as a projection matrix so that the ROM
implicitly matches the selected moments. Approaches differ
in which moments are matched and how these moments are
generated (for a more complete review, the reader is referred
to [13]–[15]). In general, these methods, which rely on local
matching, suffer from oversize of the models when the number
of moments to match is high, either because high order is
required, or because the number of parameters is large. A
different paradigm, more appealing to our goals, is based on
multi-point methods, which generate the basis either by com-
puting the transfer function moments from multiple expansion
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points (sk, λk), or from solving the system at different sample
points on the relevant frequency plus parameter space

zk = z(sk, λk) = (skC(λk) + G(λk))−1B (7)

where z(sk, λk) ∈ Cn×m is the block vector generated at the
sample point (sk, λk), and related to the zeroth order (block)
moment. In this framework, the approach in [12] presents a
statistical interpretation of the algorithm in [9], and enhances
its applicability. This approach also appears to be less sensitive
to the number of parameters. In addition, the accuracy does
not depend on the “quality” of the quadrature of the integral
representation of the Gramian, but on the approximation of
the subspace [9]. Regrettably, very little automation has been
reported on pMOR methodologies, since the number and
placement of samples must be decided beforehand. Bad or
poor sampling may lead to inaccurate results (undersampling),
whereas an excessive number of samples can lead to inef-
ficiency (oversampling), and in some cases both effects can
happen in different regions of the space. Even worst is the fact
that there is no efficient method to determine if the reduction
suffers from either or both effects, which leads to a small level
on confidence on the ROM.

C. Sample Selection Schemes

Little work has been devoted to the issue of sample selection
inside the framework of projection-based MOR. The authors
in [20] presented an iterative procedure for selecting the r best
interpolation points that generate an optimal ‖H‖2 model of
order r. The algorithm generates r initial random samples,
used to obtain a rth order model. The eigenvalues of this
reduced model are obtained (this operation is relatively cheap
on the reduced model), and used as a new set of r sampling
points. The procedure is repeated until the eigenvalues (i.e.,
next iteration sampling points) converge, generating the ‖H‖2

optimal model. Obvious drawbacks to this procedure are that
it is only applicable to single dimensional linear systems, and
requires solving the original system (an expensive operation)
at r points on each iteration. Also, increasing r (the reduced
order, which has a dramatic impact on accuracy and is not
known beforehand) implies complete model recalculation, and
the initial guess of the points is relevant to the convergence
of the eigenvalues. This means that some a priori knowledge
is needed for a good initial guess.

The work presented in [21] is explicitly aimed at sample
point selection for optimizing multi-point MOR schemes.
There, the idea is to generate R ROMs of identical reduced
size q, resulting from different sample sets, Z1 . . . ZR, obtained
by bootstrapping from a larger common set of samples. When
comparing their response, regions where associated transfer
functions Hk(s) (with k = 1 . . . R) disagree the most are likely
to be good choices to place new sample points (see [21]
for details). The method also has some drawbacks: one is
that it requires evaluating multiple reduced models’ frequency
transfer functions, and another is that it requires computing an
initial population, i.e., an initial set of samples (and vectors)
to start working with (and with no guarantee that these first
samples are a good set). These issues are aggravated in multi-

dimensional spaces: how to compute efficiently the multi-
dimensional variance, and how to set a first sample population
in this case?

III. Automatic Sampling Selection

This section introduces the proposed sampling scheme,
which is based on trying to find the minimum set of samples
that will spawn a subspace that generates a good ROM.

A. Motivation and Basic Concepts

Before presenting our proposed procedure, we have to settle
on two basic premises. If we define Aj = sjC(λj) + G(λj),
Aj ∈ Cn×n, the evaluated system matrix for the jth sampling
point (sj, λj), we note the following.

1) Evaluation of the system matrix is cheap. It requires the
evaluation of the entries of Aj . This could be the case
when the matrix is a known function of the frequency
and parameters, or can be represented as a polynomial
function of the frequency and parameters.

2) Solving the system is expensive. We have to obtain the
sample block vector z(sj, λj) = A−1

j B, which requires
solving the system, either by a direct method [22] (e.g.,
LU factorization of Aj , plus backsolves), or by an
iterative method [23]. In either case, this operation can
be expensive for large systems.

This means that we should avoid computing the sample
block vectors z(sj, λj) unless it is strictly necessary, i.e., that
we are sure we need the vector. Any sample may give a
good vector for approximating the system, at least in the
neighborhood of the point. On the other hand, a new vector
may add information that is already enclosed in the subspace
generated so far (i.e., redundant information), and thus it is not
a good new sampling choice. Therefore, a good new vector
is the one that is as different from the ones we already have
as possible, and thus, cannot be well approximated by the
currently available subspace.

However, this unleashes the question: how can we determine
if a candidate sample point (sj, λj) will generate a block vector
that adds rank to our set Z = {z1 · · · zk} without computing it?
Furthermore, how can we know if this new block vector will
help to minimize the number of samples needed to obtain a
good ROM? The answer is simple, we cannot. But on the other
hand, we can do some simple and efficient computations that
will provide a good estimate of the best candidate sample point
to solve for.

B. Iterative Sample Selection Methodology

Our goal is to obtain a minimum number of vectors so that
we can obtain a good approximation of the states vector, i.e.,
we want to find the minimum set q so that (6) holds. The
vectors are going to be generated via a multi-point sample
scheme, and we want to minimize the number of samples
generated (i.e., the number of solves to perform).

We start from an initial candidate set of T points, � =
{ψ1 . . . ψT }, covering the space of interest, �, and where each
ψj = (sj, λj) is a point in that space �. We will select from
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� the most appropriate point for our goals by trying to find
which points have an associated vector that is less similar
to the vectors we have already computed. It is important to
notice that we want to obtain this information before solving
the system for the candidate point, and assuming no prior
knowledge of the system behavior is available.

Let us assume that at certain point during our algorithm, we
have a basis V ∈ Rn×k, V = [v1 . . . vk]. For simplicity, let us
assume a single input system, i.e., the state space response is
due to the contribution of a single input, and thus B is a column
vector b ∈ Rn. The error we commit in the approximation of
the state vector at a given point ψj is

ej = x(ψj) − ∑k
i=1 αi(ψj)vi (8)

where ej ∈ Cn is the error, and αi ∈ C. This error gives us
true information, and thus a good option is to solve the system
at any candidate sample point in which the error is larger.
However, to generate the error we would need to compute
the solution of the system at each candidate x(ψj), which is
exactly what we want to avoid.

Instead of the true error we can use a proxy that is
cheaper to compute and that is a good indicator in the case
of linear systems: the residue. Multiplying by the system
matrix evaluated in this point, Aj = A(ψj), we know that
b = Ajx(ψj), and if we denote rj = Ajej , rj ∈ Cn, we obtain

rj = b − ∑k
i=1 αi(ψj)Ajvi. (9)

Therefore, to determine whether the system
{
Aj, b

}
is well

approximated by basis V , we simply orthogonalize the vector
b against the basis AjV , and generate the norm∥∥rj

∥∥ =
∥∥b⊥AjV

∥∥ (10)

where rj is the residue after the orthogonalization (⊥) of
b against the set of vectors AjV . In the case of a MIMO
system, since the state vector is obtained as the contribution
of the multiple inputs, and thus related to the m columns of B,
the overall residue norm can be obtained as the contribution
of the norms of the residues for each of the columns of B

(nonetheless, the residue can be obtained as a block, and the
norm obtained as the sum of the column norms)

R = B⊥AjV,
∥∥rj

∥∥ =
∑m

i=1 ‖Ri‖ (11)

where R ∈ Cn×m, and Ri is the ith column. If the resulting
norm

∥∥rj

∥∥ is small, the system
{
Aj, B

}
is well approximated

by the set of vectors V , and thus, the vector associated with
the candidate point ψj will probably add “small” rank to the
subspace spanned by the set of vectors V . We can repeat the
operation in (11) for all the candidate sample points to know
for which of them the solution is poorly approximated by the
set of vectors. This information can be obtained by finding
the maximum among the norm of the residues given by (11)
for each candidate point j. With this methodology we ensure
that the new vector generated by the selected sample point
adds rank to the subspace, and furthermore, it is likely to be
a relevant point to include in the sample set.

Only after we have selected the best suited candidate
ψj , do we solve the system to generate the block vector

zj , and withdraw the sample point from the candidate set,
� =

{
ψ1 . . . ψj−1 ψj+1 . . . ψT

}
. Then we repeat the procedure

for finding the next point.

IV. Computational Issues

A. Computational Cost

The cost of standard sample based procedures can be
measured as the contribution of two major factors. The first
is the cost of generating a sample, that is, the cost associated
with evaluating and solving the system for the sample point.
This cost depends on the matrix profile (number of non-
zeros and sparsity pattern), and the underlying algebra applied.
Therefore, we define this cost as O(S). The second factor is
the cost of orthonormalizing a set of q vectors of size n, and
can be approximated by O(nq2).

For the proposed methodology, let us suppose we have
an initial number T of candidate points, and we determine
a final number of K sample points, which generate a total
number of Km vectors, with m the number of ports. In this
case, we have to perform K solves with cost O(KS) and the
orthonormalization of the Km vectors, with cost O(n(Km)2).
In addition, we have a major extra cost that comes from the
set of operations associated with (11), required for finding
the points to solve. This cost can be approximated by the
expression

O(
∑K

i=1(T − i)n(im)2). (12)

The reasoning is that for finding the new sample point, at each
remaining candidate point (a total number of T − i, with i the
number of samples already computed), we must orthogonalize
the columns of B ∈ Rn×m against the set of vectors AjV ∈
C

n×im (recall that the basis at this point is V ∈ Rn×im). This
cost can be further approximated by

O(nm2K3(T − K)). (13)

Taking all into account, the total cost of the algorithm can
be approximated by

O(KS + n(Km)2 + nm2K3(T − K)). (14)

We realize that the cost of the algorithm is highly dependent
on the number of iterations K needed to accurately model the
system, and the number T of initial samples on the candidate
set. This cost will be taken into account in future sections
to present efficient versions of the algorithm that minimize
the impact of T , and thus the additional cost. In addition
the method provides other advantages in terms of accuracy,
reliability and automation that may compensate the extra cost.
Furthermore, there is an enormous potential for parallelism,
since the residue computation [responsible for the later terms
in (14)] is embarrassingly parallel. Such a study is, however,
beyond the scope of this paper.

B. Stopping Criteria

An important issue is when to stop looking for new samples,
this is, when to stop the procedure. The answer is simple: one
should stop when the solution of the remaining candidates (i.e.,
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the vectors that can be generated) does not add rank. This
means that the remaining points would only add redundant
information to our basis. The proposed methodology naturally
provides different indicators that can be used to monitor this
effect. One is the norm of the residue. If this is a good
proxy of the error, we can determine that the solution of
the states is well approximated when the norm of all the
residues is sufficiently small. However, when generating and
comparing the residue it is important to take into account the
nature of the variables provided by the formulation: different
variables should be treated separately, and the measure of
the residue should be relative to the norm of B (or sum of
column norms). In addition, this information is only given for
the remaining candidates, and thus a bad or incomplete set
of initial candidates may lead to a wrong conclusion. The
other is the norm of the new vector when orthogonalized
against the current basis. An efficient method for obtaining
such information is to use an incremental QR decomposition,
for example a rank revealing (RR) QR [24]. Every time a new
sample vector is generated, we orthonormalize it against the
already orthonormalized set of vectors, and check its norm
against a fixed tolerance (either absolute or relative). If the
norm drops below such tolerance, we can determine that
the vector does not incorporate relevant information (i.e., the
information is already enclosed in the basis).

Both indicators can be combined to improve the reliability:
when the norm of the residues falls below a fixed threshold
based on a relative tolerance, it means that all the candidate
points are well approximated. At this point, the norm of the or-
thogonalized vectors can be compared against a tolerance and
used as a stopping criteria. A key advantage of the proposed
approach relies in the confidence level on the ROM accuracy.
When the stopping criteria are achieved, we can be sure that a
good approximation of the model has been generated (as long
as the initial candidate set is representative), contrary to the
lack of reliability of existing pMOR approaches.

Although a theoretical error bound is not (yet) available, the
provided monitoring is completely integrated in the method-
ology and can be used as a good approximation. In practice,
we have reason to believe it is a reliable indicator.

C. Initial Candidate Set

A natural question arising from the previous sections is how
to select an initial candidate set �. The number of candidates
will have a critical impact on the cost of the methodology, as
presented in (14), and thus we are not interested in having an
extremely fine discretization of the space under study. Uniform
sampling in large dimensional spaces can be very expensive,
whereas pure-random sampling can lead to clustered informa-
tion in some regions with no samples in other regions.

One of the underlying ideas of the proposed method is
to generate vectors as different as possible, so that the basis
converges to the target subspace as fast as possible. This can
be applied to the initial candidate set.

In order to improve the coverage of this initial set, a
logarithmic mesh is defined in the complex frequency, and
for each frequency point different parameter perturbations are
performed following a low-discrepancy sequence [25]. The

reason for the differentiated treatment for frequency comes
from the fact that the range of variation of frequency is
much wider, and frequency has in general, by design, a
larger impact in the performance of electric circuits than the
remaining parameter perturbations. Low-discrepancy or quasi-
random sequences are routinely used in numerical integration
of large dimensional problems. Since we are doing a numerical
quadrature in a large dimensional space, the points generated
by such schemes provide a better alternative to linear or pure
random schemes, and ensure that each sample is different.
Other schemes are, of course, possible.

Another advantage of the methodology is the flexibility. At
each iteration different candidate sets can be used, or the initial
candidate set can be refined on the fly during the procedure.

Although in this manuscript we have focused our attention
on a static and relatively fine discretization of the domain of
interest rating accuracy over efficiency, other strategies are
also applicable, which opens the discussion to a large set of
potential configurations: one could apply independently the
procedure on disjoint space regions; apply different levels of
accuracy in different regions; perform an initial approximation
with a coarse candidate set and upgrade the model with a
refined candidate in a second stage; use statistical or other
information (if available) to generate a more realistic or better
distribution of samples; monitor the selected samples and
refine the candidate set on the fly in regions that demands
multiple samples (since they are prone to have a lot of dynam-
ics); perform a first approximation with frequency samples,
and then incorporate the parameter samples at a second stage,
with a finer discretization on regions with resonances (the
parameters are prone to modify the amplitude or shift these
resonances); and so on. The possibilities are endless, but their
investigation is beyond the scope of this paper.

D. Stability and Passivity

The preservation of passivity and stability is a very im-
portant concern in MOR, in particular for linear and pa-
rameterized systems. With respect to this, we note that the
methodology applies a congruence transformation on the orig-
inal system, and thus the stability of the original model is
preserved (of course as long as the original model is stable).
Furthermore, under certain numerical and structural properties
of the matrices, namely C, G ≥ 0 (i.e., positive definite) and
B = ET , the passivity of the original system is also preserved
(see [6] for details).

V. Proposed Implementation

In this section we will present different implementations,
starting from a standard approach, and several upgrades in
order to cope with some of the issues mentioned in the
previous sections.

A. ARMS: Automatic Residue-Minimization Sampling

We start by presenting an approach whereby the selection of
the samples is done by applying the procedure introduced in
Section III-B. An initial population is defined as a static candi-
date set, and a first sample from this population is solved. This
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Algorithm 1 ARMS: sorted residues norm update
Given the system and the domain of interest,

1: Define stopping thresholds for the residue tr and the vectors tv
2: Generate a set of candidate sample points � = {ψ1 . . . ψT }
3: Initialize an array with the residues R(i) = 2 ‖B‖
4: Initialize: V=[ ], k=0
5: Evaluate system matrix: Ak=A(ψk)
6: Solve the system: zk=A−1

k B
7: Orthonormalization: vk= zk − V (VT zk), Nv = ‖vk‖, k++

IF Nv > tv Then V =
[
V vk/Nv

]
,

8: Set the value Rmax=0
9: FOR i=k : T

Ai=A(ψi), ri=B⊥AiV , R(i) = ‖ri‖
IF R(i) > Rmax Then Rmax = R(i)
IF Rmax > R(i+1) Then BREAK

10: Sort R in decreasing order, and � accordingly
11: IF R(k) > tr and Nv > tv

GOTO 4
12: Use V in a congruence projection on the system

can be randomly selected, but it is a good idea to include the
DC point (and thus obtain the DC moment), which for circuit
simulation is quite relevant. The point chosen is removed from
the candidate set. Once we have this vector, we orthonormalize
it, and the result forms the current basis. With this basis we
perform the operation in (11) to generate the residues at each
candidate point. From these residues, we select the point with
maximum residue norm, and solve it. The vector generated is
orthogonalized against the previous ones (via an incremental
RRQR). The norm of the orthogonalized vector and the residue
is compared against a (relative) tolerance to determine if the
procedure should end. If so, we terminate, and apply the basis
in a congruence projection; if not, the sample is removed, the
vector is added to the basis, and a new iteration is performed.
An important point to mention is that if the sample is complex,
then the vectors are also complex. As a consequence, in order
to span the same column subspace we must add both the real
and imaginary parts of the vectors to the basis (which must
remain real).

B. ARMS: Sorted Residues Improvement

As pointed out, the main overhead of the method comes
from the orthogonalization required in (11) for finding the
residue at each candidate point. In the algorithm presented
in the previous section, this operation was repeated for each
candidate point at each iteration. However, in this section
we will present an approach that will avoid most of such
computations. If we have a basis V ∈ Rn×k, and an extra
vector vk+1, it is straightforward that∥∥b⊥AjV

∥∥ ≥ ∥∥b⊥Aj[V vk+1]
∥∥ . (15)

We can use this result to stop the search for the new sample
point before recomputing all the residues.

Let us suppose that at a given iteration k, we have computed
all the residues with the current basis Vk ∈ Rn×k, and we keep
the norm of such residues, associated with each point, in a
sorted array R, so that its entries are . . . ≥ ∥∥rk

∥∥
j
≥ ∥∥rk

∥∥
j+1 ≥

. . ., where superscript k indicates iteration, and subscript j in-
dicates array index. In order to keep track of which residue be-

longs to which point, the array with the samples must be sorted
accordingly (or, for simplicity, an incidence array is kept).

For the next iteration we select the element with maximum
residue norm, stored at position k + 1 of this list (since the
previous k points were already solved in the previous k

iterations). With the corresponding point, we evaluate the
system and solve for the respective vector at such point,
vk+1. Now we repeat the operation (11) with the incremented
basis, Vk+1 = [V vk+1], for each of the points given by the
sorted list. As we generate the new residues, we keep the
maximum norm in Rmax. At each iteration i of the residue
generation (where we computed the new norm corresponding
to the point ψi) we compare the maximum norm, stored in
Rmax, with the stored norm

∥∥rk
∥∥

i+1 of the next point of the
sorted list. If Rmax is larger, we can stop the procedure, since
from (15) we can state that

Rmax ≥ ∥∥rk
∥∥

i+1 ≥ ∥∥rk+1
∥∥

i+1 . (16)

Therefore, we have found the point for which the norm of
the residue is maximum at this iteration k+1. Note that we
have not updated all the norms, so for the remaining points
i+1, i+2, . . . we simply keep the old norms. This procedure
will update the norms of the pairs when needed.

A more clear depiction of this step is given by Algorithm 1.
With this simple comparisons in step 9, we can achieve
significant computation savings: only a small fraction of the
norms need to be updated at each iteration.

C. HORUS: Linear Moments Upgraded Sampling

The method, as depicted in the previous sections, only com-
putes the zeroth order moment at each selected point. However,
we notice that once we have selected a new suitable point to
solve, the main cost comes from solving the system at such
point. This solve is usually done by performing an LU fac-
torization of the matrix Aj (evaluated at such point), plus the
backsolves with the factors and the matrix B. Let us suppose
we have a state space description, with an explicit dependence
on the variables, e.g., a Taylor series approximation in the form
of (2) in combination with a state space representation in (1).
Once we have computed the LU factors for the system matrix,
and computed the zero order moment by solving the system,
we can obtain the multi-dimensional moments [13] at such
expansion point with a few inexpensive extra computations.

We propose to generate the sample plus the first moment
for every parameter (including the frequency)

LU = LU(Aj)
M0,0 = zj = U−1L−1B

M1,0 = −U−1L−1C0...0M0,0

M1,1 = −U−1L−1(G10...0 + sjC10...0)M0,0

. . .

M1,P = −U−1L−1(G00...1 + sjC00...1)M0,0

(17)

where Mf,i is the moment of order f with respect to the
parameter i (frequency is taken as parameter 0). Note that the
zeroth moment corresponds to the nominal values. More re-
fined approaches can generate higher order and cross moments
following some of the multi-dimensional moment matching
approaches already mentioned (for more details see [13], [14]).
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Once all the desired moments are computed, the matrix V is
updated with

V = RRQR([V M0,0 M1,0 M1,1 . . . M1,P ]). (18)

Equations (17) and (18) can be integrated, respectively, in steps
6 and 7 of Algorithm 1.

We advocate to generate the first order moments with
respect to each parameter, including the frequency, for several
reasons: first of all, matching more moments or including cross
derivatives will increase the number of vectors in the subspace,
with the consequent extra cost in the orthonormalization steps.

To generate first-order moments with respect to each param-
eter is a straightforward and simple approach, that may help
in some scenarios to capture linear information around the
sampling point. It can be done with little extra cost, and avoids
complicated settings for the methodology (such as determining
the number of moments to match w.r.t. each parameter, or
when the Taylor series has order higher than first). It could also
allow us to reduce the discretization of the space of interest,
and thus to have a smaller candidate set, as we are capturing
not only information at the point, but also on the nearby region.
Systems in which the LU factorization of the matrix is very
expensive may benefit from this approach, since by generating
more vectors at each point it is likely that we reduce the final
number of points to sample, i.e., the number of iterations K

in (14). On the other hand, it may affect the optimality of the
sample selection (e.g., a single sample may cover the same
subspace as several moments).

It is important to realize that by computing only the first mo-
ments we are not neglecting higher order or cross term infor-
mation: the multi-dimensional sampling takes care of the com-
bination of parameters, whereas the linear moments help cap-
ture the nearby information. Projection of the complete Taylor
series in (2) will keep the same multi-dimensional accuracy.

A different issue is how this step modifies the stopping
criteria. We propose to maintain the same criteria, although the
norm to check should be the norm of the zero order moment,
since that is the one that contains the energetic information of
the system at the sampling point. Furthermore, vectors related
to higher order moments may suffer from deflation, leading to
false information in terms of error convergence.

VI. Simulation Results

In this section, we present the capabilities of the proposed
algorithms. ARMS corresponds to the standard method, and
HORUS stands for the improvement with first-order moment
matching. In both cases, the sorted residues improvement is
applied. For comparison, we will use a (variational) Poor
Man’s TBR (PMTBR) approach [9], [12] based on other sam-
pling schemes. In the single dimension case (frequency) linear
or logarithmic sampling will be used. For multi-dimensional
(parameterized) cases, the uniform frequency sampling will
be combined with pure random sampling in the parameter
space. In some tests, a standard TBR [4] and moment matching
approaches, namely parameterized interconnect macromodel-
ing algorithm via a two-directional Arnoldi process (PIM-
TAP) [14], will be used to illustrate certain points.

Fig. 1. SISO RLC example. (a) Transfer function for the original and ROMs.
Triangles indicate ARMS samples. (b) Relative error for all the ROMs with
respect to the original.

The ARMS, HORUS, and PMTBR methods were imple-
mented in C/C++, where the highly efficient SuiteSparse
package [22], [26], [27] was used for the solve routines,
whereas the rest of the sparse functionalities were self made,
and far less efficient.

As benchmarks we will use two examples depending solely
on the frequency, and two parameterized systems, that will
allow us to validate the underlying theory. RLC is a modified
nodal analysis (MNA) formulation of a 2-port system modeled
with distributed RLC segments. Although simple, this example
is very challenging in terms of sample selection, due to the
large frequency range (0–100 GHz) and the flat response at
low frequencies and large resonances at high frequencies, that
continue with small ripples until the transfer function falls to
zero (see Fig. 1 for illustration). PEEC C is a well-known
304-states partial element equivalent circuit (PEEC) example,
which has already appeared in the literature [5], and which
has very sharp resonances. pRLC is a parameterized MNA
formulation of five connected lossy lines. Each line is divided
into three parts modeled with 100 RLC segments in which the
p.u.l. values of each part depend locally on three parameters,
which a total of 45 parameters. The parameters are artificial
and modify the R, L, and C values of certain regions up to
20% of their nominal value. The frequency dependent transfer
function is the same as in the RLC, but the parameters modify
the amplitude and location of the resonances. K-spiral is a
RCK second-order EM model of an integrated spiral inductor,
whose side length varies up to 37 μm around the nominal value
of 187 μm. It is modeled as a second-order model (i.e., the
system equations have a (Y + sC +K/s)x = Bu structure), with
5124 resistors, 20 736 capacitors and 381 120 susceptances,
and each matrix is approximated with a fourth-order Taylor
series on the parameters. The parameter modifies the amplitude
and frequency of the transfer function peak.
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TABLE I

Benchmarks Characteristics and Reduction Results

Example RLC PEEC C pRLC K-Spiral
Model MNA PEEC MNA RCK
Order First First First Second
Size/#Ports 451/2 304/1 7551/1 89 134/1
NNZ 1381 18 982 22 531 613 102
#Param./#Terms 0/1 0/1 45/46 1/5
Freq. (GHz) 0–100 0.001–5 0–100 40–60
Validation 10 000 10 000 116 000 6000
PMTBR
Size 349 46 396 54
Solves 100 (Log) 23 (Lin) 200 (Log) 27 (Lin)
Abs. error 9.40e-2 1.1e-5 5.04e-1 7.91e-2
Rel. error 2.4% 4.2% 18.9% 0.002%
Time 2′′ < 1′′ 208′′ 1439′′

ARMS
ROM size 113 44 170 40
Solves/cand. 30/800 22/450 86/1200 20/700
Abs. error 6.8e-2 1.5e-6 1.82e-1 4.64e-2
Rel. error 2.1% 0.6% 8.8% 0.004%
Time 27′′ 7′′ 3700′′ 3323′′

HORUS
ROM size 127 47 229 41
Solves/cand. 18/800 14/450 10/1200 12/700
Abs. error 6.06e-2 4.0e-6 3.51e-1 5.71e-2
Rel. error 1.9% 1.5% 10.5% 0.002%
Time 23′′ 4′′ 2895′′ 2333′′

Table I presents the characteristics of the benchmarks, and
the results of the reduction with (variational) PMTBR, ARMS,
and HORUS (ROM sizes are defined for a similar accuracy).
It can be seen that ARMS and HORUS consistently generate
better results with more compressed models due to better
sample selection. On the other hand, the cost of the generation
is larger due to the extra computations for the sample selection.
However, it is important to notice that for most of the examples
presented the solve cost is negligible (PEEC example is small,
and the distributed RLC and pRLC models have a tri-diagonal
matrix structure), whereas the non-optimized sample selection
sparse routines take most of the elapsed time. The K-spiral
example points out the escalation trend of the algorithm for
larger systems, in which the solve time starts to be more
dominant.

A. Singular Value Convergence and Optimality

In this subsection, we will show the optimality capabilities
for sample selection of the ARMS method.

TBR, PMTBR, and ARMS models are generated for a SISO
version of the RLC example. For the ARMS approach, an
initial fine candidate set of 2000 points is provided, and a
tolerance of 1e-4 is set. The method selects 70 samples to
generate a 139-states ROM. For comparison, the size of the
TBR model is set to 140. Two PMTBR models are built: one
with 70 samples in the domain, and the other with the same
2000 samples used as initial candidate set by ARMS.

Fig. 1 shows the original and ROMs transfer functions,
along with the relative error for the ROMs. It can be seen that
the PMTBR model with 70 samples exhibits a relatively high
error around 100 GHz, due to the small number of samples.
The ARMS and 2000-samples PMTBR models have almost

Fig. 2. SISO RLC example. Leading Hankel SV of original, PMTBR, and
ARMS models. The PMTBR ROMs are generated with 70 and with 2000
samples, whereas the ARMS ROM is obtained solving 70 samples out of the
same 2000 samples as in the PMTBR case.

Fig. 3. PEEC C example. (a)–(c) Transfer function error with 20, 21, and
22 samples, and placement of the 21, 22, and 23rd points, respectively.
(d) Convergence of the error with the number of samples for PMTBR with
linear sampling, ARMS, and HORUS.

the same behavior, with relative errors under 1e-4, although
ARMS only solves the system at 70 of the 2000 samples.
Note that the frequency points solved by ARMS (indicated by
the triangles) are gathered in the region where most of the
dynamics take place.

Fig. 2 shows the leading Hankel singular values of the
original model and the ROMs (i.e., the HSV obtained by
solving the Lyapunov equations with the reduced matrices).
This gives us an idea of the optimality of the ROMs, since
the HSV are related to the energy transference from input
to output (see [4] for details). PMTBR with 70 samples is
unable to capture the original behavior, whereas with 2000
samples it does a pretty good job. ARMS exhibits almost the
same performance as PMTBR with 2000 samples, indicating
that it does an excellent job in selecting the most relevant
samples to obtain a good ROM (the maximum absolute
difference between the HSVs of the original and the ARMS
ROM is 1.04e-4). In a sense we could state that the ARMS
methodology is able to perform the same job as the SVD, but
without the need of solving the 2000 samples (i.e., selecting
the good samples before solving the system).
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Fig. 4. PEEC C example. Convergence and stopping indicators for
(a) ARMS and (b) HORUS.

B. Point Selection and Error Convergence

In this section we demonstrate the capabilities of our point
selection method, and the fast convergence to a good solution
of the proposed methodology.

In Fig. 3, we show a set of consecutive sample points
automatically selected by the ARMS algorithm for the PEEC
C example (for a transfer function plot see Fig. 6), without any
knowledge of the system beyond the minimum and maximum
frequencies. Fig. 3 has four plots: the first three present the
absolute error of the ARMS ROM with the current number of
samples, and marked with a star the frequency where ARMS
is going to place the next sampling point. We can see that the
samples are placed in regions of large error, near resonances
or in regions in which the sample will significantly reduce
the overall error. The last plot shows the convergence of the
error versus the number of samples for PMTBR, ARMS, and
HORUS. The models generated with ARMS exhibit a faster
convergence of the error than PMTBR for the same number of
samples. HORUS convergence is even faster, needing a smaller
number of samples (as it uses two moments per sample).
Notice, however, that the sizes of the ARMS and HORUS
are similar for equivalent error (i.e., HORUS convergence in
terms of ROM size is similar to the one of ARMS).

Fig. 4 shows the same error convergence for ARMS and
HORUS for the PEEC C example, along with the information
of the stopping criteria. It can be seen that although not
perfect indicators of the error, the vector norm and normalized
residue provided an automatic approximation for the error
convergence.

Fig. 5 shows the quick convergence of ARMS to an ac-
ceptable approximation in the SISO RLC example. With 20
samples and in 3′′ the approach is able to capture the main
resonances, whereas future samples will basically refine the
model to capture the high frequency small ripples when the
transfer function falls to zero.

Table II presents a similar result for the pRLC example.
In this case, ARMS and HORUS results are presented for
different numbers of samples and with a different initial candi-
date set, and benchmarked against linear and logarithmic based
PMTBR. It is clear that both ARMS and HORUS are able to
quickly converge to good results, whereas a linear sampling
is unable to generate good results, and the convergence of
the logarithmic based sampling is much slower, generating
larger ROMs for equivalent accuracy. Also, the table shows
that although the number of initial candidates can have an

Fig. 5. SISO RLC example. (a) Transfer function for the original and the
evolution of the accuracy of ARMS with 10, 15, and 20 samples. (b) Evolution
of the absolute error for the same ROMs, and the evolution of sample
selection.

Fig. 6. PEEC C example. Transfer function for ARMS, HORUS, and
PMTBR. ARMS and HORUS samples are marked with triangles.

impact on the accuracy, its effect on the convergence and the
generation of accurate models is not critical. On the other
hand, the effect of the number of candidates on the elapsed
time is quite relevant. This is very encouraging since as
previously mentioned, residue computation is embarrassingly
parallel. The comparison of CPU times clearly shows that in
our non-optimal code, residue computation is the most time
consuming task. Therefore large computational improvements
may be achieved by parallelization, which is a target of future
research. A different feature is that both ARMS and HORUS
suffer of an important increase in the computational cost with
the number of iterations to perform (i.e., the size of the ROM).
Nonetheless, in such cases it is worth spending more time in
generating a reliable and more compressed model, which can
lead to savings in simulation times.

C. Algorithm Accuracy and Automation

In this section, we present the algorithm features in terms
of accuracy and automation, in comparison with PMTBR. It
is important to notice that the comparison is not fair (to our
disadvantage), since the uniform PMTBR approach needs to
know the number of samples beforehand, whereas the ARMS
and HORUS approaches do the selection of the number and
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TABLE II

pRLC Example: ROMs Evolution with Number of Solves

Solves (Lin) 25 50 75 100
ROM size 49 99 149 199

Time 5′′ 16′′ 27′′ 56′′

PM
T

B
R Abs. error 23.325 18.210 6.668 2.745

Solves (Log) 25 50 75 100
ROM size 49 99 148 198

Time 5′′ 16′′ 27′′ 56′′
Abs. error 9.154 2.562 1.544 1.098

Solves/cand. 25/600 50/600 75/600 100/600
ROM size 48 98 148 198

Time 121′′ 534′′ 1407′′ 3499′′

A
R

M
S Abs. error 3.460 0.988 0.412 0.125

Solves/cand. 25/1200 50/1200 75/1200 100/1200
ROM size 48 98 148 198

Time 205′′ 920′′ 2438′′ 6740′′
Abs. error 3.880 0.697 0.254 0.107

Solves/cand. 3/600 4/600 5/600 6/600
ROM size 62 107 137 162

Time 26′′ 73′′ 491′′ 1244′′

H
O

R
U

S Abs. error 28.261 2.564 1.501 0.694
Solves/cand. 3/1200 4/1200 5/1200 6/1200
ROM size 67 108 139 159

Time 58′′ 176′′ 1020′′ 2194′′
Abs. error 17.948 2.041 1.130 0.754

placement of the samples at run time. For ARMS and HORUS,
we only fix the minimum and maximum frequencies, and the
tolerance, whereas PMTBR we fix the number of samples
required for a similar accuracy.

For the PEEC C example, Fig. 6 shows the transfer func-
tion for the original and ROMs, and sample placement for
ARMS and HORUS. In all cases the accuracy is very good,
and the responses of the original and ROM models appear
indistinguishable, but the sample points selected by ARMS
and HORUS (also shown) are placed in regions of large
variation of the transfer function, or near sharp resonances,
yielding a more accurate model than the PMTBR approach
(the maximum error can be seen in Table I).

Fig. 7 shows the absolute error distribution for the more
complex parameterized pRLC benchmark. Results are shown
for the variational PMTBR, for the multi-dimensional moment
matching PIMTAP method, and for the proposed ARMS and
HORUS algorithms. Notice that the x-axis scale is the same.
All the ROMs have a similar size, and we have included
a moment-matching approach for comparison. Results are
similar to previous cases. The moment matching approach
is unable to provide good accuracy, and the PMTBR model
shows a large deviation, which indicates that the error is
small in some regions (oversampling) whereas it is very large
in others (undersampling). The HORUS model needs a much
smaller number of samples than ARMS to generate model with
acceptable accuracy, which is the main benefit of generating
first-order moments in the upgraded sampling. On the other
hand, the ARMS model is more optimal, in the sense that bet-
ter accuracy is obtained with a smaller model. Therefore, when
ROM size is critical, ARMS would be the method of choice.
On the other hand, cases in which a good (near optimal) basis
needs to be quickly generated, HORUS would be a better
option.

Fig. 7. pRLC: simulation on 116 000 multi-dimensional points. On vertical
axis are the number of occurrences, whereas on horizontal axis are the max-
imum absolute error of the ROM with respect to the original parameterized
model. ROMs are, from top to bottom, PIMTAP, PMTBR, HORUS, and
ARMS, all with similar ROM size.

VII. Conclusion

An efficient algorithm for automatic selection and minimiza-
tion of the number of samples to use in a MIMO multi-point
MOR framework has been presented, which:

1) uses global information of an arbitrary set of samples
avoiding solving the system for all of them; in fact, the
method minimizes the number of solves to perform;

2) selects the most suitable point to solve for automatically,
by monitoring the residue (used as a proxy for the
error) at each candidate sample, with the objective of
maximizing the projection subspace;

3) is general and independent of the representation, and has
been successfully applied to single and multiple dimen-
sions, with potential application to non-linear models.

The procedure was integrated into a set of MOR algorithms,
offering a reliable, robust, and accurate framework able to
deal with different cases. This framework provides multiple
advantages, namely the following.

1) Automation. The method automatically selects the best
samples from a initial candidate set, without any prior
system information, and automatically determines when
the model is accurately captured, via cheap and easy
to monitor criteria. Previous system information can be
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easily incorporated with potential efficiency improve-
ment.

2) Efficiency. Although it requires some extra computa-
tions, the algorithm uses the information of a large set of
samples by solving the system for a minimum number
of points. It has been demonstrated that it can efficiently
handle large systems.

3) Optimality. Although the method does not provide op-
timal overall models (in the TBR sense), it can provide
local models (in the defined multi-dimensional region)
close to optimal. However, there is a tradeoff between
efficiency and minimum reduced order.

4) Generality. It can be applied to systems of different
nature (MIMO, linear, parameterized, and so on) and
in different representations (first, second order, Taylor
series, and so on) with minimum modifications.

5) Reliability. The framework is very robust due to the
underlying multi-point and projection. In addition, it
ensures a high level of confidence in the accuracy of
the ROM for the region covered by the initial candidate
set.

Results demonstrate that it outperforms other sampling
schemes and reduction methodologies in both single and
multiple dimensions, for a variety of benchmarks.
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