
142 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 1, JANUARY 1, 2015

Exact and Approximate Algorithms for the Filter
Design Optimization Problem

Levent Aksoy, Member, IEEE, Paulo Flores, Senior Member, IEEE, and José Monteiro, Senior Member, IEEE

Abstract—The filter design optimization (FDO) problem is de-
fined as finding a set of filter coefficients that yields a filter de-
sign with minimum complexity, satisfying the filter constraints. It
has received a tremendous interest due to the widespread applica-
tion of filters. Assuming that the coefficient multiplications in the
filter design are realized under a shift-adds architecture, the com-
plexity is generally defined in terms of the total number of adders
and subtractors. In this paper, we present an exact FDO algorithm
that can guarantee the minimum design complexity under themin-
imum quantization value, but can only be applied to filters with a
small number of coefficients. We also introduce an approximate al-
gorithm that can handle filters with a large number of coefficients
using less computational resources than the exact FDO algorithm
and find better solutions than existing FDO heuristics.We describe
how these algorithms can be modified to handle a delay constraint
in the shift-adds designs of the multiplier blocks and to target dif-
ferent filter constraints and filter forms. Experimental results show
the effectiveness of the proposed algorithms with respect to promi-
nent FDO algorithms and explore the impact of design parameters,
such as the filter length, quantization value, and filter form, on the
complexity and performance of filter designs.

Index Terms—Delay reduction, depth-first and local search
methods, direct and transposed forms, filter design optimization
problem, finite impulse response filters, multiplierless design.

I. INTRODUCTION

D IGITAL filtering is a ubiquitous operation in digital signal
processing (DSP) applications and is realized using in-

finite impulse response (IIR) or finite impulse response (FIR)
filters. Although an FIR filter requires a larger number of co-
efficients than an equivalent IIR filter, it is preferred to the IIR
filter due to its stability and phase linearity properties [1]. The
computation of the output of an -tap FIR filter is given by

(1)

where is the filter length, is the th filter coefficient, and
is the th previous filter input. The straightforward

realization of (1) is depicted in Fig. 1(a) which is known as the

Manuscript received March 21, 2014; revised August 01, 2014; accepted
October 09, 2014. Date of publication October 31, 2014; date of current
version December 04, 2014. The associate editor coordinating the review of
this manuscript and approving it for publication was Prof. Joseph Cavallaro.
This work was partially supported by national funds through FCT, Fundação
para a Ciência e a Tecnologia, under project PEst-OE/EEI/LA0021/2013.
L. Aksoy is with INESC-ID, 1000-029, Lisbon, Portugal (e-mail:

levent@algos.inesc-id.pt).
P. Flores and J. Monteiro are with INESC-ID/Instituto Superior Técnico,

University of Lisbon, 1000-029, Lisbon, Portugal (e-mail: pff@inesc-id.pt;
jcm@inesc-id.pt).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSP.2014.2366713

Fig. 1. Different forms of an -tap FIR filter: (a) direct; (b) transposed.

direct form. Alternatively, the realization of (1) in the transposed
form is shown in Fig. 1(b).
The complexity of the FIR filter design is dominated by the

multiplication of filter coefficients by the time-shifted versions
of the filter input, i.e., the constant array-vector multiplication
(CAVM) block in the direct form of Fig. 1(a) or by the multipli-
cation of filter coefficients by the filter input, i.e., the multiple
constant multiplications (MCM) block in the transposed form
of Fig. 1(b). Since filter coefficients are fixed and determined
beforehand and the realization of a multiplier in hardware is
expensive in terms of area, delay, and power dissipation, these
CAVM and MCM operations are generally implemented under
a shift-adds architecture using only shifts, adders, and subtrac-
tors [2]. Note that shifts by a constant value can be implemented
using only wires which represent no hardware cost. Thus, a
well-known optimization problem [3] is defined as: given a set
of constants, find the minimum number of adders/subtractors
that realize the constant multiplications. Note that this is an
NP-complete problem even in the case of a single constant mul-
tiplication [4]. In the last two decades, many efficient algorithms
were proposed for the multiplierless design of the MCM block,
targeting not only the minimization of the number of operations,
but also the optimization of gate-level area, delay, throughput,
and power dissipation of the MCM design [3], [5]–[14]. The al-
gorithm of [15] guarantees the least number of operations in the
CAVM design and incorporates efficient techniques to reduce
the gate-level area and delay of the CAVM design.
On the other hand, the FDO problem [16] is defined as:

given the filter specifications fspec, defined as a five-tuple
(filter length , passband and stopband frequencies,

1053-587X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

AKSOY et al.: EXACT AND APPROXIMATE ALGORITHMS FOR THE FILTER DESIGN OPTIMIZATION PROBLEM 143

and passband and stopband ripples), find a set of filter
coefficients that yields a filter design with the minimum number
of adders/subtractors and satisfies the filter constraints. Many
efficient FDO algorithms were proposed, considering different
filter constraints, targeting different filter forms, using dif-
ferent search methods during the exploration of possible filter
coefficients, and applying different techniques to reduce the
filter design complexity [17]–[29]. However, none of these
algorithms can guarantee that their solutions (a set of filter
coefficients) lead to a filter design with the minimum number
of adders/subtractors. This is due to two main facts: i) they
do not explore the whole search space; and/or ii) they are not
equipped with the exact techniques that can find the minimum
number of operations for the constant multiplications.
In this article, we present the exact FDO algorithm [30],

called SIREN, that can find a set of fixed-point filter coeffi-
cients, satisfying the filter constraints and leading to a filter
design with the minimum number of adders/subtractors under
the minimum quantization value. SIREN is equipped with a
depth-first search (DFS) method to explore the search space
exhaustively, the exact algorithm of [9] to find the minimum
number of operations in the MCM block of the transposed
form, and efficient search pruning and branching techniques to
speed up the search process. Since the size of the search space
of the FDO problem grows exponentially with the filter length
[29], SIREN can only handle filters with a small number

of coefficients. It was observed that it can find solutions to
the symmetric filters including less than 40 coefficients in a
reasonable time.
Hence, in this article, we propose an approximate algorithm,

called NAIAD, that can cope with the FDO problems which
SIREN cannot handle and obtain solutions close to the min-
imum. NAIAD initially finds possible sets of filter coefficients
satisfying the filter constraints. Then, a local search method is
applied to each set of filter coefficients to explore the feasible
solutions around its neighborhood, aiming to reduce the total
number of adders/subtractors in the filter design. It was observed
that NAIAD can handle symmetric filters including more than
100 coefficients up to 325.
Note that the direct form filters occupy less area and consume

less power, but have higher delay than the transposed form fil-
ters [31]. Hence, we present the modifications made to SIREN
and NAIAD to target both the transposed and direct filter forms.
Note also that the number of adder-steps in the multiplier block
of a filter, i.e., the number of adders/subtractors in series, has a
significant impact on the delay of the filter design [31]. Hence,
we describe how these algorithms can be modified to handle a
delay constraint in the multiplierless design of the CAVM and
MCM blocks of the direct and transposed filter forms.
The rest of the article is organized as follows. Section II

presents the background concepts and related work. The exact
and approximate FDO algorithms are introduced in Section III
and experimental results are given in Section IV. Finally,
Section V concludes the article.

II. BACKGROUND

This section gives the background concepts and presents an
overview on the methods proposed for the shift-adds design of
the MCM and CAVM blocks and the FDO problem.

A. Linear Programming

Linear programming (LP) is a technique to minimize or max-
imize a linear cost function subject to a set of linear constraints.
An LP problem is given as follows:1

(2)

In (2), in is a cost value associated with each variable ,
, in the cost function , and denotes a set

of linear constraints. Also, and respectively consist of
the lower and upper bounds of variables.
The variables are assumed to be real numbers in an LP

problem, for which there exist polynomial-time algorithms
[32], [33]. However, if all or some variables are restricted to
integers, as in pure integer LP (ILP) or mixed ILP (MILP)
problems, respectively, these LP problems become NP-com-
plete, for which there is no polynomial-time algorithm [34].

B. Multiplierless Design of the CAVM and MCM Blocks

The CAVM block of the direct form filter realizes a linear
transform in the form of ,
where stands for the time-shifted version of the filter input
with (Fig. 1(a)). Also, the MCM block of the
transposed form filter implements the constant multiplications
in the form of , where
denotes the filter input (Fig. 1(b)).
For their shift-adds designs, the digit-based recoding (DBR)

technique [35] first defines the constants under a number rep-
resentation, e.g., binary or canonical signed digit (CSD)2 [5].
Second, for the nonzero digits in the representations of con-
stants, it shifts the variables according to the digit positions
and adds/subtracts the shifted variables with respect to the digit
values. As an example, consider and and sup-
pose that the CSD representation is used. The decomposition of
the linear transform is as follows:

where 6 operations are required for this CAVM block as shown
in Fig. 2(a). Also, the decompositions of constant multiplica-
tions and in an MCM block are as follows:

which lead to a design with 5 operations as shown in Fig. 2(b).
In the following two subsections, prominent algorithms de-

signed for the optimization of the number of adders/subtractors
in the MCM and CAVM blocks are described in detail. Their
common aim is to maximize the sharing of partial products.
1) Multiplierless Design of the MCM Operation: The

methods proposed for the shift-adds design of anMCMblock are

1Theminimization objective can be easily converted to amaximization objec-
tive by negating the cost function. Less-than-or-equal and equality constraints
are accommodated by the equivalences, and

, respectively.
2An integer can be written in CSD using digits as , where

and denotes with . Under CSD, nonzero digits
are not adjacent and the minimum number of nonzero digits is used.

144 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 1, JANUARY 1, 2015

Fig. 2. Multiplierless realization of constant multiplications using the DBR
technique [35]: (a) ; (b) and .

Fig. 3. Multiplierless realization of and : (a) exact CSE algorithm
[7]; (b) exact GB algorithm [9]; (c) approximate GB algorithm [9] modified
to handle a delay constraint.

generally grouped in two categories as the common subexpres-
sion elimination (CSE) algorithms [5]–[7] and the graph-based
(GB) techniques [3], [8], [9]. The CSE methods initially define
the constants under a particular number representation. Then,
they consider possible subexpressions, that canbe extracted from
the nonzero digits in the constant representations, and choose the
“best” subexpression, generally the most common, to be shared
among the constantmultiplications. Theirmain drawback is their
dependency on a number representation. The GB methods are
not restricted to any particular number representation and aim
to find intermediate subexpressions that enable the realization
of constant multiplications with the minimum number of opera-
tions. They consider a larger number of realizations of a constant
and obtain better solutions than the CSE methods, but require
more computational resources due to a larger search space.
For our MCM example in Fig. 2(b), the exact CSE algorithm

[7] obtains a minimum solution with 4 operations by finding
the most common subexpression (Fig. 3(a))
when constants are defined under CSD. The exact GB algorithm
of [9] obtains a minimum solution with 3 operations by finding
the intermediate subexpression (Fig. 3(b)).
The minimum adder-steps of a shift-adds design of a single

constant multiplication, , is computed as , where
is the number of nonzero digits in the CSD representation

of . Given an MCM instance with constants, its minimum
adder-steps is determined as
with [11]. Given a delay constraint with

Fig. 4. Shift-adds design of : (a) ECHO-A [15]; (b) ECHO-D [15].

, the algorithms of [7], [11], [12] can find the
smallest number of operations that realize the constant multi-
plications without violating . For our example, the minimum
adder-steps of both and is 2. The approximate algo-
rithm [9] modified to handle a delay constraint finds a solution
with 4 operations when is 2 (Fig. 3(c)). With respect to the
solution of the exact GB algorithm [9] in Fig. 3(b), its solution
has one more operation, but one less adder-step.
2) Multiplierless Design of the CAVM Operation: The algo-

rithm of [15], called ECHO, consists of two main parts. In its first
part, the shift-adds realizations of constants in the CAVM oper-
ation are found using an MCM algorithm. In its second part, the
constants in the linear transform are replaced with their real-
izations in the MCM solution and the common subexpressions
are extracted iteratively using a set of transformations. ECHO has
two variations, ECHO-A and ECHO-D, that target the optimization
of area and delay of the CAVM operation, respectively. ECHO-A
uses the exact MCM algorithm [9] and considers some area op-
timizations. ECHO-D is equipped with the approximate MCM al-
gorithm [9] modified to handle a delay constraint and considers
some delay optimizations. Both algorithms ensure to obtain a
solution with operations, where is the number of
operations found by theMCM algorithm in the first part and
is the number of nonzero constants of the CAVM block.
For our CAVM example in Fig. 2(a), ECHO-A finds a solu-

tion with 4 operations and 4 adder-steps (Fig. 4(a)) that was ob-
tained based on the MCM solution in Fig. 3(b). Also, the solu-
tion of echo-d includes 5 operations and 3 adder-steps (Fig. 4(b))
that was obtained based on the MCM solution in Fig. 3(c). This
example shows the direct impact of the MCM solution on the
number of operations and adder-steps of the CAVM design.

C. Filter Design Optimization

The zero-phase frequency response of a symmetric FIR filter
is given as3:

where and with is the
Kronecker delta,4 with , and

3The frequency response of an asymmetric filter can be found in [36].
4The function is 1 when is equal to . Otherwise, it is 0.

AKSOY et al.: EXACT AND APPROXIMATE ALGORITHMS FOR THE FILTER DESIGN OPTIMIZATION PROBLEM 145

Fig. 5. Zero-phase frequency response of a low-pass FIR filter.

is the angular frequency. Considering a low-pass FIR filter as
illustrated in Fig. 5 and assuming that the desired pass-band and
stop-band gains are equal to 1 and 0, respectively, the filter must
satisfy the following constraints [22]:

(3)

The pass-band gain is not relevant for many DSP applications
and can be compensated in the filter design. Thus, a scaling
factor can be added into the filter constraints as a continuous
variable as follows [25], [26]:

(4)

where and are respectively the lower and upper bounds
of . Furthermore, in some DSP applications, it is desirable to
minimize the peak weighted ripple [18], the normalized peak
ripple (NPR) [28], [29], or the NPR magnitude [27].
A straightforward filter design technique (SFDT) follows two

steps: i) given fspec, the filter coefficients, that respect the filter
constraints, are found using a filter design method, such as win-
dowing [37], McClellan-Parks-Rabiner algorithm [38], or linear
programming [39]; ii) the multiplier block of the FIR filter is re-
alized using the minimum number of adders/subtractors as de-
scribed in Section II-B.
Since there exist many possible sets of coefficients satisfying

the filter constraints, FDO algorithms incorporate sophisticated
techniques such as local search [18], [24], [27] and exhaustive
search methods, including branch-and-bound [22], [23], [25],
DFS [28], [29], andMILP [17], [19], [21], [24], [26] techniques.
The local search methods can be applied to filters with a large
number of coefficients, but the optimal solution cannot be en-
sured, since the entire search space is not explored. The ex-
haustive search methods can only be run on filters with a small
number of coefficients due to the exponential growth of the
search space. Their runtime complexity can be reducedwhen the
number of possible values of coefficients is limited [22], [28].

To reduce the complexity of the filter design, the algorithms
of [17]–[24] search for coefficients with the fewest nonzero
digits, since a coefficient represented with a few nonzero digits
requires a small number of operations. The algorithms of [22],
[24] find the common partial products using one of algorithms
described in Section II-B after a solution is obtained. However,
since the sharing of partial products is not considered during
the search of coefficients, these methods may yield filters with
a large number of operations as shown in Section IV-A.
The methods of [25]–[29] search for coefficients that exploit

the partial product sharing. In [25], all possible values of coef-
ficients are explored using a branch-and-bound algorithm and
a CSE heuristic is used to share the common subexpressions
among the coefficient multiplications. The algorithm of [26]
uses an MILP method to consider all possible coefficients satis-
fying the filter constraints and finds coefficients that include the
most common nonzero digits. The method of [27] finds the coef-
ficients that include the most 101 and digit patterns (subex-
pressions) and satisfy the filter constraints. The method of [28]
uses a subexpression basis set that is dynamically expanded as
coefficients are synthesized at each depth of its search tree. The
technique of [29] is based on the method of [28], but explores
the entire search space under a given quantization value. It is
able to be aware of whether an optimum solution is obtained.

III. EXACT AND APPROXIMATE FDO ALGORITHMS

The following two subsections present SIREN and NAIAD,
targeting the filter constraints given for a symmetric filter in (4),
the transposed form of the FIR filter, and the optimization of the
number of operations without a delay constraint. The last sub-
section describes the modifications required to target different
filter constraints, the direct form of the FIR filter, and the opti-
mization of the number of operations under a delay constraint
in the multiplier blocks of filter forms.

A. SIREN: An Exact FDO Algorithm

SIREN was developed to find a set of filter coefficients
yielding a minimum number of adders/subtractors in the filter
design and satisfying the filter constraints. Its pseudo-code is
given in Algorithm 1. It takes the five-tuple fspec denoting the
filter specifications as input and returns a set of fixed-point
coefficients sol. In Algorithm 1, stands for the quantiza-
tion value used to convert floating-point numbers to integers.
SIREN will be described in detail using a symmetric FIR filter
with fspec (8, , , 0.01, 0.01) as an example.

Algorithm 1: The SIREN algorithm

SIREN(fspec)

1: ,

2:

3:

4: repeat

5: , ,

6: if CheckValidity(,) then

7:

8: until

9: return

146 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 1, JANUARY 1, 2015

First, to restrict the search space, we find the lower and
upper bounds of coefficients and scale factor using the
ComputeBounds function. To find the lower bounds of coeffi-
cients, is solved for each coefficient:

where and denote the lower and upper bounds of all filter
coefficients which were initially assigned to 1 and 1, respec-
tively and the lower and upper bounds of , and , were
initially set to 0.01 and 100, respectively. The value of in
the LP solution corresponds to its lower bound and is stored
in . In a similar way, the upper bound of each coefficient
is found when the cost function is and is stored in .
Thus, the sets and consist of the floating-point lower and
upper bounds of coefficients, respectively. The values of and
are found similarly. For symmetric filters, the number of LP

problems to be solved is . Recall that an LP problem
can be solved in polynomial time [33].
For our example, the floating-point lower and

upper bounds of filter coefficients are computed as

and ,
respectively. Also, and are 0.01 and 2.53, respectively.
Second, the OrderCoefs function finds an ordering of coef-

ficients to be used in its DFS method while constructing the
search tree (described ahead). We sort the coefficients in as-
cending order according to their values and store their
indices in this order in . The reason behind finding such an
ordering is that if coefficients with narrower upper and lower
bound intervals are placed in lower depths of the search tree,
fewer decisions are made and conflicts occur earlier. Thus, the
runtime of SIREN can be reduced significantly, still exploring
all possible values of coefficients. For our example, the ordering
of coefficients is .
Third, starting with the quantization value equal to 1, the

floating-point lower (upper) bound of each coefficient is mul-
tiplied by , rounded to the smallest following (the largest
previous) integer, and is stored in (). The validity of
these sets and is tested by the CheckValidity function
by simply checking each coefficient if is less than or equal
to . If they are not valid, this function returns zero. In this
case, is increased by one, and are updated, and the
CheckValidity function is applied again. Otherwise, the DFS
method, that explores all possible values of each coefficient in
between and , is applied to find a set of filter coefficients
which respects the filter constraints and yields the minimum de-
sign complexity, or to prove that there exists no such a set of
filter coefficients. If the former condition occurs, is returned.
If the latter condition occurs, is increased by one, and

are updated, and the DFS method is applied again. Hence,
SIREN ensures that its solution is a set of fixed-point filter co-
efficients obtained using the smallest value.

Note that is an important parameter in the filter de-
sign. When increases, the bitwidths (sizes) of coefficients
increase. Thus, such coefficients lead to larger sizes of reg-
isters and structural adders in the register-add block of the
transposed form (Fig. 1(b)). Also, most probably, they lead
to a large number of operations in the multiplier blocks of
both forms (Fig. 1). Similar to , the solution quality of
an FDO algorithm is evaluated by the effective wordlength
(EWL) of a set of coefficients [22], [28], [29], computed as

with when fixed-point coeffi-
cients are considered.
In the DFS method of SIREN, the search tree is constructed

based on the ordering of coefficients , where a vertex at depth
, , denotes the filter coefficient whose index is the th ele-
ment of , i.e., . An edge at depth of the search tree,
i.e., a fanout of , stands for an assignment to the vertex
from [,] where () denotes the lower (upper) bound
of . Note that the values of the vertex at depth are assigned
incrementally starting from to .
When is 1, the DFS method assigns and to
and , respectively and sets the value of the vertex to
. At any depth greater than 1, , although the lower

and upper bounds of a vertex can be taken from and ,
respectively, tighter lower and upper bounds can be computed,
since the values of coefficients are determined and fixed.
The lower bound of the vertex is computed by solving the
following LP problem, where the non-determined coefficients
and are the continuous variables of the LP problem.

In this LP problem, the lower and upper bounds of all non-de-
termined coefficients are taken from and , respectively.
The upper bound of is computed when the cost function
is changed to . If there exist feasible solutions for
both LP problems, this lower (upper) bound is rounded to the
smallest following (the largest previous) integer and assigned
to (). If , they are determined to be the lower
and upper bounds of . Whenever there is no feasible lower
or upper bound for or , the search is backtracked
chronologically to the previous vertex until there is a value to
be assigned among its lower and upper bounds.
When the values of all coefficients are determined, i.e., the

leaf at the final depth of the search tree is reached (when is
for symmetric filters), the implementation cost of the

transposed form filter is computed as , where
TA is the total number of operations in the filter, and MA and
SA are the number of operations in the MCM block and the
number of structural adders in the register-add block, respec-
tively (Fig. 1(b)). While MA is found using the exact MCM
method [9], SA is computed based on the nonzero coefficients.
No adder is needed for a coefficient equal to 0 in the register-add

AKSOY et al.: EXACT AND APPROXIMATE ALGORITHMS FOR THE FILTER DESIGN OPTIMIZATION PROBLEM 147

Fig. 6. Search tree formed by the DFS method.

block. This coefficient set is stored in sol if its TA value is
smaller than that of the best one found so far which was set to
infinity in the beginning of the DFS method.
To prune the search tree, the TA value is estimated when

depth is greater than for symmetric filters. This value
was chosen to be close to the bottom of the search tree not to
waste an effort for computing an estimate that usually does not
yield a backtrack. To compute this estimation, the lower bound
on MA is found using the determined coefficients [40]. The
lower bound on SA is found after all non-determined coeffi-
cients are set to a value. To do so, the upper and lower bound
interval of each non-determined coefficient is checked if 0 is
included. If so, this non-determined coefficient is set to 0. Oth-
erwise, it is assumed to be a constant different from 0.
The DFS method terminates when all possible values of co-

efficients have been explored. If sol is empty, it guarantees that
there is no set of filter coefficients which can be selected from
their quantized lower and upper bounds respecting the filter con-
straints. Otherwise, sol consists of fixed-point coefficients that
lead to a filter with minimum design complexity, satisfying the
filter constraints.
For our example, when is 5, the quantized lower and

upper bounds of filter coefficients are - - and
- - , respectively. Note that no solution was

found with . The search tree constructed by the DFS
method when is 5 is shown in Fig. 6, where and in []
given next to each vertex stand respectively for its lower and
upper bounds which are dynamically computed as coefficients
are fixed. In this figure, the actual traverse of the DFS method
on filter coefficients can be followed from top to bottom and
from left to right. Also, Conflict denotes that given determined
coefficients, there exists no feasible lower/upper bound for the
current depth vertex. Pruned indicates that the set of determined
coefficients cannot lead to a better solution than the best one
found so far. Success presents that the set of coefficients leads
to a solution satisfying the filter constraints.
Observe that as the values of coefficients are determined, the

intervals between the lower and upper bounds of coefficients are
reduced when compared to those in the original and . If
the DFS method was not equipped with techniques, that order
the filter coefficients, determine the lower and upper bounds
of coefficients dynamically, and prune the search space, in the
worst case, it would consider possible sets

of coefficients for a symmetric filter, i.e., the number of leafs at
the final depth of the search tree, in each iteration of SIREN.
For our example, this value is 2496 when is 5. However, the
DFS method ensures the minimum solution with only 1 leaf at
the final depth and 10 branches.
The performance of SIREN depends heavily on the minimum

quantization value, the filter length , and the exact MCM
algorithm [9]. The value has an impact on the number of runs
of the DFS method, the lower and upper bounds of coefficients,
the number of branches in the search tree, and the sizes of co-
efficients which affect the performance of the exact MCM al-
gorithm [9]. The value has an effect on the performance of
the exact MCM algorithm and on the depth of the search tree.
The performance of the exact MCM algorithm is related to the
number and size of coefficients [9]. To increase the performance
of SIREN, a parallel version of the DFS method can be devel-
oped. Thus, the whole search space can be divided into many
small parts and they can be explored in a reasonable time si-
multaneously. However, the FDO problem is NP-complete [29],
and hence, heuristics are indispensable for filters with a large
number of coefficients.

B. NAIAD: An Approximate FDO Algorithm

NAIAD was developed based on two observations: i) given
filter specifications, finding a set of floating-point coeffi-
cients, that satisfies the filter constraints, takes a polynomial
time; ii) given a set of coefficients, finding a multiplierless
design of coefficient multiplications including a number of
adders/subtractors very close to the minimum can be done
in a reasonable time [3], [9]. Hence, NAIAD consists of two
main parts: i) exploring sets of coefficients that satisfy the
filter constraints and finding the ones with the smallest EWL
value; ii) exploring the search area in the neighborhood of each
solution obtained in the first part and finding the one that leads
to the minimum design complexity. In following, these two
parts are described in detail using a symmetric FIR filter with
fspec as an example.
1) Exploring Coefficients Satisfying Filter Constraints: To

explore possible sets of coefficients, which satisfy the filter con-
straints, in a systematic way, the variable is included into the
left and right sides of filter constraints of (4). To find its lower
bound, , the following LP problem is solved:

where the filter coefficients , the scale factor , and are the
continuous variables. The initial values of , , , and
are -1, 1, 0.01, and 100, respectively. The upper bound of , ,
respecting the filter constraints of (4), is naturally equal to 0. We
find the lower and upper bounds of each coefficient, and ,
when the cost function is and , respectively, and
similarly, the lower and upper bounds of .

148 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 1, JANUARY 1, 2015

For our example, , and are 0.086, 0.01, and 3.36,
respectively. The lower and upper bounds of coefficients
are - - -

and
- , respectively.

Then, in an iterative loop, is increased in steps of to
0, where is a predetermined integer search parameter that de-
notes the number of samples to be taken from the search space.
A set of floating-point filter coefficients is obtained by solving
the following LP problem.

(5)

Starting with a quantization value equal to 1, the found
coefficients are converted to integers as and are
checked if these fixed-point coefficients still satisfy the original
filter constraints of (4) when they are converted to floating-point
numbers as . If not, is increased by 1. Thus,
the coefficients are converted to integers using the minimum
considering the quantization error. The EWL values of these sets
of fixed-point coefficients are computed and the ones with the
minimum EWL value are stored in a set, called , that
will include initial search points (ISPs).
Note that having a coefficient equal to 0 can significantly re-

duce the filter design complexity (Fig. 1). Hence, for each
value in the iterative loop, the LP problem of (5) is also solved
when each coefficient with and is set to 0 by
simply assigning 0 to its lower and upper bounds in the LP
problem. For our example, they are and . Similarly, the
sets of coefficients are quantized to integers using the minimum
value, their EWL values are computed, and the ones with the

minimum EWL value are stored in .
Then, the cost of each element of is computed in

terms of TA as described in the previous subsection. To find the
MA value, rather than the exact MCM algorithm [9], an efficient
MCM heuristic [3] is used. Among all these ISPs, the minimum
value of TA is found and is denoted as the best cost value found
so far (). An ISP with the value is determined as the
best solution ().
Note that has a significant impact on the solution quality.

While a small value leads to a few possible solutions with
a high EWL value, a large value yields a large number of
possible solutions with a small EWL value. In NAIAD, it was
set to 5000 which was found empirically. This means that the
number of LP problems need to be solved in this first part is

, where denotes the number of filter coefficients
of which 0 is in between their lower and upper bounds.
For our example, has 3 elements,
- - , - - , and - - -

, with TA values equal to 10, 10, and 13, respectively
and an EWL value equal to 4. Thus, is the first element of

Algorithm 2: The local search method of NAIAD

LSM(, , ,)

1:

2: loop

3: repeat

4:

5:

6: for do

7:

8: for do

9: if then

10: ,

11:

12: if then

13:

14: , ,

15: until

16: if Terminating conditions are not met then

17:

18: if

19:

20:

21: if then

22:

23: else

24: return

25: else

26: return

and is 10. Note that the first and second
elements of , whose values are 0, have the smallest
TA value.
2) Exploring Search Area Around Coefficients: A local

search method (LSM) is applied to each element of
(a set of coefficients denoted as with its implementation
cost value and quantization value). Its pseudo-code
is given in Algorithm 2, where and are respectively
the best cost value in terms of TA and the best solution
including the set of coefficients with . The and are
initially set to and , respectively. The LSM function
aims to explore the search area around and to reduce
the implementation cost of the filter design. To do that this
function iteratively takes a coefficient, changes its value
between its lower and upper bounds, finds the implementation
cost of the new filter design every time, and keeps the one
with the minimum cost.
Since the traversing order of filter coefficients affects the so-

lution of the LSM function, in its iterative loop (lines 3–15),
we determine an ordering of coefficients randomly using the
GenerateAnOrdering function. Then, for a coefficient in the
given order, with , using the FindLUB func-
tion, we compute its lower and upper bounds when the values
of all coefficients except the th coefficient are determined
as given in . The following LP problem is generated to find

AKSOY et al.: EXACT AND APPROXIMATE ALGORITHMS FOR THE FILTER DESIGN OPTIMIZATION PROBLEM 149

Fig. 7. Changing the values of filter coefficients in the LSM function. Themod-
ified coefficients are shown in a box.

the lower bound of , , where only the th coeffi-
cient and are continuous variables.

The upper bound of , , is found by changing the cost
function to . Then, for each possible fixed-point value
of the th coefficient in between its lower and upper bounds,
i.e., , other than its value in , we assign it to the th coef-
ficient of a new search point which was initially assigned
to .Wefind the implementation cost of in termsofTA,

, using theComputeImpCost function as described in the
previous subsection. If is less than the best one found so
far , then the variable is set to 1 and , , and
are updated. After all coefficients of are traversed, if the

variable is 1, we iterate this procedure once more, but
with a different ordering of coefficients. Otherwise, it is decided
that a local minima is reached. To escape from this local point,
theChangeCoefs function is applied, where -2, -1, 0, 1, or 2 (de-
termined randomly) is added to the value of each coefficient in

. Note that theChangeCoefs function can change the values
of more than one coefficient simultaneously. If the new search
point satisfies thefilter constraints, its implementation cost
is computed and it is entered into the iterative loop again. Other-
wise, the search is terminated. The local search algorithm has
also two terminating conditions: i) the number of iterations of
the iterative loop in the infinite loop (lines 2–26) is 30; and ii) the
total number of runs of the MCM algorithm [3] is .
If the LSM function returns a solution with an implementa-

tion cost value better than , then and are replaced
with its outputs and , respectively.
For our example, suppose that the third element of ,

i.e., - - - with a TA value 13, is given to the
local search method. Fig. 7 shows how a solution with a better
TA value is obtained by changing the values of coefficients. At
the end of the assignments given in Fig. 7, a solution with a
TA value equal to 9, i.e., - - , is found. We note
that this is the minimum solution that NAIAD could find. On
this example, SIREN also finds a solution with TA and EWL
values equal to 9 and 4, respectively.

C. Further Modifications in SIREN and NAIAD
To realize the MCM block of the transposed form with the

minimum number of adder-steps, in SIREN and NAIAD, we
respectively used the modified versions of the approximate al-

gorithms of [9] and [3] that can handle the delay constraint.
Whenever a set of fixed-point filter coefficients is determined in
SIREN and NAIAD, the minimum adder-steps of coefficients is
computed as given in Section II-B-1 and it is given to the algo-
rithms of [9] and [3] as a delay constraint.
In order to target the direct form of the FIR filter, in SIREN

and NAIAD, ECHO-A [15] is used to compute the smallest
number of operations in the CAVM block and ECHO-D [15] is
used for the design of the CAVM block with a small number of
adder-steps. Note that in direct form filters, the total number of
operations in the filter, i.e., TA, is determined by the solution
of ECHO-A or ECHO-D on the set of filter coefficients.
The proposed methods can target different filter constraints.

For example, when the lower and upper bounds of , and ,
in (4) are set to 1, the filter constraints of (3) are aimed. Setting
and respectively to 0.7 and 1.4 corresponds to the 3 dB

gain tolerance in the filter design [30]. The proposed algorithms
can also target asymmetric filters taking into account the related
filter constraints [36].
The proposed algorithms can target the optimization of the

gate-level area of the filter design. In this case, whenever a set
of coefficients is found, an algorithm [10], [15], that can find the
shift-adds design of the multiplier block of the filter occupying
minimum area, should be used. In the transposed form filter, the
size of registers and adders in the register-add block should also
be considered.

IV. EXPERIMENTAL RESULTS

This section is divided in two subsections. In the first subsec-
tion, we explore the effectiveness of SIREN and NAIAD, com-
paring their results with those of prominent FDO algorithms and
a straightforward filter design technique (SFDT). In the second
subsection, we explore the impact of filter design parameters,
such as filter length, quantization value, and filter form, on the
filter design complexity, presenting the gate-level results offilter
designs obtained based on the solutions of SIREN, NAIAD,
and the algorithm of [29]. Note that SIREN and NAIAD were
written in MATLAB, used lp_solve 5.5.2.0 as an LP solver, and
were run on a PC with Intel Xeon at 2.33 GHz under Linux. The
filter designs were described in VHDL and synthesized using
the Synopsys Design Compiler with the UMCLogic 180 nm
Generic II library when the bitwidth of the filter input was
16. In the synthesis script, relaxed timing constraints were used
in order to provide more freedom to the synthesis tool to op-
timize area. The functionality of filters was verified on 10,000
randomly generated input signals in simulation, from which the
switching activity information, that was used by the synthesis
tool to compute the power dissipation, was obtained. Note also
that we did not utilize any truncation method [41], which is gen-
erally used to reduce the complexity of the filter design sacri-
ficing the accuracy of the result, neither on the filter output nor
on any register/adder. Thus, the sizes of filter input and coeffi-
cients have a direct impact on the complexity of the filter design.
Unless stated otherwise, it should be accepted that the results

of SIREN and NAIAD were found when they targeted the con-
straints in (4), the transposed form, and the minimization of the
number of operations without a delay constraint.

A. Comparisons on FDO Algorithms

Table I shows the specifications of 10 symmetric FIR filters
which are commonly used in evaluation of FDO algorithms.

150 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 1, JANUARY 1, 2015

TABLE I
SPECIFICATIONS OF SYMMETRIC FIR FILTERS

TABLE II
SUMMARY OF FDO ALGORITHMS ON FIR FILTERS OF TABLE I

Table II presents the results of SIREN, NAIAD, and other al-
gorithms whose results were taken from [22], [24], [29] as re-
ported. In this table, BST and TT denote respectively the CPU
time required to find the best solution and the total CPU time.
For each filter, the FDO methods were sorted according to their
results on i) EWL, ii) TA, iii) TT, and iv) BST in descending
order. Note that the CPU time limit for SIREN and NAIAD was
2 days and 4 hours, respectively.
On filters including less than 40 coefficients, X1, G1, Y1, and

Y2, SIREN finds a solution with the minimum number of oper-
ations and minimum EWL value using little computational re-
sources. NAIAD obtains solutions very close to the minimum
in terms of EWL and TA. However, it requires more CPU time

Fig. 8. Zero-phase frequency responses of the filter A of Table I.

than SIREN, especially on filter Y2, for which, many ISPs were
considered. This experiment indicates that the previously pro-
posed FDO algorithms obtain solutions with the same values of
EWL and TA as those of SIREN or very close to them. On fil-
ters including around 60 coefficients, A, S2, and L2, although
SIREN cannot ensure the minimum TA value under the min-
imum quantization value due to its CPU time limit, it can find
a better solution than other FDO algorithms on filter S2. Also,
NAIAD can complete the search in a reasonable time and ob-
tain better solutions than the algorithm of [22], which was also
applied to filters including more than 100 coefficients, except
on filter L2 where NAIAD finds a solution with a higher EWL
value. SIREN was not applied to filters including more than 100
coefficients, B, L1, and C. Instead, NAIAD finds solutions with
equal or less number of operations than other FDO methods and
obtains a solution with a higher EWL value only on filter L1.
Fig. 8 presents the zero-phase frequency responses of filter

A of Table I based on the coefficients determined by SIREN
and NAIAD. Observe from Fig. 8 and Table II that while the
solutions of both algorithms satisfy the filter constraints, SIREN
needs fewer operations than NAIAD.
To further analyze the proposed algorithms, we used ran-

domly generated 21 symmetric low-pass FIR filters whose
values range between 20 and 40. Fig. 9 presents the results of
SIREN, NAIAD, and SFDT in terms of EWL, TA, and CPU
time in seconds. In SFDT, given fspec, the filter coefficients
were computed using the firgr function of MATLAB and were
quantized to integers with the minimum value determined in-
crementally. Then, the minimum number of operations in the
MCM block of the filter was found by the exact algorithm [12].
Observe from Fig. 9(a) that SIREN finds a set of coefficients

with the smallest EWL value and the solutions of NAIAD have
EWL values equal or very close to those of SIREN. On these
instances, SFDT obtains solutions with the largest EWL values.
Observe from Fig. 9(b) that SIREN finds a solution with the
smallest number of operations, except on filters with 25, 28, 31,
and 34 coefficients. Recall that SIREN guarantees a solution
with the minimum number of operations under the minimum
value. Hence, on these instances using a higher value than

the minimum, NAIAD can find a solution with fewer operations
than SIREN, but with a higher EWL value. Note that NAIAD
obtains solutions in terms of TA very close to SIREN, i.e., 0.95

AKSOY et al.: EXACT AND APPROXIMATE ALGORITHMS FOR THE FILTER DESIGN OPTIMIZATION PROBLEM 151

Fig. 9. Results of SIREN, NAIAD, and SFDT on randomly generated filters: (a) EWL; (b) TA; (c) CPU time in log scale.

Fig. 10. Results of NAIAD, FIRGAM [22], and SFDT on randomly generated filters: (a) EWL; (b) TA; (c) CPU time in log scale.

more adders/subtractors on average. On these instances, SFDT
yields sets of coefficients requiring the largest number of oper-
ations. Observe from Fig. 9(c) that as increases, the run-time
of SIREN increases dramatically and the run-time of NAIAD
increases slightly. On these instances, SFDT uses a little com-
putational effort to find a solution.
Moreover, Fig. 10 presents the results of NAIAD, FIRGAM

[22], and SFDT on randomly generated 20 low-pass symmetric
FIR filters, where the value ranges between 41 and 60. In
FIRGAM, the objective was to minimize the number of nonzero
digits in the coefficients. FIRGAM was run on a PC with Intel
Core i5-2410M at 2.3 GHz under Windows 7.
Observe from Fig. 10 that while the solutions of SFDT have

higher EWL values than NAIAD and FIRGAM, the solutions
of NAIAD and FIRGAM have 8.75 and 8.5 EWL values on
average, respectively. NAIAD finds a solution requiring less
number of total operations than both FIRGAM and SFDT. We
note that while the difference of average TA values between the
solutions of FIRGAM and NAIAD is 4.45, this value between
the solutions of SFDT and NAIAD is 11.5. However, SFDT ob-
tains a solution using the least CPU time and NAIAD requires
less CPU time than FIRGAM on average.
To explore the effectiveness of the local search method of

NAIAD, we developed the local search method of the FDO al-
gorithm POTx [24]. Given a set of fixed-point filter coefficients,
it aims to reduce the total number of power-of-two (POT) terms
in coefficients, still satisfying the filter constraints. Thus, in our
version of POTx, we first find the possible sets of fixed-point co-
efficients with the minimum EWL value as done in the first part
of NAIAD. Then, we apply the local search method of POTx to

Fig. 11. TA values found by our version of POTx and NAIAD.

only one set of coefficients. Finally, we apply the MCMmethod
[3] to the final set of coefficients to maximize the sharing of par-
tial products in the MCM block of the filter. In this experiment,
we used randomly generated 75 low-pass symmetric FIR filters
whose filter lengths range between 103 and 214. Fig. 11 and 12
present the total number of operations in the filter designs ob-
tained by our version of POTx and NAIAD and the CPU time
of the local search methods in POTx and NAIAD, respectively.
Observe from Fig. 11 that NAIAD always yields FIR filter

designs with the same or less number of operations than our
version of POTx. On average, it leads to filters including less
than 15.3 operations than our version of POTx. Observe from
Fig. 12 that the local search method of POTx generally requires

152 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 1, JANUARY 1, 2015

Fig. 12. CPU time of the local search methods in POTx and NAIAD.

TABLE III
SUMMARY OF RESULTS OF SIREN ON FILTER Y1 OF TABLE I

TABLE IV
SUMMARY OF RESULTS OF SIREN ON FILTER Y2 OF TABLE I

less CPU time than the local search method of NAIAD. These
two observations are due to the fact that the local search method
of NAIAD may be applied to more than one possible set of
fixed-point filter coefficients and targets the optimization of the
number of operations.

B. Explorations on Filter Design Parameters

To explore the impact of the filter length on the filter com-
plexity, we consider the filters Y1 and Y2 of Table I. Table III
presents the results of SIREN on filter Y1 when is in between
28 and 32. Table IV shows the results of SIREN on filter Y2
when is in between 34 and 39. Note that the minimum value
of , i.e., 28 for filter Y1 and 34 for filter Y2, was found by
decrementing by 1 at each time. These tables also present the
gate-level results of filter designs, whereCA,NCA, and A denote
the combinational area, non-combinational area, and total area,
all in , respectively, D stands for the critical path delay in
, and P is the total dynamic power dissipation in . Note

that the EWL value of each set of coefficients is the same as the
value and the number of coefficients equal to 0 can be com-

puted as .
Observe from Tables III and IV that as increases, the

value decreases, reducing the bitwidth of filter coefficients,
which can also yield reductions on the size of structural adders
and on the number of operations in the MCM block (although

TABLE V
SUMMARY OF RESULTS OF SIREN ON FILTERS G1 AND Y1 OF TABLE I

that also depends on the filter coefficients). However, the
number of registers and structural adders is increased in this
case. Hence, due to this tradeoff and because the filter design
complexity in terms of TA is also related to the explored search
space (the search space of the FDO problem differs under
different values), there is no clear evidence that a smaller
value always leads to a filter design requiring the smallest

number of operations or occupying the smallest area. This
observation is also true for delay and power dissipation of the
filter design. Thus, it is useful to design a filter with different
values and choose the one that fits best in an application.
To explore the impact of the quantization value on the filter

complexity, Table V presents the results of SIREN on the filter
G1 of Table I when is 6 and 7 and on the filter Y1 of Table I
when is 9 and 10. Note that the EWL value of each set of
coefficients is the same as the value and the number of coef-
ficients equal to 0 can be computed as .
The results on filter G1 clearly indicate that a filter with co-

efficients having a smaller EWL value does not always yield a
filter design occupying smaller area. In this case, it is because of
fewer structural adders in the register-add block, that reduces the
CA value, even though as EWL increases, the size of registers
increases, increasing the NCA values. However, the results on
filter Y1, where the total number of operations is the same in fil-
ters with values 9 and 10, show that an increase in increases
the bitwidths of coefficients, increasing the size of adders/sub-
tractors and registers. This can be observed from the and

values. In this case, the delay and power dissipation of
the filter design also increase.
To explore the impact of the filter form, the number of

adder-steps in the multiplier block of the filter, and the solution
quality of an FDO algorithm on the filter design complexity,
Table VI presents the solutions of the algorithm of [29],
NAIAD, and SIREN on the filters A and S2 of Table I. Note
that the solutions of the algorithm [29] (sets of fixed-point filter
coefficients) were taken from [29] and the FIR filters were
designed after the shift-adds realization of the multiplier block
is found using the algorithms which were also used in SIREN.
In this table, denotes the number of adder-steps in the
CAVM and MCM block of the direct and transposed form FIR
filter, respectively. For each FDO algorithm, the CAVM and
MCM blocks were designed under two objectives. Under the
oper objective, the FDO algorithms target the optimization of
the number of operations without a restriction on the number of
adder-steps. Under the step objective, they target the optimiza-
tion of the number of operations considering a delay constraint
as described in Sections II-B-1 and II-B-2.
First, consider the results of FDO algorithms on the direct

and transposed forms. Observe that while the total number of
operations in both forms is equal or very close to each other, the
number of adder-steps in the CAVM block of the direct form is

AKSOY et al.: EXACT AND APPROXIMATE ALGORITHMS FOR THE FILTER DESIGN OPTIMIZATION PROBLEM 153

TABLE VI
SUMMARY OF RESULTS OF FDO ALGORITHMS ON FILTERS A AND S2 OF TABLE I

larger than that of the MCM block of the transposed form. The
direct form filters occupy significantly less area than the trans-
posed form, which is primarily because of two facts: i) while
the size of registers is equal to the bitwidth of the filter input

in the direct form, it is increasing up to the bitwidth of the
filter output in the transposed form. This fact can be observed
from the NCA results; ii) the CAVM algorithm [15] can exploit
the common subexpressions in (1) due to the symmetric coeffi-
cients using adders with a size of , which is 17
in our experiment. This fact can be observed from the CA re-
sults. The transposed form filters have less delay compared to
the direct form filters because of fewer adder-steps in the multi-
plier block. But, they consume more power which is primarily
related to the area of the design.
Second, consider the results of filters obtained with and

without a restriction on the number of adder-steps in the multi-
plier blocks. Observe that reducing the number of adder-steps
generally decreases the delay of the design, where the max-
imum gain is obtained as 9.7% on the direct form filter S2
obtained by SIREN. However, a restriction on the number of
adder-steps may increase the total number of operations, and
consequently, the area of the design. Note that the reduction of
the number of adder-steps increases the clock frequency of the
filter design and can also reduce the complexity of the pipelined
realization of the filter as shown in [13].
Third, consider the results of FDO algorithms. Observe that

although both the method of [29] and SIREN obtain a solution
with the same TA and EWL values on filter A, the filter de-
sign obtained by the solution of SIREN occupies larger area
than that realized based on the solution of the method of [29],
expect on the transposed form under the oper objective. This
example indicates that there may exist many solutions to the
FDO problem with the same TA and EWL values, but yielding
filter designs with different gate-level area. Also, the solution of
NAIAD on filter A leads to a filter design occupying the largest
area, since its solution includes the largest number of operations.
In turn, the solutions of SIREN on filter S2 lead to the least com-
plex filter designs, since its solutions have less TA and EWL
values than those of the method of [29] and have less TA values
than those of NAIAD. Also, since the solutions of NAIAD in-
clude fewer operations than those of the method of [29] on filter
S2, filters designed based on the solutions of NAIAD have less
complexity than those obtained by the solutions of the method
of [29].

V. CONCLUSIONS

This article addressed the problem of optimizing the number
of operations in the FIR filter design while satisfying the filter
constraints, generally known as the FDO problem. It presented
exact and approximate FDO algorithms, all of which are
equipped with efficient methods to find the fewest operations
in the shift-adds design of the coefficient multiplications.
Moreover, it showed how these algorithms can be modified to
target different filter constraints and filter forms and to handle
a delay constraint in the multiplier blocks of filters. It was
observed that the exact FDO method can handle filters with
a small number of coefficients, on which approximate FDO
methods can find solutions very close to the minimum. It was
also shown that heuristic methods are indispensable for filters
with a large number of coefficients, on which the proposed
approximate method can find better solutions in terms of the
number of operations than prominent FDO algorithms. It was
indicated that the total number of operations, EWL value, filter
length, quantization value, and filter form have a significant
impact on the gate-level area, delay, and power dissipation
results of filter designs.

ACKNOWLEDGMENT

The authors would like to thank Prof. Arda Yurdakul for pro-
viding the source code of their algorithm FIRGAM [22].

REFERENCES
[1] L.Wanhammar, DSP Integrated Circuits. NewYork, NY, USA: Aca-

demic, 1999.
[2] H. Nguyen andA. Chatterjee, “Number-splittingwith shift-and-add de-

composition for power and hardware optimization in linear DSP syn-
thesis,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 8, no.
4, pp. 419–424, 2000.

[3] Y. Voronenko and M. Püschel, “Multiplierless multiple constant mul-
tiplication,” ACM Trans. Algorithms, vol. 3, no. 2, 2007, doi: 10.1145/
1240233.1240234.

[4] P. Cappello and K. Steiglitz, “Some complexity issues in digital signal
Processing,” IEEE Trans. Acoust., Speech, Signal Process., vol. 32, no.
5, pp. 1037–1041, 1984.

[5] R. Hartley, “Subexpression sharing in filters using canonic signed digit
multipliers,” IEEE Trans. Circuits Syst. II, vol. 43, no. 10, pp. 677–688,
1996.

[6] I.-C. Park and H.-J. Kang, “Digital filter synthesis based on minimal
signed digit representation,” in Proc. Design Autom. Conf., 2001, pp.
468–473.

[7] L. Aksoy, E. Costa, P. Flores, and J. Monteiro, “Exact and approximate
algorithms for the optimization of area and delay in multiple constant
Multiplications,” IEEE Trans. Comput.-Aided Design Intrgr. Circuits
Syst., vol. 27, no. 6, pp. 1013–1026, 2008.

154 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 1, JANUARY 1, 2015

[8] A. Dempster and M. Macleod, “Use of minimum-adder multiplier
blocks in FIR digital filters,” IEEE Trans. Circuits Syst. II, vol. 42, no.
9, pp. 569–577, 1995.

[9] L. Aksoy, E. Gunes, and P. Flores, “Search algorithms for the multiple
constant multiplications problem: Exact and approximate,” Elsevier J.
Microprocessors Microsyst., vol. 34, no. 5, pp. 151–162, 2010.

[10] K. Johansson, O. Gustafsson, and L. Wanhammar, “A detailed com-
plexity model for multiple constant multiplication and an algorithm to
minimize the complexity,” in Proc. IEEE Eur. Conf. Circuit Theory
Design, 2005, pp. 465–468.

[11] H.-J. Kang and I.-C. Park, “FIR filter synthesis algorithms for mini-
mizing the delay and the number of adders,” IEEE Trans. Circuits Syst.
II, vol. 48, no. 8, pp. 770–777, 2001.

[12] L. Aksoy, E. Costa, P. Flores, and J. Monteiro, “Finding the optimal
tradeoff between area and delay in multiple constant multiplications,”
Elsevier J. Microprocessors Microsyst., vol. 35, no. 8, pp. 729–741,
2011.

[13] M. Kumm, P. Zipf, M. Faust, and C.-H. Chang, “Pipelined adder graph
optimization for high speed multiple constant multiplication,” in Proc.
IEEE Int. Symp. Circuit Syst., 2012, pp. 49–52.

[14] K. Johansson, O. Gustafsson, L. DeBrunner, and L. Wanhammar,
“Minimum adder depth multiple constant multiplication algorithm for
low power FIR filters,” in Proc. IEEE Int. Symp. Circuit Syst., 2011,
pp. 1439–1442.

[15] L. Aksoy, P. Flores, and J. Monteiro, “ECHO: A novel method for the
multiplierless design of constant array vector multiplication,” in Proc.
IEEE Int. Symp. Circuit Syst., 2014, pp. 1456–1459.

[16] B. Y. Kong and I.-C. Park, “FIR filter synthesis based on interleaved
processing of coefficient generation and multiplier-block synthesis,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 31, no.
8, pp. 1169–1179, 2012.

[17] Y. C. Lim and S. R. Parker, “FIR filter design over a discrete pow-
ersof-two coefficient space,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 31, no. 3, pp. 583–591, 1983.

[18] H. Samueli, “An improved search algorithm for the design of multipli-
erless FIR filters with power-of-two coefficients,” IEEE Trans. Circuits
Syst., vol. 36, no. 7, pp. 1044–1047, 1989.

[19] C.-Y. Yao and C.-J. Chien, “A Partial MILP algorithm for the design of
linear phase FIR filters with SPT coefficients,” IEICE Trans. Fundam.
Electron., Commun., Comput. Sci., vol. E85-A, no. 10, pp. 2302–2310,
2002.

[20] C.-L. Chen and A. N. Willson, Jr., “A trellis search algorithm for the
design of FIR filters with signed-powers-of-two coefficients,” IEEE
Trans. Circuits Syst. II, vol. 46, no. 1, pp. 29–39, 1999.

[21] O. Gustafsson, H. Johansson, and L.Wanhammar, “AnMILP approach
for the design of linear-phase FIR filters with minimum number of
signed-power-of-two terms,” in Proc. Eur. Conf. Circuit Theory De-
sign, 2001, pp. 217–220.

[22] M. Aktan, A. Yurdakul, and G. Dündar, “An algorithm for the design of
low-power hardware-efficient FIR filters,” IEEE Trans. Circuits Syst.,
vol. 55, no. 6, pp. 1536–1545, 2008.

[23] N. Takahashi and K. Suyama, “Design of CSD coefficient FIR filters
based on branch and bound method,” in Proc. Int. Symp. Commun. Inf.
Technol., 2010, pp. 575–578.

[24] A. Shahein, Q. Zhang, N. Lotze, and Y.Manoli, “A novel hybrid mono-
tonic local search algorithm for FIR filter coefficients optimization,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 3, pp. 616–627,
2012.

[25] J. Yli-Kaakinen and T. Saramaki, “A systematic algorithm for the de-
sign of multiplierless FIR filters,” in Proc. IEEE Int. Symp. Circuit
Syst., 2001, pp. 185–188.

[26] O. Gustafsson and L. Wanhammar, “Design of linear-phase FIR filters
combining subexpression sharing with MILP,” in Proc. Midwest Symp.
Circuits Syst., 2002, pp. 9–12.

[27] F. Xu, C. H. Chang, and C. C. Jong, “Design of low-complexity FIR fil-
ters based on signed-powers-of-two coefficients with reusable common
subexpressions,” IEEE Trans. Comput.-Aided Design Intrgr. Circuits
Syst., vol. 26, no. 10, pp. 1898–1907, 2007.

[28] Y. J. Yu and Y. C. Lim, “Optimization of linear phase FIR filters in
dynamically expanding subexpression space,” Circuits, Syst., Signal
Process., vol. 29, no. 1, pp. 65–80, 2010.

[29] D. Shi and Y. J. Yu, “Design of linear phase FIR filters with high prob-
ability of achieving minimum number of adders,” IEEE Trans. Circuits
Syst., vol. 58, no. 1, pp. 126–136, 2011.

[30] L. Aksoy, P. Flores, and J. Monteiro, “SIREN: A depth-first search
method for the filter design optimization problem,” in Proc. Great
Lakes Symp. VLSI, 2013, pp. 179–184.

[31] L. Aksoy, P. Flores, and J. Monteiro, “A tutorial on multiplierless
design of FIR filters: Algorithms and architectures,” Circuits, Syst.,
Signal Process., vol. 33, no. 6, pp. 1689–1719, 2014.

[32] G. Dantzig, Linear Programming and Extensions. Princeton, NJ,
USA: Princeton Univ. Press, 1963.

[33] N. Karmarkar, “A new polynomial-time algorithm for linear program-
ming,” Combinatorica, vol. 4, no. 4, pp. 373–395, 1984.

[34] R. Vanderbei, Linear Programming: Foundations and Extensions.
New York, NY, USA: Springer, 2001.

[35] M. Ercegovac and T. Lang, Digital Arithmetic. SanMateo, CA,USA:
Morgan Kaufmann, 2003.

[36] Y. C. Lim, “Design of discrete-coefficient-value linear phase FIR fil-
ters with optimum normalized peak ripple magnitude,” IEEE Trans.
Circuits Syst., vol. 37, no. 12, pp. 1480–1486, 1990.

[37] T. Parks and C. Burrus, Digital Filter Design. New York, NY, USA:
Wiley, 1987.

[38] J. McClellan, T. Parks, and L. Rabiner, “A computer program for de-
signing optimum FIR linear phase digital filters,” IIEEE Trans. Audio
Electroacoust., vol. 21, no. 6, pp. 506–526, 1973.

[39] L. Rabiner, “Linear program design of FIR digital filters,” IIEEE Trans.
Audio Electroacoust., vol. 20, no. 4, pp. 280–288, 1972.

[40] O. Gustafsson, “Lower bounds for constant multiplication problems,”
IEEE Trans. Circuits Syst. II, vol. 54, no. 11, pp. 974–978, 2007.

[41] M. Faust and C.-H. Chang, “Low error bit width reduction for structural
adders of FIR filters,” in Proc. IEEE Eur. Conf. Circuit Theory Design,
2011, pp. 713–716.

Levent Aksoy (S’06–M’09) received the M.S. and
Ph.D. degrees in electronics and communication en-
gineering and electronics engineering from Istanbul
Technical University (ITU), Istanbul, Turkey, in 2003
and 2009, respectively. He was a Research Assistant
with the Faculty of Electrical and Electronics Engi-
neering, ITU from 2001 to 2009. Since November
2009, he has been with the Instituto de Engenharia
de Sistemas e Computadores (INESC-ID), Lisbon,
where he is currently a post-doctoral researcher in Al-
gorithms for Optimization and Simulation (ALGOS)

group. His research interests include optimization algorithms, high-level syn-
thesis, and DSP system design.

Paulo Flores (S’92–M’02–SM’13) received thefive-
year engineering degree, M.Sc., and Ph.D. degrees
in electrical and computer engineering from Instituto
Superior Técnico (IST), Technical University of
Lisbon, Portugal, in 1989, 1993, and 2001, respec-
tively. Since 1990, he has been teaching at Instituto
Superior Técnico, University of Lisbon, where he is
currently an Assistant Professor in the Department
of Electrical and Computer Engineering. He has also
been with the Instituto de Engenharia de Sistemas
e Computadores (INESC-ID), Lisbon, since 1988,

where he is currently a Senior Researcher in Algorithms for Optimization and
Simulation (ALGOS) group. His research interests are computer architecture
and CAD for VLSI circuits in the area of embedded systems, test and verification
of digital systems, and computer algorithms, with particular emphasis on opti-
mization of hardware/software problems using satisfiability (SAT) models. He
has contributed to more than 50 papers to journals and international conferences.
Dr. Flores is a senior member of the IEEE Circuit and Systems Society.

José Monteiro (S’93–M’96–SM’10) received a
five-year engineering degree and the M.Sc. degree
in electrical and computer engineering from Instituto
Superior Técnico (IST), Technical University of
Lisbon, Portugal, in 1989 and 1992, respectively,
and the Ph.D. degree in electrical engineering and
computer science from the Massachusetts Institute
of Technology, Cambridge, MA, in 1996. Since
1996, he has been with Instituto Superior Técnico,
University of Lisbon, where he is currently an
Associate Professor in the Department of Computer

Science and Engineering. He is currently Director of the Instituto de Engen-
haria de Sistemas e Computadores (INESC-ID), Lisbon. His main interests are
computer architecture and CAD for VLSI circuits, with emphasis on synthesis,
power analysis, low-power, and design validation. Dr. Monteiro received the
Best Paper Award from the IEEE TRANSACTIONS ON VERY LARGE SCALE
INTEGRATION (VLSI) SYSTEMS in 1995.

