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Abstract—In a previous work we proposed a new sublinear-
runtime recoding heuristic for the multiplication by a constant, 
accompanied by its upper-bound complexity. In this brief, 
further results are provided, namely, the analytic expressions of 
the average number of additions and the maximum adder-depth. 
Improvements to the proposed heuristic are considered as well, 
using a redundant recoding followed by a common-digit-
elimination step. 
 

Index Terms— High-Speed and Low-Power Design, Linear-
Time-Invariant (LTI) Systems, Multiplierless Single/Mutiple 
Constant Multiplication (SCM/MCM), Radix-2r Arithmetic. 

I. BACKGROUND AND MOTIVATION 
ased on the radix-2r arithmetic, we introduced in the 
preceding work [1] a new sublinear-runtime recoding 

heuristic (RADIX-2r) for the multiplication by a constant with 
an upper-bound equal to ( )⎡ ⎤22/1 2 −++ −rrN , where, N is the 
constant bit-length, ( )( ) )2()2(12 /loglogNWr ⋅+⋅= , W and ⎡ ⎤  are 
the Lambert and ceiling functions, respectively. We obtained 
the currently best known proved upper-bound on the exact 
number of additions for SCM. While RADIX-2r shows a clear 
superiority over digit-recoding algorithms (CSD [2] and 
DBNS [3]), the comparison to non-digit-recoding algorithms 
(Bernstein [4], Lefèvre [5], BHM [6], Hcub [7], and MAG [8]) 
exhibits mitigated results. Non-recoding algorithms are better 
than RADIX-2r when considering the average (Avg) number 
of additions, but not necessarily better regarding the maximum 
number of additions (Upb). Thus, we came to a significant 
conclusion: a lower Avg does not guarantee a lower Upb.  

 Avg, Upb, and adder-depth (Ath) are the most commonly 
used metrics in SCM/MCM. Avg informs on the compression 
performance of the heuristic. For a nonnegative N-bit constant, 
Avg is calculated as the mean number of additions for values 
varying from 0 to 2N−1. Whereas Upb denotes the worst case 
in number of additions, as for each heuristic there exists a 
specific set of constants that are hard to compress. Ath is 
rather a measure of the critical path in number of cascaded 
adders. Reducing Ath not only improves the speed, but 
decreases the power consumption as well [9].  

Developing a predictable heuristic, that is, with known Avg, 
Upb, and Ath complexities, gives a precise idea on how the 
heuristic evolves with respect to the size N. This much helps 
to decide early in the design process whether a given heuristic 
can fit one’s specification requirements. To our knowledge, 
among all existing heuristics only CSD and RADIX-2r are 
predictable. While both Avg and Upb complexities are known 
for CSD, only Upb is known so far for RADIX-2r [1]. 

The main purpose of this work is to make RADIX-2r a fully 
predictable heuristic. In addition to Upb, we determine the 
analytic expressions for Avg and Ath. We also provide the 
theoretical background showing that the R3 algorithm [10] is a 
variant of RADIX-2r with an improved Avg and the same Upb 
and Ath. 

This brief is organized as follows. Section I outlines the 
necessity for a fully-predictable heuristic. RADIX-2r Avg and 
Ath are introduced in Sections II and III, respectively. Section 
IV treats the overflow safety in the fixed-point representation, 
while Section V shows how RADIX-2r can be improved using 
a redundant recoding. Finally, Section V provides some 
concluding remarks and suggestions for future work.  

II. RADIX-2r:  AVERAGE NUMBER OF ADDITIONS (Avg) 
A nonnegative N-bit constant C is expressed in radix-2r as  
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where 01 ==− Ncc  and *Ν∈r . In (1), the two’s complement 
representation of C is split into ( )⎡ ⎤rN /1+  slices ( jQ ), each of 

r+1 bit length. Each pair of two contiguous slices has one 
overlapping bit.  A digit-set ( )rDS 2  corresponds to (1), such as    

        ( ) { }1111 2,12,...,1,0,1,...,12,22 −−−− −−+−−=∈ rrrrr
j DSQ .                         

The sign of the Qj term is given by the crj+r–1 bit,               
and j

k
j mQ j ×=2 , with { }1210 −∈ r,...,,,kj  and ( ) { }1,02 Ur

j OMm ∈ , 

where ( ) { }12,...,7,5,32 1−= −rrOM . ( )rOM 2  is the set of odd 

positive digits in radix-2r recoding, with ( ) 122 2 −= −rrOM .  
Since each slice Qj comprises r+1 bits, the total number of 

the different bit-combinations is 2r+1. According to (1), only 
two combinations produce Qj = 0: in case all the r+1 bits are 
equal to “0” or “1”. Hence, the average number of non-null Qj 
terms is equal to ( ) rrr −++ −=− 21222 11 / . Each Qj≠0 generates 
one partial product (PP).  Thus, the average number of PPs in 
the ( )⎡ ⎤rN /1+  slices is: ( ) ( )⎡ ⎤rNAvg r

pp /121 +×−= − . 

For each ( )r
j OMm 2∈  there exists an integer ( ){ }rOMk 221 ...,,,∈ , 

such as 12 +×= kmj . To set the correspondence between j and 
k, mj is denoted mjk.  The number of occurrences (Occ) of mjk 
among the 2r+1 combinations of Qj is  

                           ( ) ⎥⎥
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⎡
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−
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2log4

1
2 k
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jkcc
.                      (2)        

The factor 4 in (2) is due to the fact that each occurrence of 
mjk in the positive and negative part of ( )rDS 2  is double (see 
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TABLE I 
RADIX-2r VERSUS CSD: Avg, Ath, and Upb FOR AN N-BIT CONSTANT   

N 8 16 32* 64* 128 256 512 1024 2048 4096 8192 
r 3 3 4 5 5 6 6 7 8 8 9 

RADIX-2r min 
max  1.86 4.51 8.96 16.44 

18.59 
30.37 
31.18 

54.00 
56.32 

98.11 
98.65 

174.19 
175.85 

313.43 
317.99 

572.41 
572.99 

1033.38 
1035.22 

CSD 2.11 4.77 10.11 20.77 42.11 84.77 170.11 340.77 682.11 1364.77 2730.11 Avg 
Saving (%) 1.19 5.45 11.37 15.69 26.92 34.92 42.16 48.63 53.71 58.03 62.11 
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  // 
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CSD … 
  // 

4 
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8 
4 

16 
5 

32 
6 

64 
7 

128 
8 

256 
9 

512 
10 

1024 
11 

2048 
12 

4096 
13 

 
Ath 

Saving (%) … 
  // 

25.00 
00.00 

25.00 
00.00 

37.50 
–20.00 

53.12 
–16.66 

 56.25 
–14.28 

 64.06 
–25.00 

 65.23 
–22.22 

 70.50 
–30.00 

 74.41 
–36.36 

 74.70 
–33.33 

 77.61 
–30.76 

RADIX-2r 3 6 11 19 32 57 100 177 319 575 1037 
CSD 4 8 16 32 64 128 256 512 1024 2048 4096 Upb 

Saving (%) 25.00 25.00 31.25 40.62 50.00 55.46 60.93 65.42 68.84 71.92 74.68 

N is the bit-size of a nonnegative constant; ( )( ) )2(/)2(12 loglogNWr ⋅+⋅= . For N≥64, the saving in Avg is calculated considering (min+max)/2. 
*: For N=32, both r=3 and r=4 produce the same Upb, but r=4 yields lower Ath. The same holds true for N=64 with r=4 and r=5. 
…: Serial implementation (adders connected in series); //: Parallel implementation based on a tree structure. For RADIX-2r, Ath…= ( )⎡ ⎤ 3/1 −++ rrN , 
and Ath//= ( )⎡ ⎤⎡ ⎤ 2/12 −++ rrNlog . For CSD,  Avg = ( ) 9/83/1 −+N , Upb= ( )⎡ ⎤ 12/1 −+N ,  Ath…= ( )⎡ ⎤ 12/1 −+N , and CSD Ath//= ( )⎡ ⎤⎡ ⎤2/12 +Nlog . 
Erratum: In [1], we took CSD Avg = 9/8)3/( −N , which is the average of a two’s complement N-bit constant (see the proof in [11]). 

Table VI in [1]). The reason is that the crj−1 and crj bits in (1) 
have the same influence ( )⋅⋅⋅+×+×−

00
1 22 rjrj cc  on the Qj term. 

Therefore, the probability (P) that mjk occurs among 2r+1 
combinations is ( ) ( ) 12/ += r

jkccjk mOmP . We deliberately employ 
“probability” instead of the “average” to facilitate the 
demonstration, but actually the two notions have the same 
meaning. Now, the probability that mjk occurs in the slice Qj 
knowing that it has not occurred in the slices preceding the 
slice j is (Bayes’s theorem):  
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// . Note that the 

( )jmP jk /   are mutually exclusive, since one and only one odd-
digit (mjk) occurs in the slice j. Consequently, the average 
number of generated odd-digits considering all slices is 
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Hence, the average number of additions for RADIX-2r is 
ompp AvgAvgAvg ++−≥ 1
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does not take into account the fact that for r>4 some 

odd-digits require more than one addition. For instance, the 
digit 11 requires 2 additions. But if the digit 3 occurs in the 
same recoding, 11 will need just one addition since 11=23+3. 
However, we proved in [1] that 12 2 −≤ −r

omAvg
 
(see Theorem 

(1) in [1]). Consequently, we can say that Avg is bounded by 

           

2221 −++−≤≤++− r
ppompp AvgAvgAvgAvg  

We also proved in [1] that to get the minimum number of 
additions (Upb), r must be equal to  
                         ( )( ) )2(/)2(12 loglogNWr ⋅+⋅= ,                        (4) 
where W is the Lambert function.  

Using the two Avg limits, we have bounded the average for 
N varying from 64 to 8192. Results are reported in Table I. It 
has to be noted that for r≤4, ompp AvgAvgAvg ++−= 1 . 

We observe that for RADIX-2r, Avg is very close to Upb. 
The reason is that the average of the null Qj digits is very low: 

( ) ( )⎡ ⎤
( )⎡ ⎤

rrj
rN

rNQAvg
2

/1
/1

2
20

1

+
=+×==∀

+
. Note that RADIX-2r 

provides 50% saving over CSD in Avg for N=1134. 
Theorem (1) in [1] allows building the entire set of odd-

digits in just r−2 stages of cascaded additions. Since there are 
⎡ ⎤rN /)1( +  slices, the total number of cascaded adders is  
               ( )⎡ ⎤ ( )⎡ ⎤ 3/121/1 −++=−+−+= rrNrrNAth                (5) 

Based on the values of r given by (4), we have calculated 
Ath and grouped the results in Table I. For a serial 
implementation (adders connected in series), a saving of 
slightly more than 50% over CSD is achieved at N=64. While 
for a parallel implementation based on a tree structure, CSD 
Ath is lower than RADIX-2r Ath for any value of N≥24. As for 

( )⎡ ⎤ 22/1 2 −++= −rrNUpb , 50% saving is attained at N=128. 

III. RADIX-2r:  A LOWER ADDER-DEPTH (Ath)  
Equation (4) ensures a minimum Upb, whereas lower Ath 

values are still possible. Any value of r, such as 
( )( ) )2(/)2(12 loglogNWr ⋅+⋅<  produces both higher Upb and Ath. 

While the opposite, that is,  ( )( ) )2(/)2(12 loglogNWr ⋅+⋅>  leads to 
a lower Ath but a higher Upb. To garantee a reasonable 
balance, we set as a condition that the entire number of odd-
digits must be less or equal than the total number of slices    

                          ( ) ( )⎡ ⎤( )rNOM r /12 +≤ .                             (6) 

This condition avoids generating more odd-digits ( 12 2 −−r ) 
than it is actually invoked by the recoding process. Thus, 
solving (6), a balanced solution for a lower Ath is found with 

                      ( ) ( )( ) ( )2/2.1.4 loglogNWr += .                         (7) 

Table II indicates the values of r that yield a lower Ath,  
along with its corresponding Upb and Avg. Note that both (7) 
and (4) provide exactly the same results for N≤20, either in 
Ath, Upb, or Avg. Starting from N≥21, lower Ath are obtained 
using (7) but at the expense of higher Upb and Avg as 
indicated by Table I and II. For instance, for N=256 equation 



1549-7747 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCSII.2014.2387620, IEEE Transactions on Circuits and Systems II: Express Briefs

  

(7) achieves a reduction of 10.86% over (4) in Ath, while it 
causes an increase of 17.54% and 9.77% in Upb and Avg, 
respectively. Contrary to Avg values corresponding to (4), the 
ones of (7) are relatively far from Upb. Compared to CSD, a 
saving of 50% in Ath is obtained by (7) for N=56.  

Finally, to decide which r expression to use depends 
actually on the design requirements. If area is targeted, (4) is 
used. But in case speed or power are a concern, (7) is suitable.   

IV. RADIX-2r: OVERFLOW SAFETY 
In fixed-point representation, an overflow risk in SCM is 

possible. It might be caused by uncontrolled left-shift spans, 
especially for the last partial product (PP). Thus, lower bounds 
on the maximum left-shift must be carefully considered to 
ensure an overflow safety– this is more likely to the detriment 
of the optimization of the number of additions [3]. As far as 
we are aware, this issue has never been addressed in SCM 
despite the big number of proposed heuristics.  

In RADIX-2r, overflow safety is easy to prove. We consider 
two nonnegative numbers, C and X, with n and m bit-lengths, 
respectively. In two’s complement representation, the product 

XCP ×=  needs n+m+2 bits to be complete, i.e., without 
truncation. We can write: 011 ppppP mnmn ⋅⋅⋅= +++ ; where 

1++mnp  is the sign bit. To be sure there is no overflow risk; we 
must prove that the sign-bit of the last PP is set at most at the 
n+m+1 position. We write: 
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j
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where the last PP is ( ) ( ) rnx
j

c
rn XQPP mn −+
−+ ××−××−= 1
1/)1( 211 . 

The maximal positive values that jQ  and X  can take are 2r−1 
and 2m, respectively, to which corresponds a maximal PP of 

( ) ( ) mnxc
rn

mnPP ++
−+ ×−= 21max 1/)1( . In this case, mn+2  occupies the 

n+m position, plus the sign bit just after at the n+m+1 position. 
This proves that in RADIX-2r overflow never occurs. 

V. RADIX-2r: FURTHER IMPROVEMENTS 
The objective is to decrease Avg without increasing Upb. 

Avg is successively reduced in two steps: by the utilization of 
a redundant recoding, followed by a Common Digit 
Elimination (CDE) step on the PP set. In RADIX-2r, CDE is 
already applied on the odd-digits (mj) by the recoding itself. A 
second order of CDE can be applied again on the Qj terms 
thanks to redundancy. We present hereafter a linear runtime 
Redundant Radix-2r Recoding (R3) with a better Avg while 
preserving the same Upb as in RADIX-2r. 

Equation (1) can be rewritten in more details as                  

        ( ) ( )
( )

rj
rN
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k
j

c jrrj mC 221
1/1
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1 ×××−= ∑
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−+ ,                 (8) 

with { }12...,,5,3,1,0 1 −∈ −r
jm  and { }1,...,2,1,0 −∈ rkj .  

To enable CDE at the Qj level, we announce the following 
theorem. 
Theorem 1. Any digit ( )r

j DSQ 2∈  can be represented in a 

combination of digits ( )s
ji DSP 2∈ , such as s is a divider of r.   

The proof of this theorem is given in [12]. When Th. (1) is 

applied to eq. (1), it gives: 
( )( )
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where ( ) { }1111 21201222 −−−− −+−−=∈ sssss
ji ,,...,,...,,DSP ,  

( ) { }12312 1 −= −ss ,...,,OM   such as ( ) ( ) ( ) sksr OMOM 122/2 −=  

with r/s=k. The major advantage of Theorem (1) is that it 
yields an exponential reduction (1/2(k−1)s) of the number of 
odd-digits in (9) in comparison to (1), but at the expense of a 
linear increase (k−1) in the number of additions. Theorem (1) 
allows a recursive recoding which enabled to design efficient 
variable multipliers [12] and multi-precision multipliers [13]. 

Corollary 1. In radix-2r, ( ) jjj h
j

el
jj vuQ 212 ××−+×= , where: 

( ){ }12,...,5,3,1,0, 12/ −∈ −r
jj vu ; { }1,...,2,1,0 −∈ rl j

; 

{ };1)2/(,...,2,1,0 −∈ rh j
 and { }1,0∈je . 

Proof. This corollary is a direct consequence of Theorem (1) 
applied for r/s=2. This means that Qj digit, which is r+1 bit-
length, is split into two overlapping sub-digits Pj0 and Pj1, each 
of r/2+1 bit-length. This assumes that r is even. If r is odd, 
Theorem (2) in [12] is applied instead of Theorem (1). For 
r/s=2, equation (9) becomes: ( ) rj

rN

j

r
jj PPC 22

1/)1(

0

2/
10 ××+= ∑

−+

=

. Note 

that 2/
10 2r
jjj PPQ ×+= , and that Pj0 and Pj1 have exactly

 
the 

same properties as Qj, which means that they can be expressed 
in the same way Qj is written in (8). Thus, we get         

      ( ) ( )[ ] rjh
j

el
j

rN

j

c jjjrrj vuC 22121
1/)1(

0

1 ×××−+××−= ∑
−+

=

−+ .          (10)  

Because addition is a non-injective function, the quintuplet  
(uj, lj, ej, vj, hj) is not unique; several ones might exist for the 
same jQ  value. For instance, 35=jQ  can be expressed as 
35=1×25+3×20, or 35=5×23–5×20, or 35=7×22+7×20. 
Consequently, Eq. (10) is a Redundant Radix-2r Recoding 
(R3) [10] of the constant C. 

Corollary (1) is just one case (r/s=2) among many others. A 
number of Qj partitionings are possible (r/s=3, 4, 5, ...), but 
higher values of r/s increase the number of sub-digits (uj, vj, 
wj, tj, zj, …), which  makes (10) difficult to handle. 
    R3 algorithm is illustrated hereafter for the particular case 
of 21≤N≤83. For this interval, optimal Upb in RADIX-2r is 
attained with r=4 (see the Upb formula). To preserve 
optimality in Upb for R3, the trick here is to use sub-digits (Pj0 
and Pj1) with s=4, which means that for Qj r=2×4=8. Hence, 
with (s, r)=(4, 8) optimality in Upb is guaranteed. 

For r=8, 0≤ |Qj| ≤128, and (10) becomes:  

TABLE II 
Ath, Upb, Avg, AND r VALUES FOR AN N-BIT CONSTANT USING RADIX-2r 

N 8 16 32 64 128 256 512 1024 2048 4096 8192 
r 3 3 5 5 6 7 8 8 9 10 11 

Ath
…

 3 6 9 15 25 41 70 134 234 417 753 

Upb 3 6 13 19 36 67 127 191 354 664 1255 

Avg 1.86 4.51 
9.21 
12.78 

16.44 
18.59 

30.42 
35.65 

54.39 
66.71 

99.36 
126.74 

176.30 
190.49 

320.61 
353.55 

589.61
663.59

1091.70
1254.53

N is the bit-size of a nonnegative constant; ( ) ( )( ) ( )2/2.1.4 loglogNWr += . 
…: Serial implementation. 
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 c−1 c0  c1   c2    c3  c4   c5  c6  c7  c8  c9  c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20 c21 c22 c23 

( ) ( ) 710210
cZZQ −×+=  

16
2

8
1

0
0 222 ×+×+×= QQQC  

( ) ( ) 1511211
cZZQ −×+=  

( ) ( ) 2312212
cZZQ −×+=

   8+1 bits 
  : c−1= c23= 0   C 

   23+1 bits 
Qj ( ) 1280 21 ≤+≤ jZZ

: c7 ,  c15 , c23  are sign bits  
 Fig. 1. Partitioning of a 23-bit constant C using R3 algorithm. 

TABLE III 
R3  ALGORITHM: ODD AND EVEN |QJ| DIGIT RECODING FOR 21≤N≤83 

Odd |Qj| Z1=uj× 2lj Z2=(−1)ej×vj × 2hj (Z1+ Z2)j Even|Qj| (Z1+ Z2)j 
1 1 × 2 0 0 × 2 0 U1 2 21 × U1 
3 3 × 2 0 0 × 2 0 U3 4 22 × U1 
5 5 × 2 0 0 × 2 0 U5 6 21 × U3 
7 7 × 2 0 0 × 2 0 U7 8 23 × U1 
9 1 × 2 3 1 × 2 0 U9 10 21 × U5 

11 3 × 2 2             −1 × 2 0 U11 12 22 × U3 
13 3 × 2 2 1 × 2 0 U13 14 21 × U7 
15 1 × 2 4             −1 × 2 0 U15 16 24 × U1 
17 1 × 2 4 1 × 2 0 U17 18 21 × U9 
19 5 × 2 2             −1 × 2 0 U19 20 22 × U5 
21 5 × 2 2 1 × 2 0 U21 22  21 × U11 
23 3 × 2 3             −1 × 2 0 U23 24 23 × U3 
25 3 × 2 3 1 × 2 0 U25 26  21 × U13 
27 7 × 2 2             −1 × 2 0 U27 28 22 × U7 
29 7 × 2 2 1 × 2 0 U29 30  21 × U15 
31 1 × 2 5             −1 × 2 0 U31 32 25 × U1 
33 1 × 2 5 1 × 2 0 U33 34  21 × U17 
35 1 × 2 5 3 × 2 0 U35 36 22 × U9 
37 1 × 2 5 5 × 2 0 U37 38  21 × U19 
39 5 × 2 3             −1 × 2 0 U39 40 23 × U5 
41 5 × 2 3 1 × 2 0 U41 42  21 × U21 
43 5 × 2 3 3 × 2 0 U43 44  22 × U11 
45 3 × 2 4             −3 × 2 0 U45 46  21 × U23 
47 3 × 2 4             −1 × 2 0 U47 48 24 × U3 
49 3 × 2 4 1 × 2 0 U49 50  21 × U25 
51 3 × 2 4 3 × 2 0 U51 52  22 × U13 
53 3 × 2 4 5 × 2 0 U53 54  21 × U27 
55 7 × 2 3             −1 × 2 0 U55 56 23 × U7 
57 7 × 2 3 1 × 2 0 U57 58  21 × U29 
59 1 × 2 6             −5 × 2 0 U59 60  22 × U15 
61 1 × 2 6             −3 × 2 0 U61 62  21 × U31 
63 1 × 2 6             −1 × 2 0 U63 64 26 × U1 
65 1 × 2 6 1 × 2 0 U65 66  21 × U33 
67 1 × 2 6 3 × 2 0 U67 68  22 × U17 
69 1 × 2 6 5 × 2 0 U69 70  21 × U35 
71 1 × 2 6 7 × 2 0 U71 72 23 × U9 
73 5 × 2 4             −7 × 2 0 U73 74  21 × U37 
75 5 × 2 4             −5 × 2 0 U75 76  22 × U19 
77 5 × 2 4             −3 × 2 0 U77 78  21 × U39 
79 5 × 2 4             −1 × 2 0 U79 80 24 × U5 
81 5 × 2 4 1 × 2 0 U81 82  21 × U41 
83 5 × 2 4 3 × 2 0 U83 84  22 × U21 
85 5 × 2 4 5 × 2 0 U85 86  21 × U43 
87 5 × 2 4 7 × 2 0 U87 88  23 × U11 
89 3 × 2 5             −7 × 2 0 U89 90  21 × U45 
91 3 × 2 5             −5 × 2 0 U91 92  22 × U23 
93 3 × 2 5             −3 × 2 0 U93 94  21 × U47 
95 3 × 2 5             −1 × 2 0 U95 96 25 × U3 
97 3 × 2 5 1 × 2 0 U97 98  21 × U49 
99 3 × 2 5 3 × 2 0 U99 100  22 × U25 

101 3 × 2 5 5 × 2 0 U101 102  21 × U51 
103 3 × 2 5 7 × 2 0 U103 104  23 × U13 
105 7 × 2 4             −7 × 2 0 U105 106  21 × U53 
107 7 × 2 4             −5 × 2 0 U107 108  22 × U27 
109 7 × 2 4             −3 × 2 0 U109 110  21 × U55 
111 7 × 2 4             −1 × 2 0 U111 112 24 × U7 
113 7 × 2 4 1 × 2 0 U113 114  21 × U57 
115 7 × 2 4 3 × 2 0 U115 116  22 × U29 
117 7 × 2 4 5 × 2 0 U117 118  21 × U59 
119 7 × 2 4 7 × 2 0 U119 120  23 × U15 
121 1 × 2 7             −7 × 2 0 U121 122  21 × U61 
123 1 × 2 7             −5 × 2 0 U123 124  22 × U31 
125 1 × 2 7             −3 × 2 0 U125 126  21 × U63 
127 1 × 2 7             −1 × 2 0 U127 128 27 × U1 

Note that 9=1×2 3+1×2 0 in R3 (1 addition) and 9=1×2 4−7×2 0 in RADIX-2r 
(2 additions), taking into account that the recoding is on 8+1=9 bits (Fig. 1).  
There are many cases where the number of additions is lower, as in 10, 40,…   
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where jl
juZ 21 ×=  ; ( ) jj h

j
e vZ 212 ××−=  ; uj and { };7,5,3,1,0∈jv  

{ };7,...,2,1,0∈jl  { };3,2,1,0∈jh  and { }.1,0∈je  

Note that |Qj|=(Z1+Z2)j. The product C×X  becomes: 
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The partitioning of the constant C according to (11) is 
depicted in Fig. 1.  

Since jQ  may have several notations in (Z1, Z2), we must 
carefully select among a big number of cases, the recoding 
(R3) that yields an Avg not higher than RADIX-2r Avg. We 
have shown that for RADIX-2r, ( ) ⎡ ⎤ r

j rNQAvg 2//)1(0 +==∀ , 
and based on the same reasoning developed in Section II we 
can easily prove that ( ) ( ) ⎡ ⎤ r

j rNrQAvg 2//)1(121 +×−×==∀ . Thus, 
we can write: ( ) ⎡ ⎤ 12//)1(1,0 −+×==∀ r

j rNrQAvg . Keeping the
 

same ( )1,0=∀ jQAvg
 value in R3 ensures that the total R3 Avg 

will not be higher than RADIX-2r Avg, because the number of 
PPs and the odd-digit set are identical in R3 and RADIX-2r. 
This means also that R3 and RADIX-2r have the same Ath. 

One efficient R3 recoding is obtained using a C-program 
that exhaustively explores for each odd |Qj| varying from 1 to 
127, all (uj, lj, ej, vj, hj) possibilities and selects the least adder 
consumer combination according to the following priority 
ordering: (uj,vj)=(uj,0); (uj,vj)=(1,1); (Z1,Z2)=(1×27,Z2); and 
finally (Z1,Z2)=(Z1,±1×20). These two latter couples allow the 
following simplifications:  

( ) ( ) ( ) LLLL ±×+×−×−=±××−+×+×+ ++ 88
1

8
2

7880
1

8
2

7 2221221221 jjjj ZZZZ
( ) ( ) ( ) LLLL ±×+×−×+=±××++×+×− ++ 88

1
8

2
7880

1
8

2
7 2221221221 jjjj ZZZZ     

In case none of those cited cases is encountered, C-program 
pursues in the following priority ordering: (uj,vj)=(1,3) or 
(3,1); (uj,vj)=(3,3); (uj,vj)=(1,5) or (5,1); (uj,vj)=(5,5); (uj, vj)= 
(1,7) or (7,1); (uj,vj)=(7,7);  (uj,vj)= (3,5) or (5,3); (uj,vj)=(3,7) 
or (7,3); (uj,vj)=(5,7) or (7,5). This ordering maximizes the 
occurrences of the digit “1”, then of “3”, and minimizes those 
of “5” and “7” in |Qj| digits, which will more likely reduce the 
number of additions in the whole recoding of the constant C. 
Optimized odd |Qj| combinations are grouped in Table III. 
Even |Qj| combinations are directly derived from the odd ones 
using a left-shift operation. 

For a given 21≤N≤83, optimality in Upb for RADIX-2r and 
R3 is guaranteed with r=4 and (s, r)=(4, 8), respectively.      
To RADIX-2r corresponds ( ) ⎡ ⎤ 2/4/)1(1,0 +==∀ NQAvg j . 

 Counting the number of uj=1, vj=0, and vj=1 in both the odd 
and even |Qj| of Table III, we can easily prove that for R3, 

( ) ( )⎡ ⎤ 128/8/1240 +×==∀ NvAvg j
 and  

( ) ( ) ( )⎡ ⎤ 128/8/110411 +×==∀+=∀ NvAvguAvg jj . This gives 

( ) ( ) ⎡ ⎤8/)1(1,01 +==∀+=∀ NvAvguAvg jj
 , which is equal to 

( )1,0=∀ jQAvg .  This is the formal proof that R3 Avg can not 
be higher than RADIX-2r Avg.  

As for Upb, R3 comprises ⎡ ⎤8/)1( +N   terms Qj, each one 
groups two digits (Z1,Z2). Thus, the total number of PPs is 

⎡ ⎤4/)1( +N . Since 3 odd-digits are required, ⎡ ⎤ 24/)1( ++= NUpb , 
which is equal to RADIX-2r Upb. It is important to mention 
that 21≤N≤83 was chosen just to make the demonstration 
simpler (Table III), but the proofs hold true for any value of N. 
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TABLE IV 
R3 VERSUS RADIX-2r: AVERAGE 

NUMBER OF ADDITIONS (Avg) 
Avg 

N RADIX-2r R3 
Saving 

% 
8 1.86 1.79 3.76 
16 4.51 4.32 4.21 
24 6.79 6.48 4.56 
32 8.96 8.51 5.02 
64 17.51 15.03* 14.16 

*: Obtained from 1010 uniformly 
distributed random values of C. N is 
the bit-size of the constant C. For N=8, 
the saving is exclusively due to the 
redundancy (see Table III).  

TABLE V 
R3 VERSUS RADIX-2r: SMALLEST 

VALUES UP TO A 32-BIT CONSTANT

q RADIX-2r R3 
1 3 3 
2 11 11 
3 43 43 
4 139 139 
5 651 651 
6 2699 2699 
7 33419 34971 
8 526491 559259 
9 8422027 17336475 

10 134744219 143163547 
11 2155905675 2290385547 

q: number of additions. 

 
                  Fig. 2. Avg comparison for an N-bit constant.  

CDE is performed in a linear runtime on the ⎡ ⎤8/)1( +N  
digits Uk as an ultimate optimization step. It is illustrated by 
the product P=(2631689)10×X. We first calculate the product 
(P) in RADIX-2r and then in R3.  
PRADIX  = X0×220–X×219+X0×212–X×211+X×24–X1 
with X0=(X×2)+X and X1=(X×23)–X.  
PR3=U40×216+U40×28+U9   with U40= U5×23

 ; U5=(X×22)+X and  
U9=(X×23)+X. Note that PRADIX requires 7 additions, while PR3 
needs only 4. A saving of 2 additions is due to the redundancy 
(U9 and U40), and a saving of 1 addition is due to CDE (U40).  

Avg has been exhaustively calculated for values of C 
varying from 0 to 2N−1, for N=8, 16, 24, and 32. But for N=64, 
we have computed Avg using 1010 uniformly distributed 
random values of C. For N=64, R3 uses 14.16% less additions 
than RADIX-2r (Table IV). For N≤32, the saving is not 
substantial because the number of Uk digits is low (≤4). But 
for N=64, it is equal to 8, offering more possibilities to CDE.  

We have also determined the smallest value that requires q 
additions, for q varying from 1 to the Upb of the recoding. 
Table V summarizes the results for a 32-bit constant. Note that 
starting from q=7, higher values are given by R3.  

We have compared R3 to a number of well-known non-
recoding heuristics, for which neither Avg nor Upb bounds are 
known. While they exhibit lower Avg (Fig. 2), their respective 
Upb could be higher (Bernstein's algorithm, Table VI).  

  
 

 
 

 
  
 
 
 
 
 
 
 

VI. CONCLUSION AND FUTURE WORK 
A fully-predictable and sublinear-runtime SCM heuristic 

has been developed (RADIX-2r) and improved (R3). In 
addition to the maximum number of additions, we have also 

determined the exact complexities for the average and adder-
depth. These three complexities are the lowest analytic bounds 
known so far for the multiplication by a constant. However, 
optimal bounds remain an open research problem. 

Our current work deals with the application of radix-2r 

arithmetic to the multiple-constant-multiplication problem. 
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TABLE VI 
 R3 and RADIX-2r VERSUS NON-RECODING ALGORITHMS:  RUNTIME 
COMPLEXITY AND NUMBER OF ADDITIONS OF SOME SPECIAL CASES 

   Algorithm (84AB5)H

N=20 
(64AB55)H 

N=23 
(5959595B)H

N=31 
Runtime [7] 

BIGE [14] 4 5 6 O(2 
N) 

Bernstein [4]   8G 7 8 O(2 
N) [5] 

Hcub  [7] 4 6 8 O(N 
6) 

BHM [6] 5 7 9 O(N 
4) 

Lefèvre  [5] 4 6 9 O(N 
3) 

RADIX-2r [1] 5 7 10 O(N/r) 
R3 4 6 8 O(N) 

N: Constant bit-size; ( )( ) )2/log()2log(1W2 ⋅+⋅= Nr ; G: Greater than 
R3 Upb; R3 Upb= 7, 8, and 10 for N=20, 23, and 31, respectively;  
x: Optimal number of additions. 


