
1549-7747 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCSII.2014.2387620, IEEE Transactions on Circuits and Systems II: Express Briefs

Copyright (c) 2014 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org

1549-7747 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCSII.2014.2387620, IEEE Transactions on Circuits and Systems II: Express Briefs

Abstract—In a previous work we proposed a new sublinear-
runtime recoding heuristic for the multiplication by a constant,
accompanied by its upper-bound complexity. In this brief,
further results are provided, namely, the analytic expressions of
the average number of additions and the maximum adder-depth.
Improvements to the proposed heuristic are considered as well,
using a redundant recoding followed by a common-digit-
elimination step.

Index Terms— High-Speed and Low-Power Design, Linear-
Time-Invariant (LTI) Systems, Multiplierless Single/Mutiple
Constant Multiplication (SCM/MCM), Radix-2r Arithmetic.

I. BACKGROUND AND MOTIVATION
ased on the radix-2r arithmetic, we introduced in the
preceding work [1] a new sublinear-runtime recoding

heuristic (RADIX-2r) for the multiplication by a constant with
an upper-bound equal to ()⎡ ⎤22/1 2 −++ −rrN , where, N is the
constant bit-length, ()())2()2(12 /loglogNWr ⋅+⋅= , W and ⎡ ⎤ are
the Lambert and ceiling functions, respectively. We obtained
the currently best known proved upper-bound on the exact
number of additions for SCM. While RADIX-2r shows a clear
superiority over digit-recoding algorithms (CSD [2] and
DBNS [3]), the comparison to non-digit-recoding algorithms
(Bernstein [4], Lefèvre [5], BHM [6], Hcub [7], and MAG [8])
exhibits mitigated results. Non-recoding algorithms are better
than RADIX-2r when considering the average (Avg) number
of additions, but not necessarily better regarding the maximum
number of additions (Upb). Thus, we came to a significant
conclusion: a lower Avg does not guarantee a lower Upb.

 Avg, Upb, and adder-depth (Ath) are the most commonly
used metrics in SCM/MCM. Avg informs on the compression
performance of the heuristic. For a nonnegative N-bit constant,
Avg is calculated as the mean number of additions for values
varying from 0 to 2N−1. Whereas Upb denotes the worst case
in number of additions, as for each heuristic there exists a
specific set of constants that are hard to compress. Ath is
rather a measure of the critical path in number of cascaded
adders. Reducing Ath not only improves the speed, but
decreases the power consumption as well [9].

Developing a predictable heuristic, that is, with known Avg,
Upb, and Ath complexities, gives a precise idea on how the
heuristic evolves with respect to the size N. This much helps
to decide early in the design process whether a given heuristic
can fit one’s specification requirements. To our knowledge,
among all existing heuristics only CSD and RADIX-2r are
predictable. While both Avg and Upb complexities are known
for CSD, only Upb is known so far for RADIX-2r [1].

The main purpose of this work is to make RADIX-2r a fully
predictable heuristic. In addition to Upb, we determine the
analytic expressions for Avg and Ath. We also provide the
theoretical background showing that the R3 algorithm [10] is a
variant of RADIX-2r with an improved Avg and the same Upb
and Ath.

This brief is organized as follows. Section I outlines the
necessity for a fully-predictable heuristic. RADIX-2r Avg and
Ath are introduced in Sections II and III, respectively. Section
IV treats the overflow safety in the fixed-point representation,
while Section V shows how RADIX-2r can be improved using
a redundant recoding. Finally, Section V provides some
concluding remarks and suggestions for future work.

II. RADIX-2r: AVERAGE NUMBER OF ADDITIONS (Avg)
A nonnegative N-bit constant C is expressed in radix-2r as

(
()

) rj
rrj

r
rrj

r
rN

j
rjrjrjrj ccccccC 222222 1

1
2

2
1/1

0
2

2
1

10
1 ×−+⋅⋅⋅++++= −+

−
−+

−
−+

=
++−∑

()
∑

−+

=
×=

1/1

0
2

rN

j

rj
jQ , (1)

where 01 ==− Ncc and *Ν∈r . In (1), the two’s complement
representation of C is split into ()⎡ ⎤rN /1+ slices (jQ), each of

r+1 bit length. Each pair of two contiguous slices has one
overlapping bit. A digit-set ()rDS 2 corresponds to (1), such as

 () { }1111 2,12,...,1,0,1,...,12,22 −−−− −−+−−=∈ rrrrr
j DSQ .

The sign of the Qj term is given by the crj+r–1 bit,
and j

k
j mQ j ×=2 , with { }1210 −∈ r,...,,,kj and () { }1,02 Ur

j OMm ∈ ,

where () { }12,...,7,5,32 1−= −rrOM . ()rOM 2 is the set of odd

positive digits in radix-2r recoding, with () 122 2 −= −rrOM .
Since each slice Qj comprises r+1 bits, the total number of

the different bit-combinations is 2r+1. According to (1), only
two combinations produce Qj = 0: in case all the r+1 bits are
equal to “0” or “1”. Hence, the average number of non-null Qj
terms is equal to () rrr −++ −=− 21222 11 / . Each Qj≠0 generates
one partial product (PP). Thus, the average number of PPs in
the ()⎡ ⎤rN /1+ slices is: () ()⎡ ⎤rNAvg r

pp /121 +×−= − .

For each ()r
j OMm 2∈ there exists an integer (){ }rOMk 221 ...,,,∈ ,

such as 12 +×= kmj . To set the correspondence between j and
k, mj is denoted mjk. The number of occurrences (Occ) of mjk
among the 2r+1 combinations of Qj is

 () ⎥⎥

⎤
⎢⎢

⎡
+×

×=
−

12
2log4

1
2 k

mO
r

jkcc
. (2)

The factor 4 in (2) is due to the fact that each occurrence of
mjk in the positive and negative part of ()rDS 2 is double (see

Radix-2r Arithmetic for Multiplication by a Constant:
Further Results and Improvements

Abdelkrim K. Oudjida, Nicolas Chaillet, and Mohamed L. Berrandjia

B

A.K. Oudjida (a_oudjida@cdta.dz) and M.L. Berrandjia are with “Centre de
Développement des Technologies Avancées”, CDTA, Cité du 20 août 1956,
Baba-Hassen, Algiers, Algeria. N. Chaillet (nicolas.chaillet@femto-st.fr) is
with FEMTO-ST Institute, UFC/CNRS/ENSMM/UTBM, 32 avenue de
l'Observatoire, 25044 Besançon, Cedex, France.

1549-7747 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCSII.2014.2387620, IEEE Transactions on Circuits and Systems II: Express Briefs

TABLE I
RADIX-2r VERSUS CSD: Avg, Ath, and Upb FOR AN N-BIT CONSTANT

N 8 16 32* 64* 128 256 512 1024 2048 4096 8192
r 3 3 4 5 5 6 6 7 8 8 9

RADIX-2r min
max 1.86 4.51 8.96 16.44

18.59
30.37
31.18

54.00
56.32

98.11
98.65

174.19
175.85

313.43
317.99

572.41
572.99

1033.38
1035.22

CSD 2.11 4.77 10.11 20.77 42.11 84.77 170.11 340.77 682.11 1364.77 2730.11 Avg
Saving (%) 1.19 5.45 11.37 15.69 26.92 34.92 42.16 48.63 53.71 58.03 62.11

RADIX-2r …
 //

3
3

6
4

10
6

15
7

28
8

46
10

89
11

151
13

262
15

518
16

917
17

CSD …
 //

4
3

8
4

16
5

32
6

64
7

128
8

256
9

512
10

1024
11

2048
12

4096
13

Ath

Saving (%) …
 //

25.00
00.00

25.00
00.00

37.50
–20.00

53.12
–16.66

 56.25
–14.28

 64.06
–25.00

 65.23
–22.22

 70.50
–30.00

 74.41
–36.36

 74.70
–33.33

 77.61
–30.76

RADIX-2r 3 6 11 19 32 57 100 177 319 575 1037
CSD 4 8 16 32 64 128 256 512 1024 2048 4096 Upb

Saving (%) 25.00 25.00 31.25 40.62 50.00 55.46 60.93 65.42 68.84 71.92 74.68

N is the bit-size of a nonnegative constant; ()())2(/)2(12 loglogNWr ⋅+⋅= . For N≥64, the saving in Avg is calculated considering (min+max)/2.
*: For N=32, both r=3 and r=4 produce the same Upb, but r=4 yields lower Ath. The same holds true for N=64 with r=4 and r=5.
…: Serial implementation (adders connected in series); //: Parallel implementation based on a tree structure. For RADIX-2r, Ath…= ()⎡ ⎤ 3/1 −++ rrN ,
and Ath//= ()⎡ ⎤⎡ ⎤ 2/12 −++ rrNlog . For CSD, Avg = () 9/83/1 −+N , Upb= ()⎡ ⎤ 12/1 −+N , Ath…= ()⎡ ⎤ 12/1 −+N , and CSD Ath//= ()⎡ ⎤⎡ ⎤2/12 +Nlog .
Erratum: In [1], we took CSD Avg = 9/8)3/(−N , which is the average of a two’s complement N-bit constant (see the proof in [11]).

Table VI in [1]). The reason is that the crj−1 and crj bits in (1)
have the same influence ()⋅⋅⋅+×+×−

00
1 22 rjrj cc on the Qj term.

Therefore, the probability (P) that mjk occurs among 2r+1
combinations is () () 12/ += r

jkccjk mOmP . We deliberately employ
“probability” instead of the “average” to facilitate the
demonstration, but actually the two notions have the same
meaning. Now, the probability that mjk occurs in the slice Qj
knowing that it has not occurred in the slices preceding the
slice j is (Bayes’s theorem):

() ()
()

() ()[] () ()[] j
jkjk

j
jkjkjk

jk mPmP
mPmP

jP
jmP

j/mP −×=
−×

== 1
1

1I
.

The probability that any ()∀

mjk, for ()rOMk 21 ..= , occurs

in the slice Qj knowing that it has not occurred in the slices

preceding the slice j is () ()
()
∑
=

=∀

rOM

k
jkjk jmPjmP

2

1
// . Note that the

()jmP jk / are mutually exclusive, since one and only one odd-
digit (mjk) occurs in the slice j. Consequently, the average
number of generated odd-digits considering all slices is

()
⎡ ⎤

∑
−+

=

∀=
1/)1(

0
/

rN

j
jkom jmPAvg .

Hence, the average number of additions for RADIX-2r is
ompp AvgAvgAvg ++−≥ 1

(3)

() ⎡ ⎤ () ()[]⎡ ⎤

∑ ∑
−+

=

−

=

−

⎭
⎬
⎫

⎩
⎨
⎧

−×++×−+−≥
−1/)1(

0

12

1

2

1/)1(211
rN

j k

j
jkjk

r
r

mPmPrN .

omAvg

does not take into account the fact that for r>4 some

odd-digits require more than one addition. For instance, the
digit 11 requires 2 additions. But if the digit 3 occurs in the
same recoding, 11 will need just one addition since 11=23+3.
However, we proved in [1] that 12 2 −≤ −r

omAvg

(see Theorem

(1) in [1]). Consequently, we can say that Avg is bounded by

2221 −++−≤≤++− r
ppompp AvgAvgAvgAvg

We also proved in [1] that to get the minimum number of
additions (Upb), r must be equal to
 ()())2(/)2(12 loglogNWr ⋅+⋅= , (4)
where W is the Lambert function.

Using the two Avg limits, we have bounded the average for
N varying from 64 to 8192. Results are reported in Table I. It
has to be noted that for r≤4, ompp AvgAvgAvg ++−= 1 .

We observe that for RADIX-2r, Avg is very close to Upb.
The reason is that the average of the null Qj digits is very low:

() ()⎡ ⎤
()⎡ ⎤

rrj
rN

rNQAvg
2

/1
/1

2
20

1

+
=+×==∀

+
. Note that RADIX-2r

provides 50% saving over CSD in Avg for N=1134.
Theorem (1) in [1] allows building the entire set of odd-

digits in just r−2 stages of cascaded additions. Since there are
⎡ ⎤rN /)1(+ slices, the total number of cascaded adders is
 ()⎡ ⎤ ()⎡ ⎤ 3/121/1 −++=−+−+= rrNrrNAth (5)

Based on the values of r given by (4), we have calculated
Ath and grouped the results in Table I. For a serial
implementation (adders connected in series), a saving of
slightly more than 50% over CSD is achieved at N=64. While
for a parallel implementation based on a tree structure, CSD
Ath is lower than RADIX-2r Ath for any value of N≥24. As for

()⎡ ⎤ 22/1 2 −++= −rrNUpb , 50% saving is attained at N=128.

III. RADIX-2r: A LOWER ADDER-DEPTH (Ath)
Equation (4) ensures a minimum Upb, whereas lower Ath

values are still possible. Any value of r, such as
()())2(/)2(12 loglogNWr ⋅+⋅< produces both higher Upb and Ath.

While the opposite, that is, ()())2(/)2(12 loglogNWr ⋅+⋅> leads to
a lower Ath but a higher Upb. To garantee a reasonable
balance, we set as a condition that the entire number of odd-
digits must be less or equal than the total number of slices

 () ()⎡ ⎤()rNOM r /12 +≤ . (6)

This condition avoids generating more odd-digits (12 2 −−r)
than it is actually invoked by the recoding process. Thus,
solving (6), a balanced solution for a lower Ath is found with

 () ()() ()2/2.1.4 loglogNWr += . (7)

Table II indicates the values of r that yield a lower Ath,
along with its corresponding Upb and Avg. Note that both (7)
and (4) provide exactly the same results for N≤20, either in
Ath, Upb, or Avg. Starting from N≥21, lower Ath are obtained
using (7) but at the expense of higher Upb and Avg as
indicated by Table I and II. For instance, for N=256 equation

1549-7747 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCSII.2014.2387620, IEEE Transactions on Circuits and Systems II: Express Briefs

(7) achieves a reduction of 10.86% over (4) in Ath, while it
causes an increase of 17.54% and 9.77% in Upb and Avg,
respectively. Contrary to Avg values corresponding to (4), the
ones of (7) are relatively far from Upb. Compared to CSD, a
saving of 50% in Ath is obtained by (7) for N=56.

Finally, to decide which r expression to use depends
actually on the design requirements. If area is targeted, (4) is
used. But in case speed or power are a concern, (7) is suitable.

IV. RADIX-2r: OVERFLOW SAFETY
In fixed-point representation, an overflow risk in SCM is

possible. It might be caused by uncontrolled left-shift spans,
especially for the last partial product (PP). Thus, lower bounds
on the maximum left-shift must be carefully considered to
ensure an overflow safety– this is more likely to the detriment
of the optimization of the number of additions [3]. As far as
we are aware, this issue has never been addressed in SCM
despite the big number of proposed heuristics.

In RADIX-2r, overflow safety is easy to prove. We consider
two nonnegative numbers, C and X, with n and m bit-lengths,
respectively. In two’s complement representation, the product

XCP ×= needs n+m+2 bits to be complete, i.e., without
truncation. We can write: 011 ppppP mnmn ⋅⋅⋅= +++ ; where

1++mnp is the sign bit. To be sure there is no overflow risk; we
must prove that the sign-bit of the last PP is set at most at the
n+m+1 position. We write:

() () ∑∑∑
−

+

=

−
+

=

−
+

=
=××−××−=××= −+

11

0

11

0

11

0
2112 1

r
n

j
j

rjxr
n

j
j

crj
r

n

j
j PPXQXQP mrrj ,

where the last PP is () () rnx
j

c
rn XQPP mn −+
−+ ××−××−= 1
1/)1(211 .

The maximal positive values that jQ and X can take are 2r−1
and 2m, respectively, to which corresponds a maximal PP of

() () mnxc
rn

mnPP ++
−+ ×−= 21max 1/)1(. In this case, mn+2 occupies the

n+m position, plus the sign bit just after at the n+m+1 position.
This proves that in RADIX-2r overflow never occurs.

V. RADIX-2r: FURTHER IMPROVEMENTS
The objective is to decrease Avg without increasing Upb.

Avg is successively reduced in two steps: by the utilization of
a redundant recoding, followed by a Common Digit
Elimination (CDE) step on the PP set. In RADIX-2r, CDE is
already applied on the odd-digits (mj) by the recoding itself. A
second order of CDE can be applied again on the Qj terms
thanks to redundancy. We present hereafter a linear runtime
Redundant Radix-2r Recoding (R3) with a better Avg while
preserving the same Upb as in RADIX-2r.

Equation (1) can be rewritten in more details as

 () ()
()

rj
rN

j

k
j

c jrrj mC 221
1/1

0

1 ×××−= ∑
−+

=

−+ , (8)

with { }12...,,5,3,1,0 1 −∈ −r
jm and { }1,...,2,1,0 −∈ rkj .

To enable CDE at the Qj level, we announce the following
theorem.
Theorem 1. Any digit ()r

j DSQ 2∈ can be represented in a

combination of digits ()s
ji DSP 2∈ , such as s is a divider of r.

The proof of this theorem is given in [12]. When Th. (1) is

applied to eq. (1), it gives:
()()

rj
rN

j

sr

i

si
jiPC 22

1/1

0

1/

0
∑ ∑

−+

=

−

= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= (9),

where () { }1111 21201222 −−−− −+−−=∈ sssss
ji ,,...,,...,,DSP ,

() { }12312 1 −= −ss ,...,,OM such as () () () sksr OMOM 122/2 −=

with r/s=k. The major advantage of Theorem (1) is that it
yields an exponential reduction (1/2(k−1)s) of the number of
odd-digits in (9) in comparison to (1), but at the expense of a
linear increase (k−1) in the number of additions. Theorem (1)
allows a recursive recoding which enabled to design efficient
variable multipliers [12] and multi-precision multipliers [13].

Corollary 1. In radix-2r, () jjj h
j

el
jj vuQ 212 ××−+×= , where:

(){ }12,...,5,3,1,0, 12/ −∈ −r
jj vu ; { }1,...,2,1,0 −∈ rl j

;

{ };1)2/(,...,2,1,0 −∈ rh j
 and { }1,0∈je .

Proof. This corollary is a direct consequence of Theorem (1)
applied for r/s=2. This means that Qj digit, which is r+1 bit-
length, is split into two overlapping sub-digits Pj0 and Pj1, each
of r/2+1 bit-length. This assumes that r is even. If r is odd,
Theorem (2) in [12] is applied instead of Theorem (1). For
r/s=2, equation (9) becomes: () rj

rN

j

r
jj PPC 22

1/)1(

0

2/
10 ××+= ∑

−+

=

. Note

that 2/
10 2r
jjj PPQ ×+= , and that Pj0 and Pj1 have exactly

the

same properties as Qj, which means that they can be expressed
in the same way Qj is written in (8). Thus, we get

 () ()[] rjh
j

el
j

rN

j

c jjjrrj vuC 22121
1/)1(

0

1 ×××−+××−= ∑
−+

=

−+ . (10)

Because addition is a non-injective function, the quintuplet
(uj, lj, ej, vj, hj) is not unique; several ones might exist for the
same jQ value. For instance, 35=jQ can be expressed as
35=1×25+3×20, or 35=5×23–5×20, or 35=7×22+7×20.
Consequently, Eq. (10) is a Redundant Radix-2r Recoding
(R3) [10] of the constant C.

Corollary (1) is just one case (r/s=2) among many others. A
number of Qj partitionings are possible (r/s=3, 4, 5, ...), but
higher values of r/s increase the number of sub-digits (uj, vj,
wj, tj, zj, …), which makes (10) difficult to handle.
 R3 algorithm is illustrated hereafter for the particular case
of 21≤N≤83. For this interval, optimal Upb in RADIX-2r is
attained with r=4 (see the Upb formula). To preserve
optimality in Upb for R3, the trick here is to use sub-digits (Pj0
and Pj1) with s=4, which means that for Qj r=2×4=8. Hence,
with (s, r)=(4, 8) optimality in Upb is guaranteed.

For r=8, 0≤ |Qj| ≤128, and (10) becomes:

TABLE II
Ath, Upb, Avg, AND r VALUES FOR AN N-BIT CONSTANT USING RADIX-2r

N 8 16 32 64 128 256 512 1024 2048 4096 8192
r 3 3 5 5 6 7 8 8 9 10 11

Ath
…

 3 6 9 15 25 41 70 134 234 417 753

Upb 3 6 13 19 36 67 127 191 354 664 1255

Avg 1.86 4.51
9.21
12.78

16.44
18.59

30.42
35.65

54.39
66.71

99.36
126.74

176.30
190.49

320.61
353.55

589.61
663.59

1091.70
1254.53

N is the bit-size of a nonnegative constant; () ()() ()2/2.1.4 loglogNWr += .
…: Serial implementation.

1549-7747 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCSII.2014.2387620, IEEE Transactions on Circuits and Systems II: Express Briefs

 c−1 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20 c21 c22 c23

() () 710210
cZZQ −×+=

16
2

8
1

0
0 222 ×+×+×= QQQC

() () 1511211
cZZQ −×+=

() () 2312212
cZZQ −×+=

 8+1 bits
 : c−1= c23= 0 C

 23+1 bits
Qj () 1280 21 ≤+≤ jZZ

: c7 , c15 , c23 are sign bits
 Fig. 1. Partitioning of a 23-bit constant C using R3 algorithm.

TABLE III
R3 ALGORITHM: ODD AND EVEN |QJ| DIGIT RECODING FOR 21≤N≤83

Odd |Qj| Z1=uj× 2lj Z2=(−1)ej×vj × 2hj (Z1+ Z2)j Even|Qj| (Z1+ Z2)j
1 1 × 2 0 0 × 2 0 U1 2 21 × U1
3 3 × 2 0 0 × 2 0 U3 4 22 × U1
5 5 × 2 0 0 × 2 0 U5 6 21 × U3
7 7 × 2 0 0 × 2 0 U7 8 23 × U1
9 1 × 2 3 1 × 2 0 U9 10 21 × U5

11 3 × 2 2 −1 × 2 0 U11 12 22 × U3
13 3 × 2 2 1 × 2 0 U13 14 21 × U7
15 1 × 2 4 −1 × 2 0 U15 16 24 × U1
17 1 × 2 4 1 × 2 0 U17 18 21 × U9
19 5 × 2 2 −1 × 2 0 U19 20 22 × U5
21 5 × 2 2 1 × 2 0 U21 22 21 × U11
23 3 × 2 3 −1 × 2 0 U23 24 23 × U3
25 3 × 2 3 1 × 2 0 U25 26 21 × U13
27 7 × 2 2 −1 × 2 0 U27 28 22 × U7
29 7 × 2 2 1 × 2 0 U29 30 21 × U15
31 1 × 2 5 −1 × 2 0 U31 32 25 × U1
33 1 × 2 5 1 × 2 0 U33 34 21 × U17
35 1 × 2 5 3 × 2 0 U35 36 22 × U9
37 1 × 2 5 5 × 2 0 U37 38 21 × U19
39 5 × 2 3 −1 × 2 0 U39 40 23 × U5
41 5 × 2 3 1 × 2 0 U41 42 21 × U21
43 5 × 2 3 3 × 2 0 U43 44 22 × U11
45 3 × 2 4 −3 × 2 0 U45 46 21 × U23
47 3 × 2 4 −1 × 2 0 U47 48 24 × U3
49 3 × 2 4 1 × 2 0 U49 50 21 × U25
51 3 × 2 4 3 × 2 0 U51 52 22 × U13
53 3 × 2 4 5 × 2 0 U53 54 21 × U27
55 7 × 2 3 −1 × 2 0 U55 56 23 × U7
57 7 × 2 3 1 × 2 0 U57 58 21 × U29
59 1 × 2 6 −5 × 2 0 U59 60 22 × U15
61 1 × 2 6 −3 × 2 0 U61 62 21 × U31
63 1 × 2 6 −1 × 2 0 U63 64 26 × U1
65 1 × 2 6 1 × 2 0 U65 66 21 × U33
67 1 × 2 6 3 × 2 0 U67 68 22 × U17
69 1 × 2 6 5 × 2 0 U69 70 21 × U35
71 1 × 2 6 7 × 2 0 U71 72 23 × U9
73 5 × 2 4 −7 × 2 0 U73 74 21 × U37
75 5 × 2 4 −5 × 2 0 U75 76 22 × U19
77 5 × 2 4 −3 × 2 0 U77 78 21 × U39
79 5 × 2 4 −1 × 2 0 U79 80 24 × U5
81 5 × 2 4 1 × 2 0 U81 82 21 × U41
83 5 × 2 4 3 × 2 0 U83 84 22 × U21
85 5 × 2 4 5 × 2 0 U85 86 21 × U43
87 5 × 2 4 7 × 2 0 U87 88 23 × U11
89 3 × 2 5 −7 × 2 0 U89 90 21 × U45
91 3 × 2 5 −5 × 2 0 U91 92 22 × U23
93 3 × 2 5 −3 × 2 0 U93 94 21 × U47
95 3 × 2 5 −1 × 2 0 U95 96 25 × U3
97 3 × 2 5 1 × 2 0 U97 98 21 × U49
99 3 × 2 5 3 × 2 0 U99 100 22 × U25

101 3 × 2 5 5 × 2 0 U101 102 21 × U51
103 3 × 2 5 7 × 2 0 U103 104 23 × U13
105 7 × 2 4 −7 × 2 0 U105 106 21 × U53
107 7 × 2 4 −5 × 2 0 U107 108 22 × U27
109 7 × 2 4 −3 × 2 0 U109 110 21 × U55
111 7 × 2 4 −1 × 2 0 U111 112 24 × U7
113 7 × 2 4 1 × 2 0 U113 114 21 × U57
115 7 × 2 4 3 × 2 0 U115 116 22 × U29
117 7 × 2 4 5 × 2 0 U117 118 21 × U59
119 7 × 2 4 7 × 2 0 U119 120 23 × U15
121 1 × 2 7 −7 × 2 0 U121 122 21 × U61
123 1 × 2 7 −5 × 2 0 U123 124 22 × U31
125 1 × 2 7 −3 × 2 0 U125 126 21 × U63
127 1 × 2 7 −1 × 2 0 U127 128 27 × U1

Note that 9=1×2 3+1×2 0 in R3 (1 addition) and 9=1×2 4−7×2 0 in RADIX-2r
(2 additions), taking into account that the recoding is on 8+1=9 bits (Fig. 1).
There are many cases where the number of additions is lower, as in 10, 40,…

()() () jc
N

j

h
j

el
j

jjjj vuC 8
18/)1(

0
21212 78 ×−×××−+×= +∑

−+

=

() () jc

N

j
j

jZZ 8
18/)1(

0
21 21 78 ×−×+= +∑

−+

=

, (11)

where jl
juZ 21 ×= ; () jj h

j
e vZ 212 ××−= ; uj and { };7,5,3,1,0∈jv

{ };7,...,2,1,0∈jl { };3,2,1,0∈jh and { }.1,0∈je

Note that |Qj|=(Z1+Z2)j. The product C×X becomes:

() () ()[] () jc
N

j

h
j

ep
j

jjjj XvXuXC 8
18/)1(

0
21212 78 ×−××××−+××=× +∑

−+

=

 (12)

The partitioning of the constant C according to (11) is
depicted in Fig. 1.

Since jQ may have several notations in (Z1, Z2), we must
carefully select among a big number of cases, the recoding
(R3) that yields an Avg not higher than RADIX-2r Avg. We
have shown that for RADIX-2r, () ⎡ ⎤ r

j rNQAvg 2//)1(0 +==∀ ,
and based on the same reasoning developed in Section II we
can easily prove that () () ⎡ ⎤ r

j rNrQAvg 2//)1(121 +×−×==∀ . Thus,
we can write: () ⎡ ⎤ 12//)1(1,0 −+×==∀ r

j rNrQAvg . Keeping the

same ()1,0=∀ jQAvg
 value in R3 ensures that the total R3 Avg

will not be higher than RADIX-2r Avg, because the number of
PPs and the odd-digit set are identical in R3 and RADIX-2r.
This means also that R3 and RADIX-2r have the same Ath.

One efficient R3 recoding is obtained using a C-program
that exhaustively explores for each odd |Qj| varying from 1 to
127, all (uj, lj, ej, vj, hj) possibilities and selects the least adder
consumer combination according to the following priority
ordering: (uj,vj)=(uj,0); (uj,vj)=(1,1); (Z1,Z2)=(1×27,Z2); and
finally (Z1,Z2)=(Z1,±1×20). These two latter couples allow the
following simplifications:

() () () LLLL ±×+×−×−=±××−+×+×+ ++ 88
1

8
2

7880
1

8
2

7 2221221221 jjjj ZZZZ
() () () LLLL ±×+×−×+=±××++×+×− ++ 88

1
8

2
7880

1
8

2
7 2221221221 jjjj ZZZZ

In case none of those cited cases is encountered, C-program
pursues in the following priority ordering: (uj,vj)=(1,3) or
(3,1); (uj,vj)=(3,3); (uj,vj)=(1,5) or (5,1); (uj,vj)=(5,5); (uj, vj)=
(1,7) or (7,1); (uj,vj)=(7,7); (uj,vj)= (3,5) or (5,3); (uj,vj)=(3,7)
or (7,3); (uj,vj)=(5,7) or (7,5). This ordering maximizes the
occurrences of the digit “1”, then of “3”, and minimizes those
of “5” and “7” in |Qj| digits, which will more likely reduce the
number of additions in the whole recoding of the constant C.
Optimized odd |Qj| combinations are grouped in Table III.
Even |Qj| combinations are directly derived from the odd ones
using a left-shift operation.

For a given 21≤N≤83, optimality in Upb for RADIX-2r and
R3 is guaranteed with r=4 and (s, r)=(4, 8), respectively.
To RADIX-2r corresponds () ⎡ ⎤ 2/4/)1(1,0 +==∀ NQAvg j .

 Counting the number of uj=1, vj=0, and vj=1 in both the odd
and even |Qj| of Table III, we can easily prove that for R3,

() ()⎡ ⎤ 128/8/1240 +×==∀ NvAvg j
 and

() () ()⎡ ⎤ 128/8/110411 +×==∀+=∀ NvAvguAvg jj . This gives

() () ⎡ ⎤8/)1(1,01 +==∀+=∀ NvAvguAvg jj
 , which is equal to

()1,0=∀ jQAvg . This is the formal proof that R3 Avg can not
be higher than RADIX-2r Avg.

As for Upb, R3 comprises ⎡ ⎤8/)1(+N terms Qj, each one
groups two digits (Z1,Z2). Thus, the total number of PPs is

⎡ ⎤4/)1(+N . Since 3 odd-digits are required, ⎡ ⎤ 24/)1(++= NUpb ,
which is equal to RADIX-2r Upb. It is important to mention
that 21≤N≤83 was chosen just to make the demonstration
simpler (Table III), but the proofs hold true for any value of N.

1549-7747 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCSII.2014.2387620, IEEE Transactions on Circuits and Systems II: Express Briefs

TABLE IV
R3 VERSUS RADIX-2r: AVERAGE

NUMBER OF ADDITIONS (Avg)
Avg

N RADIX-2r R3
Saving

%
8 1.86 1.79 3.76
16 4.51 4.32 4.21
24 6.79 6.48 4.56
32 8.96 8.51 5.02
64 17.51 15.03* 14.16

*: Obtained from 1010 uniformly
distributed random values of C. N is
the bit-size of the constant C. For N=8,
the saving is exclusively due to the
redundancy (see Table III).

TABLE V
R3 VERSUS RADIX-2r: SMALLEST

VALUES UP TO A 32-BIT CONSTANT

q RADIX-2r R3
1 3 3
2 11 11
3 43 43
4 139 139
5 651 651
6 2699 2699
7 33419 34971
8 526491 559259
9 8422027 17336475

10 134744219 143163547
11 2155905675 2290385547

q: number of additions.

 Fig. 2. Avg comparison for an N-bit constant.

CDE is performed in a linear runtime on the ⎡ ⎤8/)1(+N
digits Uk as an ultimate optimization step. It is illustrated by
the product P=(2631689)10×X. We first calculate the product
(P) in RADIX-2r and then in R3.
PRADIX = X0×220–X×219+X0×212–X×211+X×24–X1
with X0=(X×2)+X and X1=(X×23)–X.
PR3=U40×216+U40×28+U9 with U40= U5×23

 ; U5=(X×22)+X and
U9=(X×23)+X. Note that PRADIX requires 7 additions, while PR3
needs only 4. A saving of 2 additions is due to the redundancy
(U9 and U40), and a saving of 1 addition is due to CDE (U40).

Avg has been exhaustively calculated for values of C
varying from 0 to 2N−1, for N=8, 16, 24, and 32. But for N=64,
we have computed Avg using 1010 uniformly distributed
random values of C. For N=64, R3 uses 14.16% less additions
than RADIX-2r (Table IV). For N≤32, the saving is not
substantial because the number of Uk digits is low (≤4). But
for N=64, it is equal to 8, offering more possibilities to CDE.

We have also determined the smallest value that requires q
additions, for q varying from 1 to the Upb of the recoding.
Table V summarizes the results for a 32-bit constant. Note that
starting from q=7, higher values are given by R3.

We have compared R3 to a number of well-known non-
recoding heuristics, for which neither Avg nor Upb bounds are
known. While they exhibit lower Avg (Fig. 2), their respective
Upb could be higher (Bernstein's algorithm, Table VI).

VI. CONCLUSION AND FUTURE WORK
A fully-predictable and sublinear-runtime SCM heuristic

has been developed (RADIX-2r) and improved (R3). In
addition to the maximum number of additions, we have also

determined the exact complexities for the average and adder-
depth. These three complexities are the lowest analytic bounds
known so far for the multiplication by a constant. However,
optimal bounds remain an open research problem.

Our current work deals with the application of radix-2r

arithmetic to the multiple-constant-multiplication problem.

REFERENCES
[1] A.K. Oudjida and N. Chaillet, “Radix-2r Arithmetic for Multiplication by a

Constant,” IEEE Trans. on Circuits and Systems II: Express Brief, vol. 61,
no 5, pp. 349-353, May 2014.

[2] A. Avizienis, “Signed-digit number representation for fast parallel
arithmetic,” IRE Trans. on Electronic Computers, vol. EC-10, No. 3, pp.
389–400, September 1961.

[3] V.S. Dimitrov, L. Imbert, and A. Zakaluzny, “Multiplication by a Constant is
Sublinear,” Proceedings of the 18th IEEE Symposium on Computer
Arithmetic (ARITH), pp. 261-268, Montpellier, France, June 25-27 2007.

[4] R.L. Bernstein, “Multiplication by Integer Constant,” Software– Practice and
Experience 16, 7, pp. 641-652, 1986.

[5] V. Lefèvre, “Multiplication by an Integer Constant,” INRIA Research
Report, No. 4192, Lyon, France, May 2001.

[6] A.G. Dempster and M.D. Macleod, “Use of Minimum Adder Multiplier
Blocks in FIR Digital Filters,” IEEE Trans. on Circuits and Systems-II:
Analog and Digital Signal Processing 42, 9, pp. 569-567, 1995.

[7] Y. Voronenko and M. Püschel, “Multiplierless Multiple Constant
Multiplication,” ACM Trans. on Algorithms (TALG), vol. 3, No. 2, article
11, pp. 1-38, May 2007.

[8] O. Gustafsson, A.G. Dempster, and L. Wanhammar, “Extended Results for
Minimum-Adder Constant Integer Multipliers,” Proceedings of the IEEE
International Symposium on Circuits and Systems (ISCAS), vol. 1, pp. I-73 I-
76, Scottsdale Arizona, USA, May 2002.

[9] K. Johansson, O. Gustafsson, L.S. DeBrunner, and L. Wanhammar,
“Minimum Adder Depth Multiple Constant Multiplication Algorithm for
Low-Power FIR Filters,” Proceedings of the IEEE International Symposium
on Circuits and Systems (ISCAS), pp. 1439-1442, Rio de Janeiro, Brazil,
May 2011.

[10] A.K. Oudjida, M.L. Berrandjia, and N. Chaillet, “A New Low-Power
Recoding Algorithm for Multiplierless Single/Multiple Constant
Multiplication,” Proceedings of the 12th edition of IEEE-FTFC Low-Voltage
Low-Power Conference, DOI:10.1109/FTFC.2013.6577750, Paris, France,
June 19-21 2013.

[11] R.I. Hartley, “Subexpression Sharing in Filters Using Canonic Signed Digit
Multipliers,” IEEE Trans. on Circuits and Systems II: Analog and Digital
Signal Processing, vol. 43, No. 10, pp. 677-688, October 1996.

[12] A.K. Oudjida, N. Chaillet, M.L. Berrandjia, and A. Liacha, “A New High
Radix-2r (r ≥ 8) Multibit Recoding Algorithm for Large Operand Size (N ≥
32) Multipliers,” Journal of Low Power Electronics (JOLPE), vol. 9, N° 1,
pp. 50-62, ISSN: 1546-1998/2013/9/50/62, American Scientific Publishers
(ASP), April 2013.

[13] A.K. Oudjida, N. Chaillet, A. Liacha, and M.L. Berrandjia, “A New
Recursive Multibit Recoding Algorithm for High-Speed and Low-Power
Multiplier, ” Journal of Low Power Electronics (JOLPE), vol. 8, N° 5, pp.
579-594, ISSN: 1546-1998/2012/8/579/594, American Scientific Publishers
(ASP), December 2012.

[14] J. Thong and N. Nicolici, “An optimal and practical approach to single
constant multiplication,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 30, no. 9, pp. 1373-1386, Sep. 2011.

TABLE VI
 R3 and RADIX-2r VERSUS NON-RECODING ALGORITHMS: RUNTIME
COMPLEXITY AND NUMBER OF ADDITIONS OF SOME SPECIAL CASES

 Algorithm (84AB5)H

N=20
(64AB55)H

N=23
(5959595B)H

N=31
Runtime [7]

BIGE [14] 4 5 6 O(2
N)

Bernstein [4] 8G 7 8 O(2
N) [5]

Hcub [7] 4 6 8 O(N
6)

BHM [6] 5 7 9 O(N
4)

Lefèvre [5] 4 6 9 O(N
3)

RADIX-2r [1] 5 7 10 O(N/r)
R3 4 6 8 O(N)

N: Constant bit-size; ()())2/log()2log(1W2 ⋅+⋅= Nr ; G: Greater than
R3 Upb; R3 Upb= 7, 8, and 10 for N=20, 23, and 31, respectively;
x: Optimal number of additions.

