
Design of Low-Complexity Digital Finite Impulse

Response Filters on FPGAs

Levent Aksoy
INESC-ID

Lisboa, Portugal

Eduardo Costa
UCPEL

Pelotas, Brazil

Paulo Flores
INESC-ID/IST TU Lisbon

Lisboa, Portugal

Jose Monteiro
INESC-IDIIST TU Lisbon

Lisboa, Portugal

Abstract-The multiple constant mUltiplications (MCM) op­
eration, which realizes the multiplication of a set of constants
by a variable, has a significant impact on the complexity and
performance of the digital finite impulse response (FIR) filters.
Over the years, many high-level algorithms and design methods
have been proposed for the efficient implementation of the MCM
operation using only addition, subtraction, and shift operations.
The main contribution of this paper is the introduction of a high­
level synthesis algorithm that optimizes the area of the MCM
operation and, consequently, of the FIR filter design, on field
programmable gate arrays (FPGAs) by taking into account the
implementation cost of each addition and subtraction operation
in terms of the number of fundamental building blocks of FPG As.
It is observed from the experimental results that the solutions of
the proposed algorithm yield less complex FIR filters on FPGAs
with respect to those whose MCM part is implemented using
prominent MCM algorithms and design methods.

I. INTRODUCTION

FIR filters are widely used in Digital Signal Processing
(DSP) applications due to their stability and linear-phase
property. The multiplier block of the FIR filter (Figure 1),
where the multiplications of filter coefficients by the filter
input are realized, dominates the complexity of the design
since a large number of constant multiplications are required.
This block is generally known as the MCM operation and is
a central operation and performance bottleneck in many DSP
applications, such as video coding and image compression.

In DSP applications that demand high performance, since
general purpose or DSP processors cannot handle the amount
of data to be processed, Application Specific Integrated Cir­
cuits (ASIC) or FPGAs is the common design platform. With
the advancement of technology for FPGAs, it is now possible
to implement high-speed DSP algorithms using bit-parallel
arithmetic on FPGAs. However, while constant multiplication
plays a key role in DSP, the multiplication is a costly operation
in FPGAs since it consumes significant FPGA resources and
operates with relatively long latencies.

In the last two decades, prominent high-level synthesis
algorithms [1]-[6] have been introduced for the efficient
design of constant multiplications. Since the constant coef­
ficients are determined beforehand by the DSP algorithms,
the main idea is to replace the constant multiplications with

This work was supported by the Portuguese Foundation for Science
and Technology (FCT) under the research project Multicon - Architectural

Optimization of DSP Systems with Multiple Constants Multiplications and
INESC-ID multiannual funding through the PIDDAC Program funds.

978-3-98 I 080t-8-6/DATEI 2/©201 2 EDAA

x(n) -;--+----..... ----+--

Fig. I. Transposed form of a digital FIR filter implementation.

addition/subtraction and shift operations without requiring the
full-flexibility of a multiplier. Thus, their primary objective
is to find the minimum number of addition and subtraction
operations that realize the constant multiplications. Note that
shifts can be realized using only wires in a bit-parallel design
without representing any hardware cost.

For the implementation of constant multiplications under
the shift-adds architecture, a straightforward method, generally
known as the digit-based recoding [7], initially defines the
constants in multiplications under binary representation. Then,
for each 1 in the representation of the constant, according
to its bit position, it shifts the variable and adds up the
shifted variables to obtain the result. As a simple example,
consider the constant multiplications 29x and 43x. Their
decompositions in binary are listed as:

29x = (ll101)binx = X « 4 + x « 3 + x « 2 + x

43x = (lOlO11)binx = X « 5 + x « 3 + x « 1 + x

and require 6 addition operations as given in Figure 2(a).
The complexity of an MCM operation can be further

reduced by sharing partial products among the constant mul­
tiplications. The prominent algorithms can be categorized in
two classes: Common Subexpression Elimination (CSE) [1]­
[3] techniques and graph-based (GB) [4]-[6] methods. The
CSE algorithms first define the constants under a particular
number representation, namely, binary, Canonical Signed Digit
(CSD) [1], or Minimal Signed Digit (MSD) [2], and then,
find the "best" subexpression, generally the most common,
among the constant multiplications. The GB algorithms are
not restricted to any particular number representation and
consider a large number of alternative implementations of
a constant multiplication, yielding better solutions than the
CSE algorithms [5], [6]. Returning to our simple example, the
exact CSE algorithm [3] obtains a solution with 4 operations
by finding the most common partial products 3x = (ll)binx
and 5x = (101)binX when constants are defined under binary
(Figure 2(b)). The exact GB algorithm [6] finds the minimum

x

29x 43x

x

29x

(a) (b)

43x

x

43x
(c)

Fig. 2. Shift-adds implementations of 29x and 43x: (a) without partial
product sharing [7]; with partial product sharing: (b) the algorithm of [3];
(c) the algorithm of [6].

number of operations solution with 3 operations by sharing
the common partial product 7x in both multiplications (Fig­
ure 2(c)). Observe that the partial product 7x = (111)binx
cannot be extracted from the binary representations of both
multiplications 29x and 43x in the exact CSE algorithm [3].

Although the solutions of these algorithms lead to less
complex MCM designs on FPGAs due to fewer number of
operations, it is obvious that their solutions may not yield a
design using the minimum amount of resources in FPGAs.
This is simply because these algorithms do not consider the
implementation cost of each addition/subtraction operation in
terms of the main building blocks of FPGAs, e.g. , look-up
tables (LUTs) or configurable logic blocks (CLBs). Although
there exist high-level techniques [8], [9] whose solutions are
realized on FPGAs, to the best our knowledge, there exists
no high-level MCM algorithm that targets the optimization of
MCM area on FPGAs considering its specifications. Hence,
this paper introduces an approximate algorithm, called LUTOR,

that initially applies the Hcub algorithm [5] on an MCM in­
stance to find a solution with the fewest number of operations.
Then, a 0-1 Integer Linear Programming (ILP) technique is
applied on the solution of Hcub to obtain a set of operations
which leads to an MCM design using minimum number of
4-input LUTs on FPGAs. Although LUTOR focuses on the
synthesis of the MCM operation on Xilinx Virtex 4 FPGAs, its
cost function can be easily modified for other Xilinx families
including 5 or 6-input LUTs or for the Altera FPGAs. It is
observed that LUTOR leads to significant reductions in the
number of 4-input LUTs and, consequently, in the area of
the MCM design on FPGAs, with respect to efficient MCM
algorithms. The experimental results show that the shift-adds
design of MCM operations using high-level algorithms yield
less complex multiplier blocks and, consequently, less complex
FIR filters, when compared to those designed using LUT-based
constant multipliers [10] and generic multipliers.

The rest of the paper proceeds as follows. Section II
presents the background concepts and the LUTOR algorithm is
introduced in Section III. The experimental results are given
in Section IV and finally, Section V concludes the paper.

II. BACKGROUND

This section presents the background concepts, introduces
the problem definitions, and gives an overview on previously
proposed prominent MCM algorithms and design methods.

A. 0-1 Integer Linear Programming

The 0-1 ILP problem is the minimization or the maxi­
mization of a linear cost function subject to a set of linear
constraints and is generally defined as follows 1 :

Minimize

Subject to A· x 2: b, x E {O, l}n
(1)

(2)

In (1), Wj in w is an integer value associated with each of
n variables Xj, 1 :::; j :::; n, in the cost function, and in (2),
A . x 2: b denotes the set of m linear constraints, where
b E 7Lm and A E 7Lm x 7Ln.

B. Multiplierless Constant Multiplication

The fundamental operation in multiplierless constant multi­
plications, called A-operation in [5], is an operation with two
integer inputs and one integer output that performs a single
addition or a subtraction, and an arbitrary number of shifts. It
is defined as:

W = A(u,v) = I(u« h) + (-1)S(v« l2)1» r (3)

where h, l2 2: 0 are integers denoting left shifts of the
operands, r 2: 0 is an integer indicating a right shift of the
result, and S E {O, I} is the sign, which determines if an
addition or a subtraction operation is to be performed.

In the MCM problem, the complexity of an adder and
a subtracter in hardware is assumed to be equal. It is also
assumed that the sign of the constant can be adjusted at
some part of the design and the shifting operation has no
cost in hardware due to the bit-parallel processing. Thus,
only positive and odd constants are considered in the MCM
problem. Observe from Eqn. (3) that in the implementation
of an odd constant with any two odd constants at the inputs,
one of the left shifts, II or l2, is zero and r is zero, or both
II and L2 are zero and r is greater than zero. Hence, only
one of the shifts, L1, h, or r, is greater than zero. Thus, any
A-operation that realizes an addition can be in the form of
u + 212v or (u + v)2-r, where in the former, only one of the
left shifts and the right shift are zero and in the latter, both
of the left shifts are zero. Also, the subtraction operations in
the form of 2l,u - v, u - 212v, and (u - v)2-r cover all
the cases where A-operation performs a subtraction. It is also
necessary to constrain the left shifts, hand l2, otherwise there
exist infinite ways of implementing a constant. In the exact
algorithm of [6], the number of shifts is allowed to be at most
bw + 1, where bw is the maximum bit-width of the constants
to be implemented. Thus, the MCM problem [5] is defined as:

Definition 1. THE MCM PROBLEM. Given the target set

composed of positive and odd un repeated target constants to

be implemented, T = {t 1, ... , tn} C N, find the smallest

ready set, R = {ro, r1, ... , rm}, with T C R, under the

1 The maximization objective can be easily converted to a minimization
objective by negating the cost function. Less-than-or-equal and equality con­
straints are accommodated by the equivalences, A . x ::; b ¢} -A· x ::::: -b
and A· x = b ¢} (A· x ::::: b) /\ (A . x ::; b), respectively.

TABLE I
IMPLEMENTATION COSTS OF ALL POSSIBLE A-operations.

A-operation
w=u+22v
W = (u + v)2-r
w=211u-v
w=u-212v
w = (u -v)2-r

*bwx -l2
bwx +r
bwx
bwx - 12
bwx +r

• This applies when there is a overlap in between input operands.

Otherwise, i.e., if 12 <': rtog2u 1, no LUT is required.

conditions of TO = 1 and for all Tk with 1 ::; k ::; m, there exist

Ti,Tj with 0::; i, j < k and an A-operation Tk = A(Ti,Tj).

Hence, the number of operations required to be implemented
for the MCM problem is IRI - 1, as given in [5]. Note that
the MCM problem is an NP-complete problem [11].

C. Addition and Subtraction Operations on FPGAs

We now consider the design of addition and subtraction
operations on Xilinx Virtex FPGAs [12]. The building block
of the Virtex CLB contains four logic cells (LCs) organized
as two slices. An LC includes a 4-input LUT, a carry chain
logic, and a storage element. While the 4-input LUT can
implement any 4-input logic function, dedicated carry logic
provides fast arithmetic carry capability. In Xilinx Virtex
FPGAs, in general, an addition/subtraction performed on two
n-bit operands requires n 4-input LUTs [12].

However, an A-operation has always a left shift or a right
shift value greater than 0, which may decrease the general cost
of an operation as indicated in [9]. Considering the advanced
optimization techniques available in the Xilinx ISE design
tool, that can exploit hardware simplifications when shifts
exist, we determined the costs of all possible A-operations

in terms of the number of 4-input LUTs as given in Table I.
In this table, bwx denotes the bit-width of the constant multi­
plication wx computed as P092W l + N, where N is the bit­
width of the input x. Note that these values were confirmed by
experiments carried on all types of A-operation with different
size of input operands and different shift values under signed
input on a Virtex 4 FPGA using the Xilinx ISE 13.1 design
tool. In the case of MCM, despite the optimization techniques
used in the design tool, our estimates are close to the synthesis
values as shown in Section IV. Hence, the optimization of area
problem in MCM design on FPGAs can be defined as follows:

Definition 2. THE O PTIMIZATION OF AREA PROBLEM IN

MCM DESIGN ON F PGA. Given the target set T
{h, ... , tn} C N, find the ready set R = {TO, Tl,"" Tm}
such that under the same conditions on the ready set given in

Definition i, the set of A-operations yields an MCM design

using minimum number of 4-bit LUTs in FPGAs.

D. Related Work

The exact CSE algorithms designed for the MCM problem
were introduced in [3], [13]. They initially define each target
constant under a number representation and extract all its
possible implementations from its representation. Then, the
MCM problem is defined as a 0-1 ILP problem and a solution

is obtained using a generic 0-1 ILP solver. Prominent CSE
heuristics were also presented in [1]-[3].

The exact GB algorithms that search a solution with the
minimum number of operations in breadth-first and depth­
first manners were introduced in [6]. Efficient GB algorithms,
that includes two parts, optimal and heuristic, were introduced
in [4], [5]. In their optimal parts, each target constant, that
can be implemented with a single operation, is synthesized.
If there exist unimplemented elements left in the target set,
then they switch to their heuristic parts where the required
intermediate constants are found. The RAG-n algorithm [4]
initially chooses a single unimplemented target constant with
the smallest single coefficient cost and then, synthesizes it with
a single operation including one(two) intermediate constant(s)
that has(have) the smallest value in its heuristic part. The
Hcub algorithm [5] selects a single intermediate constant that
yields the best cumulative benefit over all unimplemented
target constants for the implementation of each target constant.

There exists no high-level synthesis algorithm targeting the
optimization of area in MCM design on FPGAs. However, a
LUT-based constant multiplier designed especially for FPGAs
was proposed in [14], where the input x is split into 4 bits
and the constant multiplication kx is realized using additions
and shifts. Assuming an 8-bit input variable x, kx is realized
as (k.X7-4) « 4 + k.X3-0, where each partial product is im­
plemented using 4-input LUTs. This technique was improved
in [15] by sharing the common LUTs in a partial product,
removing redundant LUTs, and merging LUTs and single bit
adders. In [10], the design method of [15] was carried to MCM
by sharing the common LUTs among constant multiplications.

III. THE Ap PROXIMATE ALGORITHM

The LUTOR algorithm consists of two main parts. In the
first part, a solution with the fewest number of operations,
that generates MCM, is found by Hcub [5]. In the second part,
the optimization of area problem in MCM design on FPGAs is
formalized as a 0-1 ILP problem based on the solution of Hcub
and a set of operations, that yields an MCM design requiring
the minimum number of 4-input LUTs, is obtained.

A. implementation of the LUTOR Algorithm

In the preprocessing phase of LUTOR, the constants to
be multiplied by a variable are converted to positive and
then, made odd by successive divisions by 2. The resulting
constants are stored without repetition in a set called target
set T and the maximum bit-width of the target constants, bw,
is determined. The LUTOR algorithm, whose pseudo-code is
given in Figure 3, takes these parameters and also N, the bit­
width of the input variable x, as an input.

In the iterative loop of LUTOR (lines 3-14), we initially
find a set of operations, 0, that implements the constant
multiplications using Hcub [5] with a different seed at each
time (line 5). Then, we determine the intermediate and target
constants in 0 and store them in a set called ready set,
R (line 6). In order to increase the number of possible
implementations of a constant in the iLP function, described

LUTOR(T, bw, N)
1: seed = 0, R.et f- {}
2: icostb = 00, Ob f- {}
3: repeat
4: seed = seed + 1
5: 0 = Hcub(T, seed)
6: R = GenerateReadySet(O)
7: R = AddDepthlConstants(R, bw)
8: if R rf. R.et then
9: R.et f- R.et U R

10: 0 = ILP(T, R, bw, N)
11: icost = ComputelmplementationCost(0, N)
12: if icost < icostb then
13: icostb = icost, Ob f- 0
14: until Termination conditions meet
15: return Ob

Fig. 3. The LUTOR algorithm.

in Section III-B, we add the depth-l constants to R if they
do not exist (line 7). The depth-l constants are in the form
of 2i+l - 1 and 2i + 1, where i ranges in between 1 and bw,
which can be realized using a single A-operation whose inputs
are 1. To avoid unnecessary computations, we check if R is
already included in Rset which is a set that stores all the ready
sets given to the ILP function (line 8). Then, the ILP function
is applied on this ready set R to find a set of A-operations

that yields an MCM design requiring minimum number of 4-
input LUTs (line 10). After a solution is obtained by the ILP

function, the cost of the MCM design on FPGAs, icost, is
computed based on the costs of A-operations given in Table I
(line 11). If its cost value is smaller than the best one (icostb)
found so far, then Db and icostb are updated (lines 12-13). The
iterative loop terminates whenever the number of elements in
Rset reaches to 100 or the last 20 ready sets obtained by Hcub
are identical2 (line 14).

B. Implementation of the ILP Technique

The ILP function consists of four main parts: 1) generation
of constant implementations; 2) construction of a network that
represents the implementations of constants; 3) formalization
of the problem as a 0-1 ILP problem; 4) obtaining the
minimum solution. These parts are described in detail next.

1) Generation of Constant Implementations: After the set
of operations (0) realizing the MCM instance is found by
Hcub, in the GenerateReadySet function, we also compute
the depth (or adder-step [3]) of each intermediate and target
constant of R in the network of addition and subtraction
operations of 0.3 After the depth-l constants are included
into R, we sort the constants in R according to their depth
values in ascending order. The part of the algorithm, where the
implementations of constants are found, is given as follows:

i) Take an element from R, r i, except ' l ' that denotes the
variable which the constants are multiplied with. Form
an empty set, h associated with r i that will include the
inputs of each A-operation which computes rio

ii) For each A-operation that generates ri,

2These values are determined empirically based on experiments.
3Considering the shift-adds network of Figure 2(c) as an example, the depth

of 7, 29, and 43 is computed as 1, 2, and 3, respectively.

a) Make each of its inputs positive and odd.
b) Add its positive and odd inputs to the set h

iii) Repeat Step (i) until all elements of R are considered.

To find all possible A-operations that implement an element
of R, ri, we assign ri to the output of an A-operation given in
Eqn. (3). Then, for each constant rj in R, where 0 � j � i -1,
we assign r j to the input u of the A -operation and by changing
the shift (h, h, and r) and sign (s) values, we compute the
input v of the A-operation. Note that left shifts are restricted
to bw + 1 and only one of h, l2, and r is set to a value greater
than 0 and the others are set to 0, since only positive and odd
constants are considered. If v is an element of R, rk, where
o � k � i - 1, this operation is determined as a possible
implementation of rio These restrictions come from the fact
that the MCM operation forms a directed acyclic graph and
does not include feedback loops [16]. By doing so, we ensure
that the implementation of each constant determined by Hcub
is considered in the 0-1 ILP formalization. Thus, we guarantee
that the optimized MCM design will always have less or equal
number of 4-input LUTs as the one obtained by Hcub.

As a simple example, consider one of the solutions of Hcub
on a single target constant 21 which requires two operations,
i.e, 17 = 1 « 4 + 1 and 21 = 17 + 1 « 2. After the
depth-l constants are included into R, we have the ready set
{1, 3, 5, 7, 9, 15, 17, 31, 33, 63, 21}. Among many others, five
implementations of the constant 21 including the solution of
Hcub are 21 = 17 + 1 « 2, 21 = 7 « 1 + 7, 21 = 1 « 4 + 5,
21 = 31 - 5 « 1, and 21 = 3 « 3 - 3. Note that each of
these operations leads to a different implementation cost when
they are realized on FPGAs.

2) Construction of the Boolean Network: After all possible
implementations of constants in R are found, these implemen­
tations are represented in a Boolean network that includes only
AND and OR gates. Its properties are as follows:

i) The primary input of the network is the input to be
multiplied with the constants denoted by ' 1'.

ii) An AND gate in the network represents an addition or a
subtraction operation and has two inputs.

iii) An OR gate in the network represents a target or an
intermediate constant and combines all possible imple­
mentations of the constant.

iv) The outputs of the network are the OR gate outputs
associated with the target constants.

The Boolean network is constructed as follows:

i) Take an element from R, ri, except ' 1'.
ii) For each input pair of an A-operation in h generate a

two-input AND gate. The inputs of the AND gate are the
elements of the input pair, i. e. , ' l ' or the outputs of the OR

gates representing the target and intermediate constants.
iii) Generate an OR gate associated with ri where its inputs

are the outputs of AND gates determined in Step (ii).
iv) If ri is a target constant, assign the output of the corre­

sponding OR gate as the output of the network.
v) Repeat Step (i) until all elements in R are considered.

1
1

opt1'+1

21

Fig. 4. Inclusion of optimization variables into the network constructed for
the target constant 21 with limited implementations.

3) The 0-1 lLP Formalization: We need to include opti­
mization variables into the network, so that the area optimiza­
tion problem in MCM design on FPGAs can be easily formed
as a 0-1 ILP problem. To do this, we associate the optimization
variables with addition/subtraction operations that have dif­
ferent implementation costs on FPGAs. Thus, for each AND

gate that represents an addition/subtraction operation in the
network, we introduce an optimization variable, i. e. , opta±b,
where a and b denote the inputs of an operation, and we add
this variable to the input of the AND gate. In the cost function
to be minimized, the cost value of the optimization variable
is determined as the cost of the A-operation given in Table I.

Figure 4 presents the Boolean network generated for the
target constant 21 after the optimization variables are added.
For simplicity, only five realizations of 21 listed previously
are illustrated in this figure. Also, I-input OR gates for the
intermediate constants 5, 7, 17, and 31 are omitted and the
type of each operation is shown inside of each AND gate.

After the optimization variables are added into the network,
the generation of the 0-1 ILP problem is straightforward. The
cost function of the 0-1 ILP problem is constructed as a linear
function of optimization variables, where the cost value of
each optimization variable is determined as described before.
Also, the constraints of the 0-1 ILP problem are obtained
by finding the Conjunctive Normal Form (CNF) formulas of
each gate in the network and expressing each clause of the
CNF formulas as a linear inequality, as described in [17]. For
example, a 3-input AND gate, d = a /\ b /\ c, is translated to
CNF as (a + d)(b + d)(c + d) (0: + b + c + d) and converted
to linear constraints as a - d � 0, b - d � 0, c - d � 0,
-a - b - c + d � -2 . The outputs of the network, i. e. , the
outputs of OR gates associated with the target constants, are
set to 1, since the implementation of target constants is aimed.

4) Finding the Minimum Solution: A generic 0-1 ILP solver
will search for the minimum value of the cost function on
the generated 0-1 ILP problem by satisfying the constraints
that represent how the target and intermediate constants are
implemented. The addition/subtraction operations, which yield
the minimum area solution, are those whose optimization
variables are set to 1 by the 0-1 ILP solver.

TABLE II
FIR FILTER SPECIFICATIONS.

Filter I pass I stop I #tap I width

I 0.10 0.15 200 16
2 0.10 0.25 180 16
3 0.10 0.20 240 16
4 0.10 0.20 300 16
5 0.15 0.25 200 16
6 0.15 0.25 240 16
7 0.10 0.15 240 16

IV. EX PERIMENTA L RESULTS

As an experiment set, we used the FIR filters given in
Table II, where pass and stop are the normalized passband
and stopband frequencies, respectively, #tap is the number of
coefficients, and width is the bit-width of filter coefficients.

Table III presents the results of high-level algorithms (the
exact CSE algorithm [3] when constants are defined under
MSD and the Hcub algorithm [5], both designed for the MCM
problem, and the proposed LUTOR algorithm) on the multiplier
blocks of the FIR filters. In this table, op and as denote the
number of operations and the number of adder-steps in MCM,
i.e. , the maximum number of operations in series, respectively.
Also, cpu is the required CPU time in seconds for the high­
level algorithms to find a solution on a PC with Intel Xeon at
2.33GHz and 4GB of memory.

Observe that the exact CSE algorithm obtains worse solu­
tions than Hcub and LUTOR in terms of the number of oper­
ations due to its limitation on the number representation. The
solutions of LUTOR include the same number of operations
as Hcub, except Filter 5, but it requires more CPU time to
find a solution than Hcub. This is because it iterates on more
than one solution of Hcub and the MCM design, that requires
the minimum number of 4-input LUTs on FPGAs, is obtained
by the 0-1 ILP solver SCIP 2.0 [18]. Note that the minimum
and maximum CPU time of SCIP 2.0 to solve the generated
0-1 ILP problems was O.17s and 0.28s, respectively, indicating
that these 0-1 ILP problems are in fact easy to be solved since
the implementations of a constant are obtained only from the
constants in the solution of Hcub and depth-l constants.

Table III also presents the synthesis results of the multiplier
blocks on Xilinx Virtex 4 FPGA, xc4vfxI2-12sf363, where
lut denotes the number of 4-input LUTs and slice stands for
the number of slices showing the DSP48 slices in parenthesis.
The filter input was assumed to be a signed 8-bit number.
On the solutions of LUTOR, the estimated 4-input LUTs (elut)

values computed from the costs of A-operations as given in
Table I are also presented. Moreover, the synthesis results of
the multiplier blocks designed using LUT-based constant mul­
tipliers (LBCM) [10] and generic multipliers (GM) are given.
In the latter, the mUltiplications of filter coefficients by the
filter input are described in VHDL as constant multiplications
and the Xilinx ISE 13.1 design tool synthesized the circuit.
All the synthesis results given in Table III are obtained before
mapping, because each multiplier block does not fit into the
target FPGA due to its large number of outputs.

Observe from the results of exact CSE and Hcub algorithms
that the reduction of the number of operations in an MCM
design also reduces the number of 4-input LUTs when it

TABLE III
SUMMARY OF RESULTS OF DESIGN METHODS AND ALGORITHMS ON MULTIPLIER BLOCKS OF FIR FILTERS.

Fil. GM II LBCM [10] II Exact CSE - MSD [3] II Hcub [5] II LUTOR
lut slice II lut slice op as cpu lut slice op as cpu lut slice op as cpu elut lut slice

I 2155 1156 (17) 1199 635 82 5 1.9 1169 615 79 5 0.2 1114 596 79 7 59.1 869 854 469
2 1187 638 (11) 763 408 53 5 12.6 767 407 47 5 0.1 673 358 47 8 33.5 563 549 301
3 1935 1046 (I I) 977 518 66 5 2.4 984 519 63 4 0.1 946 500 63 6 48.7 719 719 393
4 2095 1129 (8) 1043 554 72 4 2.4 1028 544 68 5 0.2 931 499 68 9 51.0 765 754 414
5 1662 896 (10) 905 478 64 4 0.5 910 483 59 4 0.1 811 434 60 9 6.5 663 658 368
6 2092 1122 (7) 1002 527 72 4 0.8 1013 537 69 5 0.2 941 504 69 7 63.8 727 720 397
7 2508 1347 (12) 1240 654 87 5 1.6 1225 645 83 5 0.2 1170 620 83 7 99.2 914 887 488

Avg. II 1948 1048 (I I) I I 1018 I 539 II 71 I 5 I 3.2 II 1014 I 536 II 67 I 5 I 0.1 II 941 I 502 II 67 8 51.7 II 746 734 404

TABLE IV
SUMMARY OF RESULTS OF DESIGN METHODS AND ALGORITHMS ON FIR FILTERS.

Fil. II GM II LBCM [10] II Exact CSE - MSD [3] II Hcub [5] II LUTOR I
II slice I delay power II slice I delay I power II slice I delay I power II slice I delay I power II slice I delay I power I

I 3740 (17) 3.422 377 3161 3.019 362 3101 3.108 372 3093 3.278 384 2948 3.014 381
2 2372 (11) 3.363 335 2141 2.926 323 2084 2.854 327 2035 2.973 317 1970 2.942 326
3 3517 (11) 3.109 358 2963 3.525 362 2904 3.158 362 2898 3.619 363 2773 2.790 358
4 3927 (8) 3.180 367 3324 3.198 366 3258 3.821 367 3226 3.484 365 3119 3.448 369
5 2995 (10) 3.328 342 2562 3.450 347 2508 3.251 342 2463 3.382 340 2395 3.297 346
6 3483 (7) 3.350 357 2892 3.694 358 2830 3.323 360 2805 3.816 364 2687 3.353 360
7 4372 (12) 2.968 384 3634 3.247 380 3570 3.220 411 3552 3.195 389 3399 2.965 391

I Avg. II 3487 (11) I 3.246 I 360 II 2954 I 3.294 I 357 II 2894 I 3.248 I 363 II 2867 I 3.392 I 360 II 2756 I 3.116 I 362 I

is synthesized on FPGAs. However, LUTOR obtains the best
solutions in terms of the number of 4-bit LUTs, where the
maximum gain over the exact CSE and Hcub algorithms
is 29% and 24%, respectively. Also, the estimated number
of 4-input LUT values are close to the synthesis values.
Moreover, the shift-adds design of multiplier blocks with the
use of high-level algorithms reduces the complexity of the
MCM design significantly with respect to those designed using
LUT-based constant multipliers [10] and generic multipliers.

Table IV presents the implementation results of complete
FIR filters whose multiplier blocks are realized as given
in Table III. These results are obtained after the mapping
and placement and routing. In this table, delay denotes the
delay in ns in the critical path and power stands for the
power dissipation in m W obtained by the XPower tool based
on simulations with 10,000 random inputs using the ISim
simulator. The functionality of the FIR filter designs was also
verified during these simulations.

Observe from Tables III and IV that the register-add circuit
that computes the filter output as shown in Figure 1 dominates
the complexity of the FIR filters due to the large number of
filter coefficients. However, the solutions of LUTOR lead to the
least complex FIR filters on all instances, where its maximum
gain on the number of slices over the exact CSE and Hcub
algorithms is 5.5% and 4.7%, respectively. The FIR filters
designed based on the solutions of LUTOR have also similar
delay and power dissipation results on average to those of
filter designs obtained by the MCM algorithms [3], [5]. The
shift-adds design of FIR filters incorporation with high-level
algorithms yields the best designs in terms of area with respect
to FIR filters whose MCM parts are realized using LUT-based
constant multipliers [10] or generic multipliers. Note that some
of generic multipliers are realized with DSP48 slices, which
are not used in the LUT-based and shift-adds implementations.

V. CONC LUSIONS

We introduced a high-level synthesis algorithm that opti­
mizes the number of required 4-input LUTs in an MCM design

and its efficiency was shown on design of multiplier blocks and
FIR filters on FPGAs. The proposed approach can incorporate
any MCM heuristic and can be applied to various optimization
problems by only changing the 0-1 ILP formalization.

REFERENCES

[1) R. Hartley, "Subexpression Sharing in Filters Using Canonic Signed
Digit Multipliers, " IEEE TCAS-II, vol. 43, no. 10, pp. 677-688, 1996.

[2) I.-C. Park and H.-J. Kang, "Digital Filter Synthesis Based on Minimal
Signed Digit Representation, " in DAC, 2001, pp. 468-473.

[3) L. Aksoy, E. Costa, P. Flores, and J. Monteiro, "Exact and Approximate
Algorithms for the Optimization of Area and Delay in Multiple Constant
Multiplications, " IEEE TCAD, vol. 27, no. 6, pp. 1013-1026, 2008.

[4) A. Dempster and M. Macleod, "Use of Minimum-Adder Multiplier
Blocks in FIR Digital Filters, " IEEE TCAS-II, vol. 42, no. 9, pp. 569-
577, 1995.

[5) Y. Voronenko and M. Piischel, "Multiplierless Multiple Constant Mul­
tiplication, " ACM Transactions on Algorithms, vol. 3, no. 2, p . . , 2007.

[6) L. Aksoy, E. Gunes, and P. Flores, "Search Algorithms for the Multiple
Constant Multiplications Problem: Exact and Approximate, " Elsevier

Journal on Microprocessors and Microsystems, vol. 34, no. 5, pp. 151-
162, 2010.

[7) M. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann,
2003.

[8) F. de Dinechin and V. Lefevre, "Constant Multipliers for FPGAs, " in
PDPTA, 2001, pp. 167-173.

[9) N. Brisebarre, F. de Dinechin, and J.-M. Muller, "Integer and Floating­
Point Constant Multipliers for FPGAs, " in ASAP, 2008, pp. 239-244.

[10) M. Faust and C. H. Chang, "Bit-Parallel Multiple Constant Multiplica­
tion Using Look-Up Tables on FPGA, " in ISCAS, 2011, pp. 657-660.

[11) P. Cappello and K. Steiglitz, "Some Complexity Issues in Digital
Signal Processing, " IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 32, no. 5, pp. 1037-1041, 1984.

[12) Xilinx Corporation, Design Tips for HD L Implementation of Arithmetic
Functions, Application Note 215, 2000.

[13) O. Gustafsson and L. Wanhammar, "IL P Modelling of the Common
Subexpression Sharing Problem, " in ICECS, 2002, pp. 1171-1174.

[14) Xilinx Corporation, Constant Coefficient Multipliers for the XC4000E,
Application Note 054, 1996.

[15) M. Wirthlin, "Constant Coefficient Multiplication Using Look-Up Ta­
bles, " Journal of VLSI Signal Processing, vol. 36, no. I, pp. 7-15, 2004.

[16) O. Gustafsson, "Towards Optimal Constant Multiplication: A Hyper­
graph Approach;' in Proceedings of Asilomar Conference on Signals,
Systems and Computers, 2008, pp. 1805-1809.

[17) P. Barth, "A Davis-Putnam Based Enumeration Algorithm for Lin­
ear Pseudo-Boolean Optimization, " Max-Planck-Institut Fur Informatik,
Tech. Rep., 1995.

[18) Solving Constraint Integer Programs website, http://scip.zib.de/.

