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Over the years many efficient algorithms for the multiplierless design of multiple constant multiplica-
tions (MCMs) have been introduced. These algorithms primarily focus on finding the fewest number of
addition/subtraction operations that generate the MCM. Although the complexity of an MCM design is
decreased by reducing the number of operations, their solutions may not lead to an MCM design with
optimal area at gate-level since they do not consider the implementation costs of the operations in hard-
ware. This article introduces two approximate algorithms that aim to optimize the area of the MCM oper-
ation by taking into account the gate-level implementation of each addition and subtraction operation
which realizes a constant multiplication. To find the optimal tradeoff between area and delay, the pro-
posed algorithms are further extended to find an MCM design with optimal area under a delay constraint.
Experimental results clearly indicate that the solutions of the proposed algorithms lead to significantly
better MCM designs at gate-level when compared to those obtained by the solutions of algorithms
designed for the optimization of the number of operations.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The multiple constant multiplications (MCMs) operation, that
realizes the multiplication of a set of known constants by a vari-
able, is a central operation and performance bottleneck in many
Digital Signal Processing (DSP) applications such as, digital Finite
Impulse Response (FIR) filters, linear DSP transforms, and error
correcting codes. Since the multiplication operation is expensive
in terms of area, delay, and power dissipation in hardware and
the constants to be multiplied with the same variable are known
beforehand, the full-flexibility of a multiplier is not necessary in
the design of the MCM operation. Hence, constant multiplications
are generally realized using addition, subtraction, and shift opera-
tions [1].

For the shift-adds implementation of constant multiplications, a
straightforward method, generally known as the digit-based recod-
ing [2], initially defines the constants in multiplications in binary.
Then, for each 1 in the binary representation of the constant,
according to its bit position, it shifts the variable and adds up the
shifted variables to obtain the result. As a simple example, consider
ll rights reserved.
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the constant multiplications 29x and 43x. Their decompositions in
binary are listed as follows:

29x ¼ ð11101Þbinx ¼ x� 4þ x� 3þ x� 2þ x

43x ¼ ð101011Þbinx ¼ x� 5þ x� 3þ x� 1þ x

and require six addition operations as illustrated in Fig. 1a.
However, the sharing of common partial products in the shift-

adds architecture allows for great reductions in the number of
operations and consequently, in area and power dissipation of
the MCM design. Hence, the MCM problem is defined as finding
the minimum number of addition/subtraction operations that
implement the constant multiplications, since shifts can be real-
ized using only wires in hardware without representing any area
cost. Note that the MCM problem is an NP-complete problem [3].

The last two decades have seen tremendous progress in the de-
sign of efficient algorithms proposed for the MCM problem. These
algorithms can be categorized in two classes: Common Subexpres-
sion Elimination (CSE) algorithms [4–6] and graph-based (GB)
methods [7–9]. Although both CSE and GB algorithms aim to max-
imize the sharing of partial products, they differ in the search space
that they explore. The CSE algorithms initially define the constants
under a number representation, namely binary, Canonical Signed
Digit (CSD), or Minimal Signed Digit (MSD). Then, all possible
subexpressions are extracted from the representations of the con-
stants and the ‘‘best’’ subexpression, generally the most common,
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(a) (b) (c)

Fig. 1. Shift-adds implementations of 29x and 43x: (a) without partial product sharing [2]; with partial product sharing: (b) the algorithm of [6]; (c) the algorithm of [9].

1 The maximization objective can be easily converted to a minimization objective
by negating the cost function. Less-than-or-equal and equality constraints are
a c c o m m o d a t e d b y t h e e q u i v a l e n c e s , A � x 6 b() � A � x P �b a n d
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is chosen to be shared among the constant multiplications. On the
other hand, the GB algorithms are not limited to any particular
number representation and consider a larger number of alternative
implementations of a constant multiplication, yielding better solu-
tions than the CSE algorithms as shown in [8,9].

Returning to our example in Fig. 1, the exact CSE algorithm of
[6] gives a solution with 4 operations by finding the most common
partial products 3x = (11)binx and 5x = (101)binx when constants are
defined under binary, as illustrated in Fig. 1b. On the other hand,
the exact GB algorithm [9] finds the minimum number of opera-
tions solution with 3 operations by sharing the common partial
product 7x in both multiplications, as shown in Fig. 1c. Observe
that the partial product 7x = (111)binx cannot be extracted from
the binary representations of both multiplications 29x and 43x in
the exact CSE algorithm [6].

However, the minimum number of operations solution in an
MCM instance does not always yield an MCM design with optimal
area as shown in [10,11]. This is simply because the algorithms de-
signed for the MCM problem do not take into account the actual area
cost of each addition/subtraction operation at gate-level while
searching for a solution with the fewest number of operations.
Although there exist a large number of algorithms designed for the
MCM problem, there are only a few algorithms [10–12] that target
directly the reduction of area in the MCM design at gate-level.

Moreover, performance is also a crucial parameter, with circuit
area is being in many cases expandable in order to achieve a given
performance target. Although the delay parameter is dependent on
several implementation issues, such as circuit technology, place-
ment, and routing, the delay of the MCM operation is generally
considered as the number of adder-steps, which denotes the max-
imal number of adders/subtracters in series to produce any con-
stant multiplication [13]. The algorithms of [6,13,14] find the
fewest number of operations that implement the MCM such that
the delay constraint is never violated. However, the tradeoff be-
tween area and delay in the MCM design can be explored more
extensively when high-level algorithms target the optimization
of gate-level area under a delay constraint [11].

In this article, we start by presenting area efficient addition and
subtraction architectures used in the MCM design and formalize
the implementation cost of addition and subtraction operations
at gate-level. It is followed by the introduction of the HCUB + ILP algo-
rithm that combines two efficient techniques to optimize the area
of the MCM design. In HCUB + ILP, we iteratively obtain an approxi-
mate solution with the fewest number of operations using the
Hcub heuristic [8] designed for the MCM problem. Then, we find
a set of operations that lead to an MCM design with optimal area
by formalizing the gate-level area optimization problem as a 0–1
integer linear programming (ILP) problem based on the solution
of Hcub. We also describe the HCUB-DC + ILP algorithm, that itera-
tively finds a solution with the fewest number of operations under
a delay constraint using Hcub and optimizes the area of the MCM
design on this solution without violating the delay constraint. Fur-
thermore, we present the MINimum Area Search (MINAS) algorithm
[11] that searches the ‘‘best’’ partial products, which lead to an
MCM design with optimal area at gate-level, while synthesizing
the constant multiplications. We also introduce its modified ver-
sion, MINAS-DC, that searches for an MCM design with optimal area
under a delay constraint.

The experimental results indicate that HCUB + ILP and MINAS find
MCM designs with significantly smaller area when compared to
those obtained by prominent algorithms designed for the MCM
problem. Also, the solutions of HCUB-DC + ILP and MINAS-DC lead to
high-speed and low-power MCM designs with respect to those
implemented by the solutions of HCUB + ILP, MINAS, and algorithms
proposed for the MCM problem under a delay constraint. More-
over, HCUB-DC + ILP and MINAS-DC can find the optimal tradeoff between
area and delay by changing the delay constraint.

The rest of the article proceeds as follows. Section 2 presents the
background concepts and gives the problem definitions. A detailed
overview on previously proposed algorithms is given in Section 3
and the addition and subtraction architectures are described in
Section 4. The HCUB + ILP and MINAS algorithms are introduced in Sec-
tions 5 and 6 respectively. Section 7 presents the experimental re-
sults and finally, Section 8 concludes the article.

2. Background

This section gives the basic concepts related with the proposed
algorithms and introduces the problem definitions.

2.1. 0–1 Integer linear programming

The 0–1 ILP problem is the minimization or the maximization of
a linear cost function subject to a set of linear constraints and is de-
fined as1:

Minimize cT � x ð1Þ
Subject to A � x P b; x 2 f0;1gn ð2Þ

In (1), cj in c is an integer value associated with each of n vari-
ables xj, 1 6 j 6 n, in the cost function, and in (2), A � x P b denotes
the set of m linear constraints, where b 2 Zn and A 2 Zm � Zn.
A � x ¼ b() ðA � x P bÞ ^ ðA � x 6 bÞ, respectively.



Fig. 2. The graph representation of an A-operation.
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2.2. Multiplierless constant multiplications

Since the common input is multiplied by multiple constants in
MCM, the implementation of constant multiplications is equal to
the implementation of constants. For example, the implementation
of 3x given as 3x = x� 1 + x = (1� 1 + 1)x can be rewritten as
3 = 1�1 +1 by eliminating the variable x from both sides. These
notations will be used interchangeably in this article.

In multiplierless constant multiplications, the fundamental
operation, called A-operation in [8], is an operation with two inte-
ger inputs and one integer output that performs a single addition
or a subtraction, and an arbitrary number of shifts. It is defined as:

w ¼ Aðu;vÞ ¼ j2l1 uþ ð�1Þs2l2 v j2�r ¼ jðu� l1Þ þ ð�1Þsðv � l2Þj � r ð3Þ

where s 2 {0,1} is the sign, which determines if an addition or a sub-
traction operation is to be performed, l1, l2 P 0 are integers denot-
ing left shifts of the operands, and r P 0 is an integer indicating a
right shift of the result. An A-operation can be represented in a
graph, where the vertices are labeled with the constants and the
edges are labeled with the sign and shifts, as illustrated in Fig. 2.

In the MCM problem, the complexity of an adder and a sub-
tracter in hardware is assumed to be equal. It is also assumed that
the sign of the constant can be adjusted at some part of the design
and the shifting operation has no cost in hardware. Thus, only po-
sitive and odd constants are considered in the MCM problem. Ob-
serve from Eq. (3) that in the implementation of an odd constant
with any two odd constants at the inputs, one of the left shifts, l1
or l2, is zero and r is zero, or both l1 and l2 are zero and r is greater
than zero. Hence, only one of the shifts, l1, l2, or r, is greater than
zero. Thus, any A-operation that realizes an addition can be in the
form of uþ 2l2 v or (u + v)2�r, where in the former, only one of
the left shifts and the right shift are zero and in the latter, both
of the left shifts are zero. Also, the subtraction operations in the
form of 2l1 u� v ;u� 2l2 v , and (u � v)2�r cover all the cases where
A-operation performs a subtraction. It is also necessary to constrain
the left shifts, l1 and l2, otherwise there exist infinite ways of imple-
menting a constant. In the exact algorithm of [9], the number of
shifts is allowed to be at most bw + 1, where bw is the maximum
bit-width of the constants to be implemented. Thus, the MCM
problem [8] is defined as:

Definition 1. THE MCM PROBLEM.Given the target set composed of
positive and odd unrepeated target constants to be implemented,
T ¼ ft1; . . . ; tng � N, find the smallest ready set, R = {r0,r1, . . . ,rm},
with T � R, such that r0 = 1 and for all rk with 1 6 k 6m, there exist
ri, rj with 0 6 i, j < k and an A-operation rk = A(ri, rj).

Hence, the number of operations required to be implemented
for the MCM problem is jRj � 1 as given in [8].

The minimum adder-step realization of a single target constant
t includes dlog2S(t)e adder-steps, where S(t) stands for the number
of non-zero digits of t in its CSD representation. Note that the CSD
representation of a constant includes the minimum number of
non-zero digits [15]. Hence, for a target set, T = {t1, . . . , tn}, the min-
imum adder-steps of the MCM operation [13] is computed as:

min delayMCM ¼max
ti

fdlog2SðtiÞeg; 1 6 i 6 n ð4Þ
The optimization of the number of operations problem under a
delay constraint can be defined as follows:

Definition 2. THE MCM PROBLEM UNDER A DELAY CONSTRAINT.Given the target
set T ¼ ft1; . . . ; tng � N and the delay constraint dc with dc P
min_delayMCM, find the smallest ready set R = {r0, r1, . . . ,rm} such that
under the same conditions on the ready set given in Definition 1, the
set of A-operations yields an MCM design without exceeding dc.

To illustrate the implementations of an MCM operation with the
minimum number of operations and with the minimum number of
adder-steps, consider the target set T = {5,11,171,215} as an exam-
ple. The minimum adder-steps of the target constants 5, 11, 171,
and 215 are 1, 2, 3, and 2 respectively. Thus, the minimum ad-
der-step realization of the MCM operation includes 3 adder-steps
as computed by Eq. (4). The exact GB algorithm of [9] designed
for the MCM problem finds a solution with 4 operations and 4 ad-
der-steps without requiring any intermediate constant, as illus-
trated in Fig. 3a. On the other hand, the Hcub algorithm [14]
gives a solution with 5 operations when the delay constraint was
set to the minimum delay constraint 3, requiring the intermediate
constant 127, as shown in Fig. 3b.

Although the cost of each addition and subtraction operation in
hardware is assumed to be equal in the MCM problem, as can be eas-
ily observed from Figs. 1 and 3, a constant multiplication can be
implemented with a number of different operations each having a
different cost at gate-level. The area of an operation [10–12] depends
on the type of the operation (addition or subtraction), the bit-width
of an input of the operation, the number of shifts at the input or at the
output of the operation (l1, l2, or r), the shifted input in a subtraction,
and the type of the input variable (signed or unsigned). Hence, the
gate-level area optimization problem is given as:

Definition 3. THE GATE-LEVEL AREA OPTIMIZATION PROBLEM.Given the target
set, T ¼ ft1; . . . ; tng � N, composed of the positive and odd unre-
peated target constants to be implemented, find the ready set
R = {r0,r1, . . . ,rm} such that under the same conditions on the ready
set given in Definition 1, the set of A-operations yields an MCM
design with optimal area at gate-level.

Similar to the MCM problem under a delay constraint, the gate-
level area optimization problem under a delay constraint can be gi-
ven as:

Definition 4. THE GATE-LEVEL AREA OPTIMIZATION PROBLEM UNDER A DELAY CON-

STRAINT.Given the target set T ¼ ft1; . . . ; tng � N and the delay
constraint dc with dc P min_delayMCM, find the ready set
R = {r0,r1, . . . ,rm} such that under the same conditions on the ready
set given in Definition 1, the set of A-operations yields an MCM
design with optimal area at gate-level and without exceeding dc.

Although Definitions 3 and 4 are concerned with the area and de-
lay of the MCM design respectively, power dissipation is also highly
related with the gate-level area and adder-step of each adder/sub-
tracter as indicated in the switching activity model [16] and the
Glitch Path Score (GPS) power dissipation estimation model [17].
This is simply because larger number of logic gates produce more
transitions and the transitions generated at the output of an opera-
tion produce more glitching along the re-convergent paths. Hence,
the solutions of the algorithms that take into account these two
parameters will also lead to low-power MCM designs as shown in
Section 7.

3. Related work

For the MCM problem, the 0–1 ILP formalization of the common
subexpression sharing was introduced in [18,19]. In these algo-
rithms, initially, the target constants are defined under a number
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Fig. 3. Implementations of the target set {5,11,171,215}: (a) with the minimum number of operations; (b) with the minimum number of adder-steps.
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representation and all possible implementations of constant multi-
plications that can be extracted from the representations of the
constants are obtained. Then, the MCM problem is defined as a
0–1 ILP problem with constraints to be satisfied and a cost function
to be minimized. Finally, the minimum number of operations solu-
tion is obtained using a generic 0–1 ILP solver. The problem reduc-
tion and model simplification techniques, that significantly reduce
the size of the 0–1 ILP problem and, consequently, the required
CPU time for the 0–1 ILP solver to find the minimum solution, were
introduced in [6,20]. Prominent CSE heuristics can be found in
[4,5,21,22].

The first GB methods, ‘add-only’, ‘add/subtract’, ‘add/shift’, and
‘add/subtract/shift’, were proposed in [23]. The ‘add/subtract/shift’
algorithm was modified in [7], called BHM, by extending the pos-
sible implementations of a constant, considering only odd num-
bers, and processing constants in order of increasing single
constant cost that is evaluated by the algorithm of [24]. The
RAG-n algorithm that includes two parts, optimal and heuristic,
was also introduced in [7]. In its optimal part, each target constant
that can be implemented with a single operation are synthesized. If
there exist unimplemented elements left in the target set, RAG-n
switches to its heuristic part. In this iterative part, RAG-n initially
chooses a single unimplemented target constant with the smallest
single constant cost evaluated by the algorithm of [24] and then,
synthesizes it with a single operation including one (two) interme-
diate constant (s) that has (have) the smallest value among the
possible constants. However, since the intermediate constants
are selected for the implementation of a single target constant in
each iteration, the intermediate constants chosen in previous iter-
ations may not be shared for the implementation of the not-yet
synthesized target constants in later iterations thus, may yield a lo-
cal minimum solution. To overcome this limitation, the Hcub algo-
rithm [8], which includes the same optimal part of RAG-n, uses a
better heuristic that considers the impact of each possible interme-
diate constant on the not-yet synthesized target constants. In each
iteration, for the implementation of a single target constant, Hcub
chooses a single intermediate constant that yields the best cumu-
lative benefit over all unimplemented target constants. The algo-
rithm of [9], that includes the same optimal part as RAG-n and
Hcub, computes all possible intermediate constants which can be
synthesized with the current set of implemented constants using
a single operation and chooses an intermediate constant that syn-
thesizes the largest number of target constants in each iteration of
its heuristic part. The exact GB algorithms that search a solution
with the minimum number of operations in breadth-first and
depth-first manners were also introduced in [9].

For the MCM problem under a delay constraint, the 0–1 ILP for-
malization when the constants are defined under a number repre-
sentation was also given in [6,20]. In these algorithms, additional
constraints were added to the 0–1 ILP problem to guarantee that
the delay constraint is never violated. In the nonrecursive CSE algo-
rithm of [25], contrary to the CSE heuristics of [4,26], the subex-
pressions extracted from a constant multiplication are not shared
with those of different constant multiplications. This modification
leads to independent structures of constant multiplications, where
the relation between the number of operations and the number of
adder-steps is compromised by the proposed method. In the GB
heuristic of [13], three methods that reduce the number of ad-
der-steps are applied in BHM and RAG-n algorithms designed for
the MCM problem, leading to two algorithms called SLBHM and
SLRAGn respectively. The modified version of Hcub introduced to
handle the delay constraint, called Hcub-DC in this article, is avail-
able in [14]. In a different approach, the C1 algorithm [27] initially
finds a solution using BHM or RAG-n including generally more
number of operations but, with a small number of adder-steps.
Then, it reduces the number of operations without increasing the
delay in an iterative loop. We note that the C1 algorithm [27] can-
not find a solution under a specific delay constraint. Furthermore,
the MinLD algorithm [28] finds an MCM solution by synthesizing
each constant at its minimum adder-step value. As the C1 algo-
rithm, it cannot find a solution under a specific delay constraint,
but its solution guarantees the minimum adder-steps of the
MCM design.

For the gate-level area optimization problem, the exact CSE algo-
rithm [10] formulates the optimization of area problem as a 0–1 ILP
problem and finds the minimum area solution of the MCM operation
when constants are defined under a particular number representa-
tion. Also, the GB algorithm [12], called RFAG-n, that is based on
RAG-n, initially takes an unimplemented constant that requires
the smallest number of full adders (FAs) and then, synthesizes it
using a single operation including one or two intermediate con-
stants that leads to the smallest number of FAs overhead. The MINAS

algorithm [11], presented in Section 6.1, is based on the approximate
algorithm of [9] and in each iteration, finds an intermediate that has
the smallest implementation cost and enables to implement the not-
yet synthesized target constants using less hardware. These algo-
rithms find the smallest area solution of the MCM operation while
implementing each target and intermediate constant. In an interest-
ing approach [29], initially, the solution of an MCM problem in-
stance, i.e., the ready set consisting of the target and intermediate
constants, is obtained by an MCM algorithm. Then, the interconnec-
tion strategies that focus on the reduction of area, delay, and power
consumption in the MCM design were applied while finding the
operations that generate the constants.

For the gate-level area optimization problem under a delay con-
straint, to the best our knowledge, only the MINAS-DC algorithm [11]
has been proposed and will be described in Section 6.2.

4. Addition and subtraction architectures

This section presents architectures for all possible addition and
subtraction operations encountered in the MCM design and gives



Table 1
Implementation cost of addition operations.

Operation uþ 2l2 v (u + v)2�r

Number Unsigned Signed Unsigned Signed

#FA nm � l2 � 1 nM � l2 � 1 nm � r nM � r
#HA nM � nm + 1 1 nM � nm 0

2 These values are determined empirically based on experiments.
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the implementation cost of each operation in terms of the number
of FAs, half adders (HAs), and additional logic gates. The ripple car-
ry adder architecture is assumed for the realization of operations
due to its area efficiency.

Note that the number of bits at the output of an operation imple-
menting the constant multiplication tix is dlog2tie + N, where N is the
bit-width of the variable x that the constants are multiplied with.
Hence, the area cost of an operation also depends on the bit-width
of the input. Also, it depends on the type of numbers considered,
i.e., unsigned or signed, since these lead to different implementa-
tions due to the sign extension. The parameters that are used to com-
pute the gate-level area cost of an addition/subtraction operation
which realizes a constant multiplication by a variable are given as:

� l1, l2, or r: the number of shifts,
� nu: the bit-width of input u,
� nv: the bit-width of input v,
� nm: min (nu + l1, nv + l2),
� nM: max (nu + l1, nv + l2).

4.1. Addition operations

The implementation costs of addition operations are given in
Table 1. As described in Section 2.2, there are only two types of
addition operation that need to be analyzed due to the restriction
on the left and right shifts of an A-operation which realizes a posi-
tive and odd constant.

Addition operation uþ 2l2 v: Observe from examples on the un-
signed input model given in Fig. 4a and b that larger number of
shifts at the input achieves smaller area, since shifts are imple-
mented with only wires. Note that the cost values given in Table 1
for the unsigned input model are valid, if the number of shifts of
the operand v is less than the number of bits of the operand u,
i.e., l2 < nu. Otherwise, no hardware is needed for this operation
as illustrated in Fig. 4b. In the signed input case, this situation
never occurs, due to the sign extension of the operand u.

Addition operation (u + v)2�r: The result of a constant multiplica-
tion to be computed by this operation is obtained after the output is
shifted right by r times. Hence, there is no need to compute the first r
digits of the output. However, observe from the example on the un-
signed input model presented in Fig. 4c that to determine the carry
bit for the first FA, an OR gate whose inputs are the rth digits of oper-
ands u and v is required, although it is not listed in Table 1.

4.2. Subtraction operations

The implementation costs of subtraction operations are given in
Table 2. Note that the subtraction operation is implemented using
2’s complement, i.e., uþ �v þ 1. Hence, the number of inverter (inv)
gates is included into the implementation cost of the subtraction
operations. Also, in this table, HA0 denotes a different type of HA
block. It is the special implementation of an FA block when one
of the inputs is 1, as opposed to an HA block, that is another special
implementation of FA when one of the inputs is 0. In an FA block, if
the input vi is 1, the addition (sum) and carry output (cout) are the
functions of the input ui and the carry input (cin) given as
sum ¼ cin 	 ui and cout = cin + ui.
Subtraction operation 2l1 u� v: Observe from the example on un-
signed input model given in Fig. 5a that while the first bit of the
result is simply the first bit of the operand v, the inputs of the first
HA block are the inverted first and second bits of the operand v.
Note that the values given in Table 2 also consider the case where
the digits of operand u and v do not overlap, l1 P nv, that is not con-
sidered in [10].

Subtraction operation u� 2l2 v: Observe from the example on un-
signed input model presented in Fig. 5b that the shifts can be fully
utilized by starting the addition with the first digit of the inverted
operand v resulting in a smaller area. Also, note that its cost is com-
puted without HA blocks as opposed to the subtraction operation
2l1 u� v .

Subtraction operation (u � v)2�r: Observe from the example on
unsigned input model given in Fig. 5c that the operation output
can be obtained by starting the addition from the (r + 1)th digit
of the operands u and v, since the operation output is shifted right
by r times.
5. The HCUB + ILP algorithms

This section presents the HCUB + ILP algorithms that target the
optimization of area and the optimization of area under a delay
constraint in MCM.

5.1. Optimization of gate-level area

The main idea behind the HCUB + ILP algorithm is to combine two
efficient techniques of [8] and [10] to optimize area of the MCM de-
sign. In a preprocessing phase, the constants to be multiplied by a
variable are converted to positive and then, made odd by successive
divisions by 2. The resulting constants are stored without repetition
in a set called target set T and the maximum bit-width of the target
constants, bw, is determined. The HCUB + ILP algorithm, whose pseu-
do-code is given in Fig. 6, takes these parameters as an input.

In the iterative loop of HCUB + ILP (lines 3–15), we initially find a
set of operations, O, that implements the constant multiplications
using Hcub [8] with a different seed at each time (line 5). Then,
we determine the intermediate and target constants in the solution
of Hcub and store them in a set called ready set, R, (line 6). In order
to increase the number of possible implementations of a constant
in the ILP function, we add the depth-1 constants to R if they do not
exist (line 7). The depth-1 constants have the adder-step value 1
and are in the form of 2i+1 � 1 and 2i + 1, where i ranges in between
1 and bw. To avoid unnecessary computations, we check if R is al-
ready included in Rset which is a set that stores all the ready sets
given to the ILP function (line 8). Then, the ILP function described
in Section 5.1.1 is applied on this ready set R to find a set of A-oper-
ations that realize the target and intermediate constants using
optimal area at gate-level (line 10). It is based on the exact CSE
algorithm of [10] and formalizes the optimization of gate-level
area problem as a 0–1 ILP problem. After a solution is obtained
by the ILP function, the implementation cost of the MCM design,
icost, is computed as if all the A-operations were designed at
gate-level, as given in Section 4 (line 11) and if its cost value is
smaller than the best one (icostb) found so far, then Rb,Ob, and icostb

are updated (lines 12–14). The iterative loop terminates whenever
the number of elements in Rset reaches to 100 or the last 20 ready
sets obtained by Hcub are identical2 (line 15).

5.1.1. The ILP technique
The ILP function used in HCUB + ILP consists of four main parts: (i)

generation of constant implementations; (ii) construction of the



(a) (b) (c)

Fig. 4. Examples on addition operations under unsigned input: (a and b) uþ 2l2 v; (c) (u + v)2�r.

Table 2
Implementation cost of subtraction operations.

Operation 2l1 u� v u� 2l2 v (u � v)2�r

Number Unsigned Signed Unsigned Signed Unsigned Signed

#FA max(l1,nv) � l1 nu nv � 1 nu � l2 � 1 nv � r � 1 nu � r � 1
#HA min(l1,nv) � 1 l1 � 1 0 0 0 0
#HA0 nu + min(l1 � nv,0) 0 nu � nv � l2 + 1 1 nu � nv + 1 1
#inv max(l1,nv) nv nv nv nv � r nv � r

(a) (b) (c)

Fig. 5. Examples on subtraction operations under unsigned input: (a) 2l1 u� v; (b) u� 2l2 v; (c) (u � v)2�r.
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Boolean network that represents the implementations of con-
stants; (iii) formalization of the problem as a 0–1 ILP problem;
and (iv) obtaining the minimum solution. In the following, these
parts are described in detail.

Generation of constant implementations: After a set of operations O
is found on an MCM instance by Hcub, while determining the ready
set R, we also compute the adder-step values of each constant in R
based on the set of operations O. After the depth-1 constants are in-
cluded into R, we sort the constants in R according to their adder-
step values in ascending order. The part of the algorithm, where
the implementations of constants are found, is given as follows:
1. Take an element from R, ri, except ‘1’ that denotes the input var-
iable which the constants are multiplied with. Form an empty
set, Ii, associated with ri that will include the inputs of each
A-operation, which computes ri, as a pair and its implementa-
tion cost.

2. For each A-operation that generates ri,
(a) Compute its implementation cost.
(b) Make each of its inputs positive and odd.
(c) Add its positive and odd inputs as a pair and the implemen-

tation cost of the operation to the set Ii.
3. Repeat Step 1 until all elements of R are considered.



Fig. 6. The HCUB + ILP algorithm.
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To find all possible A-operations that implement an element of R,
ri, we assign ri to the output of an A-operation given in Eq. 3. Then,
for each constant rj, where 0 6 j 6 i � 1, we assign rj to the input u
of the A-operation and by changing the shifts l1, l2, and r and the
sign s values, we compute the input v of the A-operation. Note that
shifts are restricted to bw + 1 and only one of the shifts is set to a
value greater than 0 and the others are set to 0, since only positive
and odd constants are considered. If v is an element of R, rk, where
0 6 k 6 i � 1, this operation is determined as a possible implemen-
tation of ri. These restrictions come from the fact that the MCM
operation forms a directed acyclic graph and does not include feed-
back loops [30]. By doing so, we also ensure that the implementa-
tion of each constant determined by Hcub is considered in the 0–1
ILP formalization. Thus, we guarantee that the optimized MCM de-
sign will always have less or equal area as the MCM design ob-
tained by Hcub.

As a simple example, consider one of the solutions of Hcub on
the constant 11 with two operations, i.e., 3 = 1� 2 � 1 and
11 = 3� 2 � 1. After including the depth-1 constants, the ready
set is formed as R = {1,3,5,7,9,15,17,31,11}. Thus, among many
others, some implementations of the constant 11 including only
the elements of R can be given as 11 = 5� 1 + 1, 11 = 1�
4 � 5, 11 = 9� 1 � 7, and 11 = (15 + 7)� 1. We note that each
of these operations has a different implementation cost.

Construction of the Boolean network: After all possible imple-
mentations of constants in R are found, these implementations
are represented in a Boolean network that includes only AND and
OR gates. The part of the algorithm where the network is con-
structed is given as follows:

1. Take an element from R, ri, except ‘1’.
2. For each pair in Ii, generate a two-input AND gate. The inputs of

the AND gate are the elements of the pair, i.e., ‘1’ or the outputs of
the OR gates representing the target and intermediate constants
in the network.

3. Generate an OR gate associated with ri where its inputs are the
outputs of AND gates determined in Step 2.

4. If ri is a target constant, assign the output of the corresponding
OR gate as the output of the network.

5. Repeat Step 1 until all elements in R are considered.

After the network is constructed, we include the optimization
variables into the network so that the cost function of the 0–1
ILP problem can be easily formed. To do this, we associate the opti-
mization variables with the operations as done in [10]. Hence, for
each AND gate in the network, we add a third input representing
the optimization variable. Thus, the properties of the Boolean net-
work can be given as follows:

1. The primary input of the network is the input to be multiplied
with the constants denoted by ‘1’.

2. An AND gate in the network represents an addition or a subtrac-
tion operation and has three inputs including the optimization
variable.

3. An OR gate in the network represents a target or an intermediate
constant and combines all possible implementations of the
constant.

4. The outputs of the network are the OR gate outputs associated
with the target constants.

The 0–1 ILP formalization: The cost function of the 0–1 ILP prob-
lem is determined as the linear function of optimization variables
representing operations, where the cost value of each optimization
variable is the gate-level implementation cost of each operation
determined as described in Section 4. Also, the constraints of the
0–1 ILP problem are obtained by finding the Conjunctive Normal
Form (CNF) formulas of each gate in the network and expressing
each clause in CNF formulas as a linear inequality as described in
[31]. For example, a 3-input AND gate, d = a ^ b ^ c, is translated to
CNF as ðaþ �dÞðbþ �dÞðc þ �dÞð�aþ �bþ �c þ dÞ and converted to lin-
ear constraints as a � d P 0, b � d P 0, c � d P 0, � a � b � c + d
P �2. The outputs of the network, i.e., the outputs of OR gates
associated with the target constants, are set to 1, since the imple-
mentation of target constants is aimed. Thus, the generated model
can serve as an input to a generic 0–1 ILP solver.

Finding the minimum solution: On the generated problem, a gen-
eric 0–1 ILP solver will search the minimum value of the cost func-
tion while satisfying the constraints that represent how target and
intermediate constants are implemented. The solution of the 0–1
ILP solver, i.e., the operations whose optimization variables are
set to 1, will directly determine the set of operations that yields
the minimum area.

Interested readers may refer to [6,10] for more detailed
explanations.
5.1.2. Properties of the HCUB + ILP algorithm
In this approach, in fact, any algorithm designed for the MCM

problem can be applied. Although there exist many efficient algo-
rithms, we preferred to use Hcub since it is one of the best algo-
rithms designed for the MCM problem [8]. Moreover, Hcub can
find more than one solution of an MCM problem (if there exists)
with the use of randomness in the selection of intermediate con-
stants. This enables the proposed approach to iteratively consider
a local point in the search space of many possible MCM realiza-
tions. Furthermore, the ILP function enables the proposed algo-
rithm to find an MCM operation with optimal area by exploring
the region around this local point.

Although the approach of HCUB + ILP is similar to that of [29],
there are three major differences between these methods. In
HCUB + ILP, first, more than one realization of the MCM instance is
considered if possible. Second, the minimum area solution is found
using an exact method. Third, the depth-1 constants, which are less
complex intermediate constants, are also included into the ready
set to extend the possible implementations of intermediate and
target constants. In addition to the depth-1 constants, we carried
out experiments by including some depth-2 constants, i.e., the con-
stants that can be implemented using a single operation whose one
input is always a depth-1 constant and the other is a depth-1 con-
stant or ‘1’. It was observed that although better solutions in terms
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of area can be found, the 0–1 ILP problem size increases signifi-
cantly and the run-time of the 0–1 ILP solver.

5.2. Optimization of gate-level area under a delay constraint

The modified version of HCUB + ILP in order to handle the user-
specified delay constraint dc given in terms of the number of
adder-steps, called HCUB-DC + ILP, follows the same procedure of
HCUB + ILP as given in Fig. 6. However, in HCUB-DC + ILP, Hcub is applied
on the target set T with dc. Also, in the ILP function, while finding
the possible implementations of an element in R, ri with an adder-
step value asi, the A-operations whose inputs have less than asi val-
ues are considered. Thus, in HCUB-DC + ILP, it is guaranteed that dc will
never be exceeded when a set of operations, which leads to an
MCM design with optimal area, is found.

6. The MINAS algorithms

This section presents the MINAS and MINAS-DC algorithms [11] de-
signed for the gate-level area optimization problem and the gate-
level area optimization problem under a delay constraint
respectively.

6.1. Optimization of gate-level area

As opposed to the HCUB + ILP algorithm that iteratively finds a lo-
cal minimum solution of the MCM problem and searches an MCM
design with optimal area around this local minimum solution, the
MINAS algorithm searches the ‘‘best’’ intermediate constants that
lead to an MCM operation with optimal area while synthesizing
all the target constants. During the selection of an intermediate
constant for the implementation of the not-yet synthesized target
constants in each iteration, MINAS favors the one that can be synthe-
sized using the least hardware and will enable to implement the
not-yet synthesized target constants in a smaller area with the
available constants. After a set of target and intermediate constants
that realizes the MCM operation is found, each constant is synthe-
sized using an A-operation that yields the minimum area in MCM.

The preprocessing phase of the MINAS algorithm is the same as
that of the HCUB + ILP algorithm. The pseudo-codes of the algorithm
and its functions are given in Figs. 7 and 8 respectively.

In MINAS, the ready set, R = {1}, is formed initially and then, the
target constants, that can be implemented with the elements of
the ready set using a single operation, are found and moved to
the ready set iteratively using the Synthesize function. If there exist
unimplemented constant (s) in the target set, then in its iterative
loop (lines 3–13), an intermediate constant is added to the ready
Fig. 7. The main part of
set until all the target constants are synthesized. The intermediate
constants considered in MINAS are positive and odd constants that
are not included in the current ready and target sets (lines 4–5)
and that can be implemented with the elements of the current
ready set using a single operation (lines 6–7). Note that the Compu-
teCost function (line 6) searches all A-operations that generate the
constant with the elements of the current ready set. If there exist
such A-operations, then it determines the cost of each operation
as described in Section 4 and returns the minimum implementa-
tion cost of the constant. Otherwise, it returns 0 value indicating
that the constant cannot be synthesized using an A-operation with
the elements of the current ready set. After the possible intermedi-
ate constant is found, it is included into the working ready set, A,
and its implications on the current target set are found by the Com-
puteTCost function (lines 8–9). In this function, similar to the Com-
puteCost, the minimum implementation costs of the target
constants that can be synthesized with the elements of the work-
ing ready set A are determined. For each target constant, tk, that
cannot be implemented with the elements of A, its cost value is
determined as its maximum implementation cost, maxcost(tk),
computed as if each of its digits is implemented using an FA, i.e.,
a total of dlog2tke FAs. Then, the cost of the intermediate constant
is determined as its minimum implementation cost plus the imple-
mentation costs of the not-yet synthesized target constants (line
10). After the cost value of each possible intermediate constant is
found, the intermediate constant with the minimum cost is chosen
to be added into the current ready set and its implications on the
current target set are found using the Synthesize function (lines
11–13).

When there are no elements left in the target set, the Synthesize-
MinArea function (line 14) is applied to find a set of A-operations
that yields an MCM design with optimal area on the final ready
set. In this function, we formalize this problem as a 0–1 ILP prob-
lem, similar to the 0–1 ILP formalization described in Section 5.1.1.
This is simply because in each iteration of MINAS, the cost of an
intermediate constant is determined by an operation whose inputs
are available in the current ready set. However, the recently added
intermediate constants may yield better realizations of previously
added constants. In this case, the possible implementations of the
constants are found by the GenerateImp function given in Fig. 8.

6.2. Optimization of gate-level area under a delay constraint

The MINAS algorithm can be easily improved to deal with the area
and delay tradeoff so that an increment in area can be compen-
sated with a decrement in delay and vice versa. In this modified
algorithm, called MINAS-DC, the preprocessing phase is the same as
the MINAS algorithm.



Fig. 8. The routines of the MINAS algorithm.
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that of MINAS. Additionally, MINAS-DC takes the delay constraint dc as
an input. It follows the similar procedure described in Figs. 7 and 8.
However, in its Synthesize function, while finding a possible imple-
mentation of an intermediate or a target constant using an
A-operation, it considers the operation whose implementation does
not exceed dc. Also, in finding the implementation cost of an inter-
mediate or a target constant in its ComputeCost and ComputeTCost
functions, it considers the possible implementations that do not
violate dc. After the set of target and intermediate constants is ob-
tained, finding an MCM design with optimal area is again formal-
ized as a 0–1 ILP problem, but in this case, the possible
implementations of a constant are determined as operations that
also respect the dc value.

7. Experimental results

This section presents the high-level and gate-level results of
algorithms presented in this article and compares with those of
the algorithms designed for the MCM problem, the MCM problem
under a delay constraint, and the gate-level area optimization
problem. The gate-level results of an MCM operation are obtained
in two phases. First, the solution of a high-level algorithm on an
MCM instance, i.e., a set of A-operations that generates MCM, is
found. Second, the addition and subtraction operations that imple-
ment the MCM are described in a synthesizable format and then,
the MCM design is mapped with the logic gates given in the
UMC Logic 0.18lm Generic II library using the Sequential Interac-
tive System (SIS) design tool.

As the first experiment set, we used uniformly distributed ran-
domly generated instances where constants were defined under 14
bit-width. The number of constants (n) ranges between 10 and 100,
and we generated 30 instances for each of them. Table 3 presents
the results of the algorithms where nop (%) denotes the total num-
ber of operations normalized with respect to the solutions of the
exact GB algorithm [9] and narea (%) stands for the total gate-level
area normalized according to the solutions of the HCUB + ILP algo-
rithm. In the exact CSE algorithm [10], the constants were defined
under MSD. The solutions of Hcub [8] are the ones that have the
best area found in the iterative loop of the HCUB + ILP algorithm. In
HCUB + ILP-D1, the inclusion of the depth-1 constants to the ready
set obtained by Hcub is not considered, actually line 7 of Fig. 6 is
skipped. Finally, in this experiment, the unsigned input model
was used and the bit-width of the input variable that the constants
are multiplied with was taken as 16.



Table 3
Summary of algorithms on randomly generated instances.

n Opt. of the number of operations Opt. of gate-level area

Hcub [8] Exact GB [9] Exact CSE [10] HCUB + ILP-D1 HCUB + ILP MINAS

nop narea nop narea nop narea nop narea nop narea nop narea

10 103.0 103.8 100 103.6 125.4 108.6 103.2 102.8 104.7 100 106.7 101.2
20 102.2 105.7 100 104.7 130.1 108.3 102.2 103.8 106.6 100 103.0 98.5
30 100.8 107.9 100 106.0 127.5 109.0 100.7 105.0 105.1 100 100.4 101.5
40 100.2 110.1 100 109.1 126.0 110.0 100.2 105.0 104.8 100 100.1 103.7
50 100.1 111.4 100 110.8 123.7 109.5 100.1 104.5 105.6 100 100.0 103.7
60 100.1 112.4 100 113.3 121.1 109.8 100.1 104.0 104.6 100 100.0 104.3
70 100.0 113.4 100 114.5 118.0 109.4 100.0 103.3 104.4 100 100.0 103.8
80 100.0 114.6 100 116.5 114.7 109.6 100.0 103.1 103.5 100 100.0 103.5
90 100.0 115.9 100 118.1 113.9 108.8 100.0 103.7 103.3 100 100.0 103.9

100 100.0 114.6 100 116.5 114.7 109.6 100.0 102.8 103.5 100 100.0 103.5

Table 4
Summary of high-level results of algorithms designed for the MCM and gate-level area optimization problems.

Fil. Optimization of the number of operations Optimization of gate-level area

Hcub [8] Exact GB [9] HCUB + ILP MINAS

op as GPS op as GPS op as GPS op as GPS

1 22 8 3597 22 10 5346 25 6 1824 23 8 2982
2 23 7 2987 23 7 3420 24 6 2295 23 5 2654
3 18 8 2715 17 11 4191 19 5 1762 18 8 3357
4 18 9 2982 17 8 2807 20 6 1878 18 7 2290
5 42 8 9651 41 10 9242 45 7 4747 41 11 9419
6 32 12 5989 31 11 7259 34 6 3567 33 8 5152
7 24 7 3071 23 10 4725 26 5 2172 25 6 2564
8 38 5 3842 37 6 5166 38 7 3811 37 9 6281

Avg. 27.1 8.0 4354 26.4 9.1 5270 28.9 6.0 2757 27.3 7.8 4337
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Table 3 clearly indicates that a solution with the minimum
number of operations does not always lead to an MCM design with
optimal area at gate-level. It also shows that the exact CSE algo-
rithm [10] does not yield better solutions in terms of area since
its search space is significantly restricted with the particular num-
ber representation. The results on Hcub and HCUB + ILP-D1 point out
that the ILP function of Fig. 6 significantly reduces the area of the
MCM design found by Hcub. Also, the results on HCUB + ILP-D1 and
HCUB + ILP show that further improvements can be achieved by
including the depth-1 constants to the ready set obtained with
Hcub. Moreover, HCUB + ILP leads to better results in terms of area
than MINAS on almost all instances. One of the main reasons of this
fact is that HCUB + ILP considers more than one possible realization of
the MCM design with the fewest number of operations obtained by
Hcub. Another one is that HCUB + ILP increases the possible imple-
mentations of a constant in its ILP function by including the
depth-1 constants to the ready set obtained by Hcub. However,
as can be observed when n is 20, there are still instances that MINAS

can find better MCM designs than HCUB + ILP.
As the second experiment set, we used FIR filters3 given in [11].

Table 4 presents the high-level results of algorithms, where op and as
stand for the number of operations and the number of adder-steps
respectively and GPS denotes the power dissipation estimation value
obtained by the formulas given in [17]. In computation of the GPS
value, the bit-width of the filter input was 16, as in the design of
MCM operations at gate-level.

As can be observed from Table 4, although HCUB + ILP and MINAS

find MCM designs including greater number of operations than
those of the algorithms [8,9] designed for the MCM problem, their
solutions lead to an MCM design with lower adder-step and GPS
3 The FIR filter instances are available at http://algos.inesc-id.pt/multicon.
values on overall instances. We note that the average run-time of
HCUB + ILP was 51.1s determined on a PC with Intel Xeon at
2.33 GHz and 4 GB of memory under Linux. The run-time of the
0–1 ILP solver SCIP [32] on the 0–1 ILP problems generated by its
ILP function took maximum 0.86 s and less than 0.4 s on average.
Also, the average run-time of MINAS was 412.2 s. Note that both
algorithms were written in MATLAB and HCUB + ILP uses Hcub and SCIP
that were written in C++.

The gate-level results of MCM designs that are obtained using
the solutions of high-level synthesis algorithms given in Table 4
are presented in Table 5. In this table, area (mm2), delay (ns), and
power (mW) denote the area, delay, and power dissipation results
of MCM designs at gate-level respectively. Note that power dissi-
pation values were obtained using simulation results under
10,000 random input vectors with the SIS tool.

Observe from Tables 4 and 5 that although HCUB + ILP and MINAS

find an MCM operation with greater number of operations than
those obtained by the algorithms [8,9] designed for the MCM prob-
lem, the gate-level implementation of their solutions yields an
MCM design with smaller area. Also, their solutions lead to high-
speed and low-power MCM designs on overall instances. On the
other hand, although HCUB + ILP obtains the smallest area MCM de-
signs on average, there are MCM instances that MINAS finds the
smallest area solution, e.g., Filters 4, 6, and 7. This is simply be-
cause the MINAS algorithm finds the ‘‘best’’ intermediate constants
that require less hardware and enable to realize the not-yet syn-
thesized target constants with less area. Hence, the intermediate
constants chosen in MINAS, which may not be considered in Hcub,
may yield less-complex MCM designs.

Table 6 presents the high-level results of algorithms Hcub-DC,
HCUB-DC + ILP, and MINAS-DC algorithms, that are the modified versions
of the algorithms presented in Tables 4 and 5 to handle the delay
constraint. On these algorithms, the delay constraint was set to

http://algos.inesc-id.pt/multicon


Table 5
Summary of gate-level results of algorithms designed for the MCM and gate-level area optimization problems.

Fil. Optimization of the number of operations Optimization of gate-level area

Hcub [8] Exact GB [9] HCUB + ILP MINAS

Area Delay Power Area Delay Power Area Delay Power Area Delay Power

1 29.2 60.4 513.7 29.4 60.2 802.3 27.9 49.0 149.2 28.1 57.4 437.3
2 31.1 58.8 334.3 31.2 63.0 365.0 29.0 54.3 194.4 29.5 57.8 226.7
3 23.6 64.2 440.4 23.3 61.2 607.4 21.8 58.3 136.6 22.1 60.7 397.8
4 23.1 54.0 302.9 22.5 60.8 368.3 22.2 37.7 147.7 21.6 52.8 206.5
5 59.2 70.5 1280.3 59.0 74.8 1373.5 54.1 56.3 407.3 55.4 73.8 1328.8
6 43.5 65.5 815.3 43.2 66.5 1139.9 41.0 55.2 320.8 40.2 63.0 664.4
7 31.9 61.5 330.4 32.1 65.9 852.5 30.2 47.0 170.5 29.9 50.7 239.8
8 45.1 61.4 465.5 45.8 58.3 642.7 40.2 45.5 341.0 42.9 56.7 930.4

Avg. 35.9 62.1 560.4 35.8 63.8 769.0 33.3 50.4 233.4 33.7 59.1 554.0

Table 6
Summary of high-level results of algorithms designed for the MCM and gate-level area optimization problems under the minimum delay constraint.

Fil. Opt. of the number of operations Opt. of gate-level area
under the minimum delay constraint under the minimum delay constraint

Hcub-DC [14] MinLD [28] HCUB-DC + ILP MINAS-DC

op as GPS op as GPS op as GPS op as GPS

1 25 3 1875 26 3 1520 25 3 1575 26 3 1770
2 27 3 2115 27 3 1770 28 3 1878 28 3 1831
3 23 3 1663 21 3 1271 23 3 1442 22 3 1523
4 20 3 1540 22 3 1444 21 3 1501 22 3 1374
5 55 3 4610 51 3 3730 54 3 3994 51 3 3609
6 39 3 3088 37 3 2421 40 3 2788 38 3 2589
7 29 3 2138 28 3 2043 29 3 2102 30 3 1916
8 43 3 3274 44 3 2597 46 3 2876 43 3 2611

Avg. 32.6 3 2538 32 3 2100 33.3 3 2270 32.5 3 2153
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the minimum delay of the MCM design computed as given in Eq.
(4). In addition to these algorithms, this table shows the results
of the MinLD algorithm [28] that also ensures an MCM design with
the minimum number of adder-steps.

Observe from Tables 4 and 6 that in Hcub-DC, HCUB-DC + ILP, and
MINAS-DC, a large number of operations is required to find a solution
with the minimum number of adder-steps with respect to the solu-
tions of Hcub, HCUB + ILP, and MINAS respectively. This is because the
solutions obtained with these algorithms using the fewest number
of operations lead to MCM designs with large number of adder-
steps that is far away from their minimum. Also, observe that
although finding an MCM design under a delay constraint generally
increases the number of operations, it reduces the GPS value signif-
icantly. Also, observe from Table 6 that MinLD finds the best results
in terms of the number of operations on average among these
algorithms.
Table 7
Summary of gate-level results of algorithms designed for the MCM and gate-level area op

Fil. Opt. of the number of operations under the minimum delay constraint

Hcub-DC [14] MinLD [28]

Area Delay Power Area Delay Powe

1 29.9 54.1 171.6 30.0 46.7 103.4
2 33.2 54.5 164.2 32.1 57.4 133.3
3 25.5 54.1 178.9 23.4 51.9 107.2
4 25.1 51.4 102.6 24.8 45.5 100.9
5 69.9 57.9 371.2 60.3 57.2 311.2
6 50.7 55.2 285.7 43.7 54.1 180.5
7 35.7 50.0 136.3 34.4 55.9 141.0
8 50.8 62.2 347.9 46.5 49.3 209.2

Avg. 40.1 54.9 219.8 36.9 52.2 160.8
Table 7 presents the gate-level results of MCM designs that are
obtained using the solutions of high-level algorithms given in
Table 6. Observe that while HCUB-DC + ILP improves the area of the
MCM operation obtained by Hcub-DC significantly, the solutions
of MinLD lead to less complex MCM designs than those obtained
by Hcub and HCUB-DC + ILP on average, since it obtains better solu-
tions in terms of the number of operations on average. However,
among these algorithms, MINAS-DC obtains the best results in terms
of area on overall instances. Also, observe from Tables 5 and 7 that
designing the MCM operation with the minimum logic depth using
optimal area at gate-level decreases the delay and also the power
dissipation of the MCM design significantly.

By changing the delay constraint on the algorithms that opti-
mize the gate-level area under a delay constraint, one can easily
find the optimal tradeoff between area and delay. In Table 8, we
present the gate-level results of MCM designs obtained by Hcub-
timization problems under the minimum delay constraint.

Opt. of gate-level area under the minimum delay constraint

HCUB-DC + ILP MINAS-DC

r Area Delay Power Area Delay Power

28.9 46.7 112.1 28.3 45.6 104.6
31.7 54.5 153.2 30.7 43.6 122.4
23.8 46.5 94.7 23.7 48.6 112.4
25.0 51.4 96.8 22.9 45.0 85.1
61.9 53.6 292.6 53.3 54.5 249.0
45.4 56.5 187.4 41.5 46.6 180.5
35.1 45.5 128.1 31.5 46.1 111.6
45.8 52.4 196.5 43.2 49.4 176.7

37.2 50.9 157.7 34.4 47.4 142.8



Table 8
Summary of gate-level results of the Hcub-DC, HCUB-DC + ILP, and MINAS-DC algorithms
when dc was set to 4.

Fil. Hcub-DC [14] HCUB-DC + ILP MINAS-DC

Area Delay Power Area Delay Power Area Delay Power

1 30.8 52.6 181.5 28.6 50.1 133.9 29.8 51.4 180.4
2 31.8 55.5 208.0 30.9 55.8 207.4 29.2 50.9 161.8
3 23.5 56.5 241.0 23.0 47.3 115.7 21.7 56.3 183.2
4 22.5 46.2 104.4 21.7 36.4 94.2 21.6 35.8 100.0
5 63.0 61.1 509.0 57.6 51.3 336.7 54.1 54.1 402.9
6 44.6 58.9 339.4 41.8 53.5 229.8 39.5 50.4 195.2
7 34.4 51.1 217.9 32.0 44.3 164.3 30.6 48.5 160.3
8 46.5 64.0 452.4 41.9 54.7 211.1 43.2 53.9 253.5

Avg. 37.1 55.7 281.7 34.7 49.2 186.6 33.7 50.2 204.7
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DC, HCUB-DC + ILP, and MINAS-DC when the delay constraint was set to 4
(one additional adder-step compared to the solutions of these algo-
rithms in Table 7). Observe that when the delay constraint is in-
creased, the area of the MCM design is reduced, and the delay
and power dissipation are generally increased.
8. Conclusions

This article described two different approaches proposed for the
gate-level area optimization problem. It is shown that taking into
account the implementation cost of each addition/subtraction
operation in the design of the MCM operation leads to significant
improvements on the gate-level area with respect to those that
are obtained by prominent algorithms which target the optimiza-
tion of the number of addition/subtraction operations. Also, this
article presented their modified versions for the gate-level area
optimization problem under a delay constraint which enable us
to find the optimal tradeoff between area and delay in the MCM
design by changing the delay constraint. It is indicated that the de-
sign of the MCM operation under a smaller number of adder-steps
yields high-speed and low-power MCM designs but with larger
area. It is also shown that the reduction of the number of adder-
steps and the hardware area in the MCM design should be realized
simultaneously in order to minimize the power dissipation.
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